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Abstract

Gambiense human African trypanosomiasis (gHAT) is one of several neglected tropical
diseases that is targeted for elimination by the World Health Organization. Recent
years have seen a substantial decline in the number of globally reported cases, largely
driven by an intensive process of screening and treatment. However, this infection is
highly focal, continuing to persist at low prevalence even in small populations. Regional
elimination, and ultimately global eradication, rests on understanding the dynamics and
persistence of this infection at the local population scale. Here we develop a stochastic
model of gHAT dynamics, which is underpinned by screening and reporting data from
one of the highest gHAT incidence regions, Kwilu Province, in the Democratic Republic
of Congo. We use this model to explore the persistence of gHAT in villages of different
population sizes and subject to different patterns of screening. Our models demonstrate
that infection is expected to persist for long periods even in relatively small isolated
populations. We further use the model to assess the risk of recrudescence following local
elimination and consider how failing to detect cases during active screening events
informs the probability of elimination. These quantitative results provide insights for
public health policy in the region, particularly highlighting the difficulties in achieving
and measuring the 2030 elimination goal.

Author summary

Gambiense human African trypanosomiasis (gHAT) is a vector-borne infectious disease
that causes sleeping sickness across many African countries. Reported gHAT cases show
a continued decline, but it is unclear if this is sufficient to reach the WHO goal of
stopping transmission by 2030. We develop a stochastic model necessary to address the
critical question of persistence of gHAT infection at the local-scale. In contrast to other
commonly studied infections, we predict long-term persistence of gHAT in small
populations (< 1, 000 people) despite very low prevalence. Our local-scale predictions
(together with previous larger-scale studies) suggest that, to achieve regional
elimination, controls need to be widespread and intensified in the worst affected regions,
while the movement of infected people could rapidly lead to re-emergence.
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Introduction 1

Gambiense sleeping sickness (gambiense human African trypanosomiasis, referred to 2

here as gHAT) is a tsetse-borne neglected tropical disease (NTD) caused by the 3

parasitic protozoa, Trypanosoma brucei gambiense. There has recently been a decline in 4

global cases, with just 1,420 cases reported in 2017, compared to 10,466 reported in 5

2007 [1]. This decline is largely attributed to improvements in the active screening and 6

treatment campaigns that have been carried out in many regions [2]. In 2012, the World 7

Health Organization (WHO) set targets for elimination of gHAT as a public health 8

problem; these were updated in 2017 to: reducing the area at risk of reporting more 9

than 1 case per 10,000 people per year by 90% as compared to the baseline for 10

2000–2004 [2], and for fewer than 2,000 reported cases per year, by 2020 [3]. There is 11

also a more stringent goal of stopping transmission of gHAT by 2030 [3]. 12

Cases of gHAT primarily occur in West and Central Africa, but the distribution of 13

infection is heterogeneous, with highly clustered incidence resulting in disease foci [4, 5]; 14

reported prevalence often varies greatly over short distances, even between neighbouring 15

villages [6]. This local variation suggests there is a complex spatial structure to the 16

infection. With the observed global decline in reported cases and with many (but not 17

all) foci likely to achieve less than 1 case per 10,000 people by 2020 [7, 8], it is 18

increasingly important to understand both where the disease is most likely to persist 19

and why this might be the case. 20

In regions where gHAT cases are no longer observed (and where local elimination 21

has been achieved), it is possible for the disease to be re-introduced through movement 22

of either infected humans or infected tsetse, and it may become re-established especially 23

if active case-finding has not been maintained [9]. It is therefore clear that, while the 24

current active screening is highly successful in many regions, an understanding of 25

stochastic re-invasion and re-establishment in local populations is also essential to guide 26

post-elimination policy planning. 27

There are two stages of gHAT, with Stage 1 following initial infection and Stage 2 28

defined after trypanosomes have crossed the blood–brain barrier [10]; these stages 29

currently require very different treatments. Patients are hospitalised for the treatment 30

duration and are advised to recover at home afterwards, on average, for a total time of 6 31

months [11]. Without the treatment, individuals typically progress from Stage 1 to 32

Stage 2 after 18 months and most would likely be expected to die from 33

meningoencephalitis after approximately 3 years [12]. 34

Active detection of gHAT occurs through population-level screening, which is 35

implemented in many endemic regions by mobile teams travelling to settlements and 36

testing the available population [6]. Teams are generally able to screen substantial 37

proportions of the local population (often over 70%) [13]; however, some 38

socio-demographic groups (notably working adult males) frequently do not present for 39

testing. Previous work has indicated that the individuals missed in screening are also 40

more likely to be more highly exposed to tsetse bites [14, 15], potentially due to working 41

in tsetse-infested forested and riverine areas. Such high risk core-group individuals pose 42

a barrier to elimination [8, 16–18]. In parallel with active screening, passive detection 43

occurs when individuals voluntarily attend medical facilities for testing, usually after 44

the onset of more significant symptoms, and are thus most often in Stage 2 of the 45

disease [11]. 46

Mathematical models of gHAT have been beneficial in identifying the effectiveness of 47

differing control strategies and predicting when elimination is likely to occur [19]. 48

However, much of the modelling work on the gHAT infection dynamics has been done in 49

large populations using deterministic models, either for an entire regional infection focus 50

or at a health zone level (approximately 100,000 people) [8, 15,17,20,21]. Here we 51

translate the deterministic model of Rock et al. [17] to a stochastic framework, designed 52
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to capture the infection dynamics and chance extinction at the village-scale. As such, 53

our model is mechanistic and so captures details of the biology and epidemiology, 54

allowing modification of model components to predict a number of different scenarios 55

and control options. 56

Much of the previous work on the stochastic persistence of infection has tended to 57

focus on measles in developed countries [22,23]. Measles is directly transmissible, has a 58

high reproductive ratio (12–18 compared to approximately 1–1.1 for gHAT [1]) and a 59

high incidence before immunisation programs were introduced; yet, in contrast to gHAT, 60

measles only persists in large populations of above approximately 300,000 and even then 61

relies on frequent reintroductions [22,23]. 62

We use our model to address the dynamics of gHAT in the villages within the 63

Yasa-Bonga and Mosango health zones of the DRC (Fig 1); a region that has an 64

extremely high incidence of gHAT. The model has already been fitted to the available 65

epidemiological data from the WHO HAT Atlas (Fig 1) [7, 13], with parameters inferred 66

from regional reporting patterns and screening mimicking observed village-scale records 67

(see Methods and S1 Appendix). 68

Methods 69

Data 70

The Democratic Republic of Congo (DRC) has the highest burden of gHAT cases (1,110 71

cases out of 1,420 reported globally in 2017 [1]), and 46% of these cases are 72

concentrated in the former Bandundu province [24]. We focus on models and data for 73

two high-prevalence health zones in this former province (now in Kwilu province): 74

Yasa-Bonga and Mosango. Reported case information made available by the WHO HAT 75

Atlas [7, 13] details the locations of settlements with estimates of population size, the 76

years that active screenings took place, the number of people screened and the resulting 77

newly identified gHAT cases. In Yasa-Bonga and Mosango, we consider 559 settlements, 78

which experienced 2,701 active screenings in 2000–2012, each where a full village 79

population was targeted to be screened, resulting in 4,875 detected gHAT cases, as well 80

as 2,496 additional cases from detected by passive surveillance. Our model utilises these 81

recorded screening patterns to simulate interventions, while the active and passive cases 82

detected in each settlement are stochastically generated by the model. 83

Population sizes for settlements are also obtained from census estimates within the 84

WHO HAT Atlas (Fig 1B) [7,13]; we account for an estimated yearly population growth 85

of 2.6% [25]. Screening coverage from active surveillance is then calculated as the 86

number of individuals screened divided by this population estimate in each year. 87

Annual screenings larger than the estimated accessible population (yellow and red bars 88

in Fig 1D) may indicate either multiple screenings in a year or misreporting of 89

individuals attending from neighbouring settlements. Low annual screening coverage (at 90

less than 20% of the population size, gray bars in Fig 1D) is assumed to represent 91

individuals screened outside their home settlement and therefore is not considered as a 92

complete active screening of any given village. 93

All relevant model data are displayed within the paper and the Supporting 94

Information files (S1 Appendix, Table S2). Epidemiological data for the study were 95

provided by the WHO in the frame of the Atlas of gHAT which may be viewed at 96

www.who.int/trypanosomiasis_african/country/risk_AFRO/en and may be 97

requested through Jose Ramon Franco (francoj@who.int). 98
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Fig 1. Visualisation of WHO HAT Atlas data for the study health zones:
Yasa-Bonga and Mosango. (A) Map of Africa, showing the DRC (lighter green)
with former Bandundu province highlighted in the lightest green. The area containing
the health zones Yasa-Bonga and Mosango (presented in more detail in Fig 1C) is
covered in a purple box. (B) Histograms of the estimated population sizes of villages in
the region for 2012. The inset figure highlights the distribution of population sizes less
than 2,000 individuals. Population sizes have a range of 3 to 12,645. (C) Detailed map
of locations of settlements within the study region (Fig 1A, purple box), colour and
radius of the circle represent population size of the individual settlements. The satellite
image shown for the Yasa-Bonga and Mosango health zones is from Landsat-8 accessed
through https://earthexplorer.usgs.gov/ from the U.S. Geological Survey. (D)
Histogram of the coverage achieved in visits to settlements as part of the active
screening programme. When annual screenings are larger than the estimated accessible
population (yellow and red bars), this may indicate either multiple screenings in a given
year, or misreporting, when individuals are attending from neighbouring settlements.

Modelling 99

The infection dynamics are described by a stochastic compartmental 100

Ross–Macdonald-type model [26–29] extended from the previous work of Rock et al. [17] 101
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(using the formulation of Model 4 from that study) (S1 Appendix, Fig S1). The model 102

captures a population of humans, which is initially partitioned into those at high and 103

low risk of being exposed to tsetse bites. Each person will transition between five 104

different epidemiological compartments: susceptible; exposed (or latent); Stage 1 105

infection; Stage 2 infection; and hospitalised (and temporarily removed). We assume 106

that there is natural mortality from all compartments, which leads to replacement of 107

that individual as a susceptible in the population. 108

The risk structure is used to capture the behaviour of the small proportion of 109

individuals that both work in the habitat of many tsetse and so have a higher biting 110

exposure and also do not partake in active screening, thereby acting as a human 111

reservoir of infection [16–18]. The proportion of the individuals in the high risk group is 112

estimated through extensive model fitting to be 7.6% of the population for these health 113

zones [17]. While the high risk group have a higher biting exposure, the probability of 114

tsetse infection per single infective bite is the same for both risk groups. This model 115

structure, where individuals are either high risk and non-participating in active 116

screening or low risk and randomly participating in active screening, was selected using 117

the deviance information criterion (DIC), which assigns low scores for models with high 118

posterior mean log-likelihood and penalises models with more parameters. 119

Tsetse in the model are similarly compartmentalised into four epidemiological states: 120

teneral (unfed); non-teneral yet uninfected; exposed (or latent); and infected. The 121

distinction between teneral and non-teneral yet uninfected is used to capture the 122

observation that tsetse are far more susceptible to infection at their first blood meal 123

than at any subsequent blood meals [30]. The effect of a possible animal reservoir is not 124

considered, since its role remains unclear [15,17,20,31,42] and its inclusion does not 125

significantly improve the match between model outputs and currently available data in 126

this setting [17]. 127

Additional to the epidemiological and demographic processes, we simulate the effect 128

of active screening and passive detection of cases. Passive detection (and 129

disease-induced mortality) is assumed to occur at a fixed (per capita) rate for all Stage 2 130

infected individuals [11]. Active screening takes place annually; the proportion screened 131

is either replayed from the historic pattern for that settlement or chosen randomly from 132

the set of all screening coverages recorded, allowing a greater range of scenarios to be 133

explored. Since Yasa-Bonga and Mosango are high endemicity regions, we assume that 134

the screening coverage and frequency remains constant over time but note that these 135

quantities are somewhat affected by population size (S1 Appendix, Fig S8). 136

Individuals in the low risk group are selected randomly for screening, irrespective of 137

epidemiological status, and those that are found to be infected are moved to the 138

hospitalised class. We assume that screening only applies to low risk individuals, such 139

that screening coverages greater than 92.4% (the estimated proportion in the low risk 140

group) [17] are truncated (Fig 1D). In the field, the diagnostic process is complex and 141

multi-stage [32]; however, in the model, we collapse this into characteristics for the 142

whole algorithm, which is assumed to be 91% sensitive [33] but 100% specific. False 143

negatives remain undetected in the settlement, but by assuming 100% specificity, there 144

are no false positives as we assume confirmation by microscopy will be carried out due 145

to the low case numbers. 146

For the majority of this paper, we model the dynamics as a closed population, 147

without emigration or immigration, so that once the disease has gone extinct in a 148

population it cannot be re-introduced. This removes a critical dependency in model 149

formulation, and greatly simplifies the presentation of results. In reality, no population 150

is ever completely isolated; however we show that the expected rate of infectious 151

imports is very low and does not affect our main results or conclusions (S1 Appendix). 152

September 9, 2019 5/33

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted September 13, 2019. ; https://doi.org/10.1101/19006502doi: medRxiv preprint 

https://doi.org/10.1101/19006502
http://creativecommons.org/licenses/by/4.0/


Parameters 153

Model parameters for the underlying compartmental model are taken from the previous 154

work of Rock et al. [17]. The values of these parameters were taken from literature, 155

where well-defined, and otherwise inferred by model fitting using a Metropolis–Hastings 156

MCMC algorithm, which sought to match the deterministic model to observed cases 157

and screening effort in Yasa-Bonga and Mosango. The values used in this manuscript 158

are the median of the distributions inferred using MCMC methodology applied to the 159

aggregate annual data from Yasa-Bonga and Mosango. Therefore, the parameter values 160

are specific to the study region, and the model is well-matched with the incidence data 161

from active and passive surveillance. A full list of parameters is given in the S1 162

Appendix, Table S1. 163

Results 164

We use our model to address the dynamics of gHAT in the villages within the 165

Yasa-Bonga and Mosango health zones of the DRC (Fig 1), a region that has an 166

extremely high incidence of gHAT. Using the estimated population sizes and the 167

reported levels of active screenings (Fig 1B and D), we validate the stochastic model by 168

comparing the observed and predicted screenings that did not detect any cases (which 169

subsumes both local extinction and failure to detect). We then consider the probability 170

of local gHAT persistence across a range of population sizes and different control 171

scenarios, as well as the probability of re-invasion. Finally, we focus on whether not 172

detecting cases in a series of active screens can inform on whether local elimination has 173

been achieved, noting that WHO guidelines suggest annual active screenings until there 174

have been three consecutive years of no new cases, followed by a further screening with 175

no cases after three years [32]. 176

Comparison with data 177

While the underlying deterministic model has been fitted to the aggregate data from 178

this region, it is important to assess the behaviour of the stochastic model against 179

village-scale observations. Unfortunately, local disease extinctions cannot be directly 180

observed; failure to discover any cases does not necessarily mean that the infection is 181

not present, simply that it has not been detected. Thus, to validate our model, we make 182

comparisons between the simulated predictions and WHO HAT Atlas data [7,13] for the 183

probability of detecting no cases on an active screening (termed zero-detections for 184

brevity), which is a combination of failure to detect and local extinction. We compare 185

model predictions to observations by calculating the percentage of zero-detections in 186

aggregations of 100 active screenings with similar village population sizes (Fig 2A). We 187

find very strong agreement between model predictions and data, with a pronounced 188

decline in zero-detections for larger populations. 189

For individual settlements, those where the number of zero-detections lie outside the 190

95th percentile of model predictions are notably spatially clustered (Fig 2B). In 2.1% of 191

settlements (red), there are significantly fewer zero-detections than predicted and hence 192

greater persistence; these villages are generally localised around the main river through 193

the region. In 6.3% of settlements there are significantly more zero-detections than 194

expected (yellow), and these are clustered far from the major rivers and in upland areas. 195

Since tsetse are most densely distributed surrounding riverine areas [34], this spatial 196

clustering may indicate the need for spatially heterogeneous parameters that reflect the 197

suitability of the local environment for tsetse. However, given that more than 90% of 198

villages fall within our prediction intervals, we believe the homogeneous parameters 199

capture the general stochastic behaviour of this region. 200

September 9, 2019 6/33

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted September 13, 2019. ; https://doi.org/10.1101/19006502doi: medRxiv preprint 

https://doi.org/10.1101/19006502
http://creativecommons.org/licenses/by/4.0/


Fig 2. Comparison of model predictions and data for active screenings with
no detected cases (zero-detections). (A) Histogram by population size of the
percentage of active screenings that find no new gHAT cases for both the model and the
HAT Atlas data. Each bar represents 100 screenings of simulated results (averaged over
10,000 replicates) from the model that uses the observed pattern of screenings and
compares to the data. Values where the model predictions have more zero-detections
than the data are in red, while the reverse is shown in yellow. Error bars represent the
95th percentile of model results. (B) Map of populations in Yasa-Bonga and Mosango
showing the settlements with significant differences (at the 95% level) in the expected
proportion of active screenings with no cases detected. Red circles are where the
observed number of active screenings with zero-detections is below the 95th percentile of
the model; yellow circles are where the data falls above the 95th percentile; small blue
circles are for data that lie within the 95th percentile of predictions and therefore are
well described by the model. The satellite image shown is from Landsat-8 accessed
through https://earthexplorer.usgs.gov/ from the U.S. Geological Survey.

Local gHAT persistence 201

Local gHAT persistence, where human infection is maintained in a settlement, is 202

affected by many factors (Fig 3), including the population size of the settlement; the 203

vector-to-host (tsetse-to-human) ratio; the exposure to the tsetse; the screening 204

procedure; and any movement of infected individuals between populations. We calculate 205

the probability of persistence by stochastically simulating the epidemic for 16 years 206

from the endemic (uncontrolled) disease equilibrium. If there is zero gHAT infection in 207

the human population after a given number of years and no further human infection 208

emerges in the following year from infected tsetse, we say in this simulation there is 209

local disease elimination with no immediate threat of re-emergence (Fig 4A provides a 210

justification for this criteria). This procedure is repeated for multiple population sizes; 211

the proportion of simulations that retain infection after a given number of years 212

determines the probability of persistence (Fig 3). 213

We focus on settlements with fewer than 2,000 inhabitants, typical of Yasa-Bonga 214

and Mosango (Fig 1B), and use regionally specific parameters. In all scenarios 215

investigated, we find that persistence increases with increasing population size (Fig 3). 216

This echoes results from other infections [22,23,35,36], where small populations with 217

low incidence experience a greater impact of stochasticity and chains of transmission 218

that are more likely to be broken. In addition, given that long-term persistence relies on 219
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Fig 3. Predicted probability of gHAT persistence in isolated settlements.
Simulations are started at the endemic (uncontrolled) equilibrium and iterated forwards
(without infectious imports), while the persistence of infection is recorded. This is
repeated 100,000 times for settlement population sizes between 50 and 2,000 individuals.
The expected number of yearly new infections if the system were at equilibrium is
proportional to the population size and is given by the top scale. (A) Impact of active
screening on gHAT persistence; annual screening at a fixed coverage per year yields a
drop in persistence with increased coverage. (B) Comparison of screening assumptions
on the persistence of gHAT. The solid curve shows results where annual screening
coverages were randomly sampled from all observed coverages; dots represent the
individual settlements recorded in the WHO HAT Atlas for Yasa-Bonga and Mosango
health zones [7, 13], where the reported coverage in each year is used. There were
sufficient simulations such that confidence intervals are too small to be visible.

persistence for shorter time intervals, the probability of persistence decreases with time 220

(S1 Appendix, Fig S9B–C). The relatively long persistence times of gHAT, compared to 221

the frequently studied persistence of childhood diseases [22,23], are attributable to the 222

long time-scale of gHAT infection in the absence of active interventions [37]. 223

The addition of active screening (leading to the treatment of detected cases) 224

decreases the probability of persistence across all population sizes, since removing 225

infected individuals leads to a greater chance of breaking chains of transmission 226

(Fig 3A). Increasing levels of screening, beyond the observed 21% average, leads to 227

further reductions for persistence. We compare three assumptions for active screening 228

(Fig 3B): that each population is screened annually at a fixed coverage equal to the 229

regional average (21%); that each population experiences screening coverages sampled 230

from the regional pattern including not screening in a given year; and simply replaying 231

the recorded pattern of active screening in each village. Despite the very different 232

distributions of screening effort, all three of these assumptions produce comparable 233

levels of persistence. 234

Re-invasion probability 235

Following localised elimination of infection, populations remain vulnerable to re-invasion; 236

we investigate the potential for re-establishment of sustained transmission in a 237

settlement for different invasion scenarios. For a village of 1,000 individuals, following 238

the elimination of infection in humans, the level of infection in tsetse falls rapidly, even 239
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when starting at the endemic level in these vectors (Fig 4A). In approximately 65% of 240

simulations, the initially infected tsetse generate human cases, and the level of infection 241

in vectors rapidly plateaus; otherwise, infection is eliminated from the location within 242

six months due to short vector life expectancies in comparison to the human hosts. This 243

validates the previous simulation assumption (Fig 3) that local disease elimination can 244

be considered achieved after a period of one year in which there are no infected humans, 245

as the number of infected tsetse will also become negligible. 246

The probability that a population of tsetse, infected at the endemic equilibrium 247

(0.02% of tsetse exposed or infected), will lead to re-establishment of infection is 248

predicted to be a function of settlement size (S1 Appendix, Fig S10A). Small 249

populations are unlikely to see any new human infections, and those that are generated 250

fail to persist. However, even for large population sizes of 2,000 individuals, the chance 251

of continued transmission beyond one year is only 55% and is less than 10% over 15 252

years. For lower levels of infection in the tsetse population, the risk of successful 253

re-establishment is proportionally reduced. 254

In contrast, if re-invasion of an infection-free population is due to the movement of 255

an infected person into the settlement (in the absence of infected tsetse) the probability 256

of re-establishment over different time-frames is largely unaffected by the population 257

size (Fig 4B). We predict a high probability (> 70%) of short term re-invasion, but a 258

more limited chance (< 20%) that this will generate persistent infection for 15 years or 259

more. This is typical of stochastic dynamics of infection with low basic reproductive 260

ratio (R0), where, although short chains of transmission are likely, it is difficult for the 261

infection to fully establish. 262

Fig 4. Dynamics of extinction and reintroduction. (A) Starting with no
infected humans but the tsetse population at its endemic equilibrium and a settlement
size of 1,000 individuals, the model predicts a dramatic decline in the infected tsetse
population, depending on whether subsequent human cases are generated by the
infected tsetse. (B) Extending this model further for a range of initial conditions, we
examine the probability that at least one human case is generated and the infection
persists for a given time, when starting with one infected human and no infected tsetse
for both uncontrolled and random screening.
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Detecting elimination 263

As discussed above, zero-detections may be an indication that there is no infection in a 264

settlement; however, it may simply be that infected individuals were not screened or 265

were false negatives. Despite this, there is a temptation to associate zero-detection with 266

zero infection; we therefore use our simulations to tease apart this complex relationship. 267

The model replays the observed pattern of screening in each settlement, but we perform 268

multiple simulations to ascertain the probability that infection has been locally 269

eliminated following one, two or three consecutive zero-detection screenings, in which at 270

least 20% of the population are screened (Fig 5). We also insist that no passive cases 271

were detected between the screening events. Our standard assumption, in agreement 272

with parameter inference for this region, is that 26% of Stage 2 infections, where people 273

either self-report or likely die of gHAT infection, are detected and reported [17], but we 274

also investigate 0% (no passive reporting) and 100% (all passive cases and deaths are 275

reported) for comparison. 276

For small settlements, given that long-term persistence is unlikely (Fig 3), even a 277

single zero-detection screen (Fig 5, blue) is frequently associated with local elimination. 278

For larger populations, a single zero-detection has limited predictive power, and three 279

consecutive zero-detections are needed to have any degree of confidence, in which case 280

the reporting of passive cases plays a noticeable role. There is, however, significant 281

variation between settlements, reflecting very different patterns of reported screening. 282

Moderate population sizes of between 200 and 1,000 individuals show extreme variation 283

in the ability to predict local elimination, while smaller villages have less variation, in 284

part due to rarely being screened before 2009 (S1 Appendix, Fig S8C). 285

Importation rates 286

Regional persistence relies on more than independent persistence in individual 287

settlements. It is likely that the occasional movements of infected people lead to a 288

stochastic meta-population paradigm [41], where rare local extinctions of infection are 289

balanced by external imports. However, the agreement between model and data (Fig 2), 290

together with the low prevalence of infection, indicates that imports are likely to be rare. 291

We make this more quantitative by fitting an importation rate of infection, 292

proportional to the size of the population. Before interventions, the presence/absence of 293

infection in a population reflects the equilibrium balance between extinction and 294

re-colonisation; we can therefore use the presence of infection at the first recorded active 295

screening within a village as measure of the equilibrium state. Fitting the external 296

importation rate to the probability of detecting infection in a village at the first active 297

screen gives the best fit when the rate is small at just 3.4× 10−6 per person per day 298

(Fig 6A). Moreover, it is assumed that the importation rate declines over time as the 299

overall prevalence in DRC reduces. 300

For most population sizes in the region, the expected time to importation is 301

therefore relatively long (Fig 6B), and in many cases a single importation will not cause 302

further transmission events (Fig 4), leading us to conclude that in general the level of 303

importation will not qualitatively change our results. This is made more explicit in the 304

supporting information (S1 Appendix, Fig S6), where it is shown that the model with 305

the fitted level of infectious imports generates comparable results to those described in 306

the main paper. This justifies our modelling assumptions that villages act as isolated 307

populations and that importation of infection is unlikely to perturb the dynamics; 308

instead, we are able to separate the processes of local elimination and re-invasion. 309
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Fig 5. Probability of elimination in a settlement, given consecutive
zero-detections with no detected passive cases. (A) Consecutive zero-detections
means consecutive in the observed years of screenings, not necessarily in consecutive
years, and with no passive cases detected in between. Each point represents the average
from multiple simulations of individual settlements where the reported pattern of
screenings is replayed. The points and solid lines assume a reporting rate of 26% [17],
while the dashed and dotted lines show reporting rates of 0% and 100%, respectively.
Sufficient simulations are used such that the confidence intervals are small
(unobservable on the scale of this graph). Lines represent a weighted local regression fit.
Active screenings where fewer than 20% of the population are assessed are excluded
from our analysis due to the small sample sizes (alternative cut-offs of less than 10%
and less than 50% are presented in the S1 Appendix, Fig S12).

Discussion 310

Despite global declines in reported cases over the last decades, gambiense gHAT 311

remains a problem in many focal areas [38]. These regions, concentrated primarily in 312

the DRC, represent a significant challenge to achieving the WHO 2020 and 2030 goals 313

of elimination as a public health problem and zero transmission, respectively. Robust 314

models, matched to the available data, are the only viable means of quantitatively 315

assessing future dynamics and the long-term impact of controls [8, 17,18,21]. Active 316

screening followed by treatment is one of the main control measures, but this action is 317

deployed at the village level suggesting that village-scale models (which recognise the 318

effects of small population size) may be needed to optimise deployment; these results 319

can then be scaled to an infection focus or national level to measure regional 320

elimination, which is especially important as we approach zero transmission. 321

We have introduced a dynamic, mechanistic, stochastic gHAT model, which is 322

applied to 559 settlements in the Yasa-Bonga and Mosango health zones within the 323

former Bandundu province of the DRC (Fig 1). Using parameters inferred from a 324

deterministic model fitted to aggregated reported cases, our model reliably captures 325

observed detection patterns at the village-scale (Fig 2). This comparison highlighted 326

some spatial heterogeneity associated with the local environmental conditions 327

(significantly fewer zero-detections than predicted occurred in regions close to large 328

rivers, where the tsetse density is presumably high); however, 91.6% of settlements fell 329

within the model (95%) prediction intervals, giving us confidence in our predictive 330

ability. The inclusion of such local environmental factors, which modify the underlying 331
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Fig 6. Simulating external importations of infection into village
populations. (A) By running simulations with different values for the external
infection parameter, we find the best fit — to data binned by population size from the
WHO HAT Atlas on whether there are any detected cases on the first active screening —
is when imports per susceptible individual are equal to 3.4× 10−6 days−1 (solid line).
(B) Curves of the expected time for an external importation into a village population
using the fitted importation parameter. The importation parameter is assumed to decay
at the same rate as total number of cases in time in the DRC (see S1 Appendix, Fig
S8A).

parameters, is clearly an area for further research into refining this small-scale model 332

and may help to practically focus localised control measures, in particular for planning 333

tsetse control. 334

Throughout our simulation experiments, we consistently find that gHAT persists 335

better in larger populations. This is as expected and agrees with theoretical work and 336

analysis of other diseases [22,23,35,36,39,40]; in small populations, the behaviour of the 337

individual is more important, and hence stochastic effects are magnified. The degree of 338

persistence predicted is, however, surprising; settlements of around 2,000 inhabitants, 339

where yearly incidence is only 13 new infections, frequently persist for 15 years or more 340

(Fig 3). This should be contrasted with frequently studied, highly transmissible diseases, 341

such as measles, where local extinctions are common in population sizes of less than 342

300,000 [22, 23]. We attribute this pronounced difference to the much longer time scales 343

associated with gHAT, meaning single individuals can maintain infection, and the 344

vector-borne nature of gHAT transmission, such that the tsetse act as a short-lived 345

reservoir. We consistently find that incorporating active screening reduces the 346

persistence of infection (Fig 3A), although the distribution of screening across years has 347

only a small effect (Fig 3B). Increasing the screening coverage beyond the average 348

reported levels (of 21% per year) is predicted to lead to further reductions in 349

persistence, but infection is still predicted to be maintained for over 15 years in many 350

larger populations. 351

Throughout, we have generally ignored the impact of new infectious individuals 352

entering the population, and indeed have shown that this rate of importation is very 353

low. If re-invasion following local elimination is due to the movement of a single infected 354

individual into the settlement (Fig 4B), we predict that the probability of subsequent 355

cases is high (70–80%) and largely independent of population size. However, only a 356

small proportion (10–20%) of such invasions lead to long-term persistence of over 15 357
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years. Re-establishment of infection due to the movement of a limited number of 358

infected tsetse is even less likely. Current uncertainties about the impact of potential 359

reservoirs — either a human reservoir of asymptomatic infections or an animal reservoir 360

— mean there is insufficient knowledge for resurgence to be explicitly modelled by these 361

mechanisms [42], but an animal reservoir that can maintain infection in the absence of 362

humans is likely to represent a worst-case scenario. 363

A key question, as we approach the 2030 goal of zero transmission, is to ascertain 364

when local elimination has been achieved, allowing policy-makers to scale back control if 365

the infection is no longer present. Due to only a limited proportion of each settlement 366

being screened and the potential for false negatives, a screening can fail to detect any 367

cases even when there is infection in the population. We have shown that, while a single 368

zero-detection screening provides relatively little information of the probability of local 369

gHAT elimination, multiple consecutive zero-detection screenings are a strong indicator 370

of elimination (Fig 5). This can be further strengthened if only large screens (> 50%) 371

are included in the analysis (S1 Appendix, Fig S12B), providing valuable public health 372

information. This concurs with WHO guidelines for active screenings, as villages are no 373

longer considered in planning by mobile screening teams after three consecutive years of 374

zero-detections, followed by a further zero-detection after three years [32]; our model 375

would predict local elimination with large probability for this level of surveillance. 376

Consistent with the observed patterns in high endemicity regions, we have assumed that 377

the screening coverage and frequency remains constant over these time scales but note 378

that in other regions it may be important to consider the reduction in active screening 379

as reported gHAT cases decline and elimination is approached. 380

Conclusion 381

The ability to capture the stochastic dynamics and persistence of gambiense gHAT 382

infection at the village-scale is a major advance in public health modelling, with 383

far-reaching consequences for informing policy decisions. This is particularly pertinent 384

as our models operate at the same spatial scale as controls and can capture the local 385

elimination of infection that is a prerequisite of achieving the 2030 goal of zero 386

transmission globally. 387

Supporting information

S1 Appendix. Model details and supplementary results. Additional
information on the formulation of the model, details of the data and supplementary
results.

Model

Model equations

We introduce a compartmental infection model for HAT. The outputs of the model are
the number of humans and the proportion of the total number of vectors in each class.
For humans, the classes are: susceptible, exposed (but not infectious), Stage 1 infection,
Stage 2 infection and hospitalised (or recovering at home). These variables are denoted
by SHj(t), EHj(t), I1Hj(t), I2Hj(t) and RHj(t), where j = 1, 2, with j = 1 for low risk
individuals, randomly participating in active screening, and j = 2 for high risk
individuals, never participating in active screening, each at time t > 0. The population
size is assumed to be constant and thus
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SH1 EH1 I1H1 I2H1 RH1

SH2 EH2 I1H2 I2H2 RH2

SV

EV

GV

IV

Non-
reservoir
animals

λH1 σH ϕH γH

λH2 σH ϕH γH

active
screening

λV

α− λV
ελV

σV

ωH

ωH

BH1

BH2

BV

low risk
humans

high risk
humans

tsetse

Fig S1. Compartmental model of HAT infection dynamics in humans (low
and high risk) and tsetse. Humans can become exposed, EH , on a bite from an
infective tsetse and progress through the infection stages, IH1 and IH2, before moving
to the non-infectious class RH due to hospitalisation. Active screening moves exposed
or infected people directly to the hospitalised class. Unfed tsetse can become exposed
and infected, EV and IV , on consumption of a blood-meal, of which a proportion are
taken on humans. Alternatively, first blood-meals not resulting in exposure means
tsetse are less susceptible to trypanosomes in future meals, GV , where we define

λV = αpV

(
fH1

I1H1+I2H1

NH1
+ fH2

I1H2+I2H2

NH2

)
. The transmission of infection between

humans and tsetse is shown by grey paths. Infected animals are not considered.

NHj = SHj(t) + EHj(t) + I1Hj(t) + I2Hj(t) +RHj(t), j = 1, 2.

The vectors (tsetse) are given by the variables SV , E1V , E2V , E3V , IV and GV ,
which correspond to teneral (unfed) tsetse, infected tsetse in their extrinsic incubation
period (there are three classes to create a gamma distributed period), infectious tsetse,
and non-teneral (fed) but uninfected tsetse. The compartments of the model and
possible transitions between them are shown graphically in Fig. S1. We assume that
there is natural mortality from all compartments, which leads to replacement of that
individual as a susceptible in the population.

Active screening has the potential to detect infection and so move individuals from
the exposed or infected classes directly to hospitalised. This is simulated by randomly
selecting from the low risk population and if these individuals are exposed or infected,
they become hospitalised with 91% probability (the sensitivity of the screening
algorithm), as this is the probability of a positive test result, given the person has the
infection.

For m = meff/pH and pH > 0, Table S1 defines the transition rates of the
Markov-chain model {(SH1(t), EH1(t), I1H1(t), I2H1(t), RH1(t), SH2(t), EH2(t),
I1H2(t), I2H2(t), RH2(t), SV (t), E1V (t), E2V (t), E3V (t), IV (t), GV (t)) : t > 0} from
state (sH1, eH1, i1H1, i2H1, rH1, sH2, eH2, i1H2, i2H2, rH2, sV , e1V , e2V , e3V , iV , gV ).
For m→∞ and pH → 0 (when the vector-to-host ratio, V:H →∞), the transition

September 9, 2019 14/33

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted September 13, 2019. ; https://doi.org/10.1101/19006502doi: medRxiv preprint 

https://doi.org/10.1101/19006502
http://creativecommons.org/licenses/by/4.0/


rates remain the same in the human population, but now, since we are considering an
infinite number of vectors, an ordinary differential equation approximation is used to
describe the vectors. In simulating the model, the tau-leaping algorithm is used,
whereby the states and rates are updated with a fixed time step at which the ordinary
differential equations are also updated.

In our analysis, the endemic disease equilibrium is calculated as the steady state of
the deterministic model, excluding control measures other than basic passive
surveillance [1]. Initial conditions for individual villages are taken by sampling from a
binomial distribution, where the probability of being selected in a class is given by the
proportion in that class in the steady state of the model. Using random initial
conditions with the mean at endemic equilibrium removes the effects of rounding the
initial conditions to the same integer values for each simulation.

A sample realisation of the infection dynamics in a population with three active
screening events, where randomly sampled infected low risk individuals are moved
directly into the hospitalised class, is shown in Figure S2.

Parameters

Table S2 defines the parameters used in the model for HAT infection dynamics. These
parameter values are taken from Rock et al. [1], which were either sourced from
literature, where well-defined, or otherwise (in the case of meff, R1, R2, r and u) taken
as the median of the distribution obtained by model fitting using a Metropolis–Hastings
MCMC algorithm that matched the deterministic version of the model to incidence data
from the WHO HAT Atlas.

Since the human population is partitioned into low and high risk individuals, we also
denote NH1 = NHR1 and NH2 = NHR2, where R1 +R2 = 1. Similarly,
fH1 = fHR1/(R1 + rR2) and fH2 = fHrR2/(R1 + rR2) to give the proportion of blood
meals on each of the two risk groups, which sum to the total proportion of blood meals
tsetse take on humans, fH . Furthermore, we note that the effective density of tsetse is
given by the product of the relative tsetse density and the probability of human
infection per single infective bite, meff = mpH .

Risk structure

The risk structure in the human population is included, since there is evidence for
differences in screening attendance and tsetse exposure within the population [3].
Furthermore, using deviance information criterion (DIC) as the method of model
selection, there was strong evidence for the inclusion of risk structure [1]. Figure S3
shows the comparison of the models with the reported incidence data. The marginal
improvement of the fit when an animal reservoir was added to the model meant animals
were not considered here. The DIC was calculated by the following:

DIC = −2LL
(
θ̄
)

+ 4Var (LL (θ)) ,

where LL is the log-likelihood of unknown parameters θ, and where θ̄ is the expectation
of these parameters.
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Table S1. Model formulation. The transition rates of the Markov-chain gHAT-infection model and additional
ordinary differential equation component of the model when m→∞ and pH → 0 (V:H →∞).

Class Event Transition Rate
H

u
m

an
s,
j

=
1,

2

Recovery from
sHj → sHj + 1, rHj → rHj − 1 ωHrHjhospitalisation

Natural death of
sHj → sHj + 1, rHj → rHj − 1 rHjhospitalised

Exposure of
sHj → sHj − 1, eHj → eHj + 1

fHjαpHsHjiV /NHj , pH > 0
susceptibles fHjαmeffsHjIV /NHj , pH → 0
Progression to Stage 1

eHj → eHj − 1, i1Hj → i1Hj + 1 σHeHjinfection
Natural death of exposed sHj → sHj + 1, eHj → eHj − 1 µHeHj

Progression to Stage 2
i1Hj → i1Hj − 1, i2Hj → i2Hj + 1 φH i1Hjinfection

Natural death of
sHj → sHj + 1, i1Hj → i1Hj − 1 µH i1HjStage 1 infection

Treatment or death
i2Hj → i2Hj − 1, rHj → rHj + 1 γH i2Hjfrom Stage 2 infection

Natural death of
sHj → sHj + 1, i2Hj → i2Hj − 1 µH i2HjStage 2 infection

Infection importation sHj → sHj − 1, eHj → eHj + 1 δsHj

T
se

ts
e

(m
=
m

e
ff
/p

H
,p

H
>

0)

Exposure of teneral sV → sV − 1, e1V → e1V + 1
αpV (fH1 (i1H1 + i2H1) /NH1

+fH2 (i1H2 + i2H2) /NH2)sV
Exposure of non-teneral,

e1V → e1V + 1, gV → gV − 1
αpV (fH1 (i1H1 + i2H1) /NH1

uninfected +fH2 (i1H2 + i2H2) /NH2)εgV
Progression to exposed 2 e1V → e1V − 1, e2V → e2V + 1 3σV e1V
Death in exposed 1 sV → sV + 1, e1V → e1V − 1 µV e1V
Progression to exposed 3 e2V → e2V − 1, e3V → e3V + 1 3σV e2V
Death in exposed 2 sV → sV + 1, e2V → e2V − 1 µV e2V
Progression to infected e3V → e3V − 1, iV → iV + 1 3σV e3V
Death in exposed 3 sV → sV + 1, e3V → e3V − 1 µV e3V
Death in infected sV → sV + 1, iV → iV − 1 µV iV

Fed but not exposed sV → sV − 1, gV → gV + 1
α(1− pV (fH1 (i1H1 + i2H1) /NH1

+fH2 (i1H2 + i2H2) /NH2))sV
Death in non-teneral

sV → sV + 1, gV → gV − 1 µV gVuninfected

T
se

ts
e

(m
→
∞
,p

H
→

0)

dSV

dt
= µVNH − αSV − µV SV

dE1V

dt
= αpV

(
fH1

I1H1 + I2H1

NH1
+ fH2

I1H2 + I2H2

NH2

)
(SV + εGV )− (3σV + µV )E1V

dE2V

dt
= 3σV E1V − (3σV + µV )E2V

dE3V

dt
= 3σV E2V − (3σV + µV )E3V

dIV
dt

= 3σV E3V − µV IV

dGV

dt
= α

(
1− pV

(
fH1

I1H1 + I2H1

NH1
+ fH2

I1H2 + I2H2

NH2

))
SV

−αpV
(
fH1

I1H1 + I2H1

NH1
+ fH2

I1H2 + I2H2

NH2

)
εGV − µVGV
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Fig S2. A single realisation of the simulated infection dynamics of the
model. A population of 514 is used with 404, 430 and 52 of the low risk population
randomly selected for active screening after three, four and nine years, respectively.
Note that the number of hospitalised individuals increases at the first two active
screening events, but no infected individuals are randomly selected and detected in the
third screening event. We only plot those infected (or affected) by HAT, although we
note that the vast majority of both populations are susceptible.
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Table S2. Model parameters. Parameter notation and values for the stochastic model.

Parameter Description Value Source
µH Natural human mortality rate 5.4795 × 10−5 days−1 [2]
ωH Human recovery rate 0.006 days−1 [3]
σH Human incubation rate 0.0833 days−1 [4]
φH Stage 1 to 2 progression rate 0.0019 days−1 [5,6]

γH
Exit rate from Stage 2 by treatment or

0.006 days−1 [1]
death

NH Human population size Varies N/A
µV Tsetse mortality rate 0.03 days−1 [4]
σV Tsetse incubation rate 0.034 days−1 [7,8]
ε Reduced non-teneral susceptibility factor 0.05 [1]
α Tsetse bite rate 0.333 days−1 [9]
m Relative tsetse density Varies N/A

pH
Probability of human infection per single

Varies N/A
infective bite

meff Effective tsetse density 6.56 [1]

pV
Probability of tsetse infection per single

0.065 [4]
infective bite

fH Proportion of blood-meals on humans 0.09 [10]

R1
Proportion of low risk humans, randomly

0.924 [1]
participating in screening

R2
Proportion of high risk humans, not

0.076 [1]
participating in screening

r
Relative bites taken on high risk humans

6.6 [1]
compared to low risk

u Reporting probability for Stage 2 cases 0.26 [1]
δ Importation of infection rate 3.4 × 10−6 days−1 fitted
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Fig S3. Deterministic model selection. Comparison of the reported incidence
data aggregated across the study region and the corresponding model output over the
years 1998–2012, for the deterministic model, both without risk structure (Model 1) and
with risk structure (Model 4). Model 4 provides the better fit with the incidence data.
This figure is adapted from Rock et al. [1].
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Tsetse density

One fundamental parameter of the model, the effective density of tsetse, is equal to the
product of the vector-to-host ratio and the probability of human infection per single
infective bite. In the original deterministic framework, these constituent terms did not
need to be known, as it was only the product that was important; therefore they could
not be inferred separately. However, since the stochastic model explicitly captures the
number of tsetse, the two parameters are now required. Given the limited data to
estimate either component parameter, we choose to explore the potential range of
parameters: from very high probability of infection and hence low vector-to-host ratio,
to very low probability of infection and large vector-to-host ratio such that the
dynamics of tsetse can be modelled deterministically.

Considering the simplest case in the absence of disease-control measures, we find
that different values for the vector-to-host ratio have a relatively limited impact on
predictions of disease persistence. Unsurprisingly, large tsetse populations, which can be
approximated by deterministic dynamics, lead to the greatest persistence (Fig. S4);
thus, throughout this paper, we utilise this worst-case scenario, although other
assumptions do not change the qualitative findings.
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Fig S4. Impact of the parameters forming the effective density of tsetse.
When the probability of human infection per single infective bite is high the
vector-to-host ratio, V:H, is around 6.56, whereas when the probability is low, V:H
becomes large and deterministic models are valid for tsetse dynamics. The expected
number of yearly new infections for each population size, if the system were at
equilibrium, is also given by the top scale.
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Isolated populations

For the majority of results in the main paper, we assume that importations of infection
between villages do not play a significant role and so treat them independently. In many
cases, such as community-level persistence, this approach is justified, as we wish to
understand the stochastic dynamics in the absence of confounding imports. We also
quantify the level of infectious imports by considering the probability of a village having
infection present on the first screening and assuming this represents a long-term
equilibrium solution, since this is the infection level before regular active screening
began. By matching the WHO HAT Atlas data to the output of the model with an
additional per person importation rate parameter (δ) we find that, using least-squares
fitting, δ ≈ 3.4× 10−6 days−1. This rate is small and so can be reasonably ignored on
the studied time scales, particularly as there is some probability that this importation
will not cause any subsequent transmission. In addition, it is reasonable to assume that
this importation rate will decay over time, since the total case numbers in the DRC is
reducing [11]. By fitting the reduction in total cases in the DRC to an exponential decay
function, we get a decay rate of 0.1071, which we apply to the import rate (Fig. S5).

Fig S5. Change in the importation of infection parameter in time. The
decay of the rate of importation of infection parameter is matched to the decay rate of
cases of HAT in the DRC [11].

As a validation of our assumption that importations can be safely ignored over the
time-scales of this study, we re-examine the match between active-screenings that fail to
detect cases and model results including imports (Fig. S6). This is a counter-point to
Fig. 2 in the main paper. We find that the inclusion of imports has an extremely small
difference on the model predictions: slightly improving the fit between model and data
(Fig. S6A). However, under this new model, there is now an additional village where the
model significantly predicts fewer zero-detections than observed, decreasing the
percentage of villages within the model prediction intervals to 91.4% (Fig. S6B).
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The model predicts:
More zero-detections than observed
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Fig S6. Comparison of model predictions and data for active screenings
with no detected cases (zero-detections) for the model with importations of
infection. (A) Histogram by population size of the percentage of active screenings that
find no new HAT cases for both the model and the HAT Atlas data. The differences
between this histogram and without imporatations of infection are very small. (B) Map
of populations in Yasa-Bonga and Mosango showing the settlements with significant
differences (at the 95% level) in the expected proportion of active screenings with no
cases detected. The addition of importations of infection means this model fits the data
less well, with an additional village falling outside the prediction intervals. The
underlying Landsat-8 satellite map is shown courtesy of the U.S. Geological Survey.
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Tau-leaping

Since we use a fixed step size for the tau-leaping algorithm of 0.1 days, Figure S7 shows
that the results for persistence of HAT after 15 years are qualitatively the same for time
steps of 0.01 and 1 days, so we are confident that a time step of 0.1 days is not
introducing numerical errors. 95% confidence intervals are all small, in the range
(0.0044, 0.0196) about the plotted mean values.
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Fig S7. Probability of disease persistence under the tau-leaping algorithm
for fixed step size. Probability of HAT persistence after 15 years for V:H →∞,
simulated using three different tau-leaping time steps: τ = 0.01, 0.1 and 1. Since the
resulting curves are the same, the step size in the algorithm is suitable.
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Data

Active screening data

In the main manuscript, we note that not all settlements undergo the same levels of
screening. In fact, larger village populations tend to have more frequent screening, but
with a lower proportion of the population tested; small populations tend to have high
coverage but infrequent screens (Fig. S8A and B). The smaller villages were also not
typically screened in 2000–2008, while villages with populations greater than 500 were
screened over the whole data period 2000–2012 (Fig. S8C). Typically, we see that 50%
of villages were screened in any given year. We do not account for any of these
differences in our analysis but can use these trends to help explain any discrepancies
between models and the data.

In addition, the active screening data from the WHO HAT Atlas were used to
calculate the mean annual screening coverage as 21%. Population sizes were taken from

A

B C

Fig S8. Differences in screening between villages. (A) Screening coverage in
village populations. (B) Number of screenings at each settlement in the period
2000–2012. Small random perturbations are made to the integer values for visibility. (C)
Years in which the first active screenings occur in the villages (within the 2000–2012
period), with small random perturbations for visibility.
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the census data within the WHO HAT Atlas and then modified by assuming an annual
population growth of 2.6%. Coverages were then calculated as the number of people
screened divided by the estimated population size, assuming a maximum coverage equal
to that of the entire the low risk population size (92.4%), as described in the main
manuscript. The mean annual coverage was then obtained as the mean of these
coverages, where active screening occurred, as well as the 0% coverages, where no active
screening was recorded. This value is thus highly dependent on the quality of the census
information, as differences in population sizes will change this estimate of mean
coverage. It is therefore important to have good census data for making predictions on
the effect of different screening coverages.
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Persistence and elimination

Local disease persistence

As a control strategy, we find that randomly selecting the screening coverage from all
reported coverages slightly out-performs screening annually at the mean coverage (21%),
kept fixed across all years. High levels of coverage in any one year are more likely to
interrupt transmission (Fig. S9A). In addition, long-term persistence requires continued
transmission and so the probability of persistence decreases with time (Fig. S9B and C).

A B

C

Fig S9. Factors affecting predicted probability of HAT persistence in
isolated settlements. (A) Impact of active screening on disease persistence: both
random screening (sampling from all screening coverages, including zeros) and annual
screening at a fixed coverage (the mean annual coverage of 21%) yield a drop in
persistence. Choosing the coverage randomly slightly out-performs screening annually at
the mean coverage. (B) Probability of HAT persistence 5, 10 and 15 years after starting
at the endemic equilibrium. (C) For villages with populations of sizes 500 and 2,000,
the probability of HAT persistence in time for the uncontrolled setting (U), random
active screening coverage (R) and annual screening at the average coverage of 21% (Y).
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Re-invasion due to tsetse

We consider the dynamics of re-invasion, given different initial conditions to Figure 4 in
the main manuscript. In a population without human infections but with endemic levels
of tsetse infection, the chance that any human cases will be generated increases with
settlement size (Fig. S10A). This is due to tsetse being able to interact with fewer
humans over their short lifespan, while new transmission events caused by human
infection are less dependent on population size, as the infection will be present in the
population for much longer. The probability of new transmission events is further
increased by the addition of an infected human to endemic levels of tsetse infection (Fig.
S10B).

A B

Fig S10. Dynamics of re-invasion. The probability that at least one human case is
generated, and cases continue to be generated beyond for a given times. (A) Starting
with no human infection and endemic-equilibrium levels of infected tsetse. (B) Starting
with one infected human and endemic-equilibrium levels of infected tsetse.

Proportion of positive tests in a screening

Comparing the data on the proportion of tests that result in a positive detection of
HAT to the output of the model demonstrates similar results to comparing the
screenings with no detected cases, as in Figure 2 from the main manuscript (Fig. S11).
The difference in coverages of an active screening event mean the results have more
variation than simply not detecting any new cases, yet the model is similarly capturing
the behaviour seen in the data; there are a few more settlements that stand out as
significantly different from the model (69 settlements, 12.3%), but these are similarly
clustered where expected.

Definition of a full screen

In calculating the probability of infection on detecting no cases, a zero-detection event is
different for different screening percentages. We use 20% of the population screened to
define a ‘full screening’; however, similar results are achieved for the screening regime of
Yasa-Bonga and Mosango 2000–2012 when 10% is used. If 50% is used, and so all
screenings are of reasonable quality, there is more confidence that the same number of
consecutive zero screenings are a proxy for no infection in the population (Fig. S12).
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A B

Fig S11. Expected proportion tests that are HAT positive in an active
screening. (A) Histogram by population size of the percentage of positive tests in
independent active screenings for both the model and the WHO HAT Atlas data. (B)
Map of populations in Yasa-Bonga and Mosango showing the settlements with
significant differences in the expected proportion of tests positive. The underlying
Landsat-8 satellite map is shown courtesy of the U.S. Geological Survey.

When screening coverage is higher and no infection is detected, there is more certainty
that no infection is present.
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A

B

Fig S12. Probability of elimination in a settlement given no cases have
been detected in consecutive screenings. The probability of a settlement
containing no infection given that a number of consecutive active screenings detecting
no cases have occurred. (A) Only active screenings where at least 10% of the population
are included are used to calculate the probability. (B) At least 50% of the population
must be screened for the screening to be included.
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et al. Quantitative analyses and modelling to support achievement of the 2020
goals for nine neglected tropical diseases. Parasites & Vectors. 2015;8(1):630.

20. Pandey A, Atkins KE, Bucheton B, Camara M, Aksoy S, Galvani AP, et al.
Evaluating long-term effectiveness of sleeping sickness control measures in Guinea.
Parasites & Vectors. 2015;8(1):550.

21. Rock KS, Torr SJ, Lumbala C, Keeling MJ. Predicting the impact of intervention
strategies for sleeping sickness in two high-endemicity health zones of the
Democratic Republic of Congo. PLoS Neglected Tropical Diseases.
2017;11:e0005162.

September 9, 2019 31/33

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted September 13, 2019. ; https://doi.org/10.1101/19006502doi: medRxiv preprint 

https://doi.org/10.1101/19006502
http://creativecommons.org/licenses/by/4.0/


22. Bartlett MS. Measles periodicity and community size. Journal of the Royal
Statistical Society Series A. 1957;120(1):48–70.

23. Keeling MJ, Grenfell BT. Disease extinction and community size: modeling the
persistence of measles. Science. 1997;275(5296):65–67.

24. Lumbala C, Simarro PP, Cecchi G, Paone M, Franco JR, Mesu VK, et al. Human
African trypanosomiasis in the Democratic Republic of the Congo: disease
distribution and risk. International Journal of Health Geographics. 2015;14(1):20.

25. UN. World statistics pocketbook. New York: United Nations; 2016.

26. Ross R. The prevention of malaria. London: J Murray; 1911.

27. Ross R. An application of the theory of probabilities to the study of a priori
pathometry. Part I. Proceedings of the Royal Society of London Series A.
1916;92(638):204–230.

28. Macdonald G. The analysis of infection rates in diseases in which super infection
occurs. Tropical Diseases Bulletin. 1950;47:907–915.

29. MacDonald G. The analysis of the sporozoite rate. Tropical Diseases Bulletin.
1952;49(6):569–586.

30. Haines LR. Examining the tsetse teneral phenomenon and permissiveness to
trypanosome infection. Frontiers in Cellular and Infection Microbiology.
2013;3(November):84.

31. Funk S, Nishiura H, Heesterbeek H, Edmunds WJ, Checchi F. Identifying
Transmission Cycles at the Human-Animal Interface: The Role of Animal
Reservoirs in Maintaining Gambiense Human African Trypanosomiasis. PLoS
Computational Biology. 2013;9(1):e1002855.

32. WHO. Control and surveillance of human African trypanosomiasis. World Health
Organization; 2013.

33. Checchi F, Chappuis F, Karunakara U, Priotto G, Chandramohan D. Accuracy
of five algorithms to diagnose gambiense human African trypanosomiasis. PLoS
Neglected Tropical Diseases. 2011;5(7):e1233.

34. Franco JR, Simarro PP, Diarra A, Jannin JG. Epidemiology of human African
trypanosomiasis. Clinical Epidemiology. 2014;6(1):257–275.

35. Hagenaars TJ, Donnelly CA, Ferguson NM. Spatial heterogeneity and the
persistence of infectious diseases. Journal of Theoretical Biology.
2004;229(3):349–359.

36. Brooks-Pollock E, Keeling M. Herd size and bovine tuberculosis persistence in
cattle farms in Great Britain. Preventive Veterinary Medicine.
2009;92(4):360–365.

37. Checchi F, Filipe J, Barrett M, Chandramohan D. The natural progression of
Gambiense sleeping sickness: what is the evidence? PLoS Neglected Tropical
Diseases. 2008;2(12):e303.

38. Steverding D. The history of African trypanosomiasis. Parasites & Vectors.
2008;1(1):3.

September 9, 2019 32/33

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted September 13, 2019. ; https://doi.org/10.1101/19006502doi: medRxiv preprint 

https://doi.org/10.1101/19006502
http://creativecommons.org/licenses/by/4.0/


39. Van Herwaarden OA, Grasman J. Stochastic epidemics: major outbreaks and the
duration of the endemic period. Journal of Mathematical Biology.
1995;33(6):581–601.

40. Grasman J. Stochastic epidemics: the expected duration of the endemic period in
higher dimensional models. Mathematical Biosciences. 1998;152(1):13–27.

41. Grenfell B, Harwood J. (Meta) population dynamics of infectious diseases.
Trends in Ecology & Evolution. 1997;12(10):395–399.
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