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ABSTRACT 17 

The microbiome has been shown to affect the response to Immune Checkpoint Inhibitors 18 

(ICIs) in a small number of cancers. Here, we sought to more broadly survey cancers to identify 19 

those in which the microbiome will play a role using retrospective analyes. We created a causal 20 

model for the relationship between medications, the microbiome and ICI response and used it to 21 

guide the abstraction of electronic health records of 690 patients who received ICI therapy for 22 

advanced cancer. Medications associated with changes to the microbiome including antibiotics, 23 

corticosteroids, proton pump inhibitors, histamine receptor blockers, non-steroid anti-24 

inflammatories and statins were abstracted. We tested the effect of medication timing on overall 25 

survival (OS) and evaluated the robustness of medication effects in each cancer. Finally, we 26 

compared the size of the effect observed for antibiotics classes to taxa correlated with ICI 27 

response and a literature review of culture-based antibiotic susceptibilities. Of the medications 28 

assessed, only antibiotics and corticosteroids significantly associated with lower OS. The 29 

hazard ratios (HRs) for antibiotics and corticosteroids were highest near the start of ICI 30 

treatment but remained significant when given prior to ICI. Antibiotics and corticosteroids 31 

remained significantly associated with OS even when controlling for multiple factors such as 32 

Eastern Cooperative Oncology Group performance status and stage. When grouping antibiotics 33 

by class, β-lactams showed the strongest association with OS across all tested cancers. The 34 

timing and strength of these effects after controlling for confounding factors are consistent with 35 

role for the microbiome in response to ICIs. 36 
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BACKGROUND 41 

Treatment with Immune Checkpoint Inhibitors (ICIs) has improved patient outcomes 42 

across a wide variety of cancers. Not all patients respond to these drugs and there is a need to 43 

identify biomarkers of outcomes. Three recent studies have shown that microbes are associated 44 

with response and overall survival (OS) in renal cell carcinoma (RCC), non-small cell lung 45 

cancer (NSCLC) and melanoma (1–3). The microbiome may be a key player in response to ICI 46 

therapy and a potential biomarker of treatment response.  47 

The microbiome is known to interact with the immune system, but how it affects 48 

response to ICIs is not understood. The effectiveness of ICI treatment relies on active T-cell 49 

infiltration of a tumor; microbes have been associated with increased Tumor Infiltrating 50 

Lymphocytes in an IL12-depended manner (4). However, other immune cells dampen response 51 

to ICIs such as myeloid-derived suppressor cells and FOXP3 & CD4+CD25+ T-regulatory cells. 52 

Another, systemic form of immune repression is characterized by the production of 53 

prostaglandins (5–7).  54 

Several medications commonly used during routine oncologic care and ICI treatment 55 

can influence inflammation pathways and/or the microbiome. Corticosteroids (CS) affect both of 56 

the aforementioned T-cell subtypes and the prostaglandin-related inflammatory pathways (8). 57 

Additionally, antibiotics (ABx) have a direct effect on the microbiome by killing or halting the 58 

growth of bacteria. Proton pump inhibitors (PPIs), histamine 2 blockers (H2Bs), non-steroid anti-59 

inflammatory drugs (NSAIDs), and CS have also been associated with changes in the 60 

microbiome but, in contrast to antibiotics, this mechanism is indirect (9). PPIs, by inhibiting 61 

gastric acid secretion, alter the pH of the gut and change the number and types of bacteria that 62 

pass through the stomach (10). Notably, if the taxa enriched by the PPI-induced pH change are 63 

also important for response to ICIs, then PPI treatment during ICI may influence clinical 64 
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outcomes. The effect of other medications on clinical response may be challenging to interpret 65 

given that the effects may influence both the microbiome and ICI response.  66 

In order to disentangle these complex interactions, we created a model of the 67 

relationship between patient characteristics, medications that affect the microbiome, 68 

inflammation, and survival. Second, we performed a retrospective analysis of patients who 69 

received ICI therapy for advanced cancer between 2011 and 2017 including medications with 70 

known effects on either the microbiome or its pathway toward affecting ICI response. Third, we 71 

estimated the association for each medication with OS. Fourth, we analyzed the effects of 72 

medications longitudinally, in order to decouple confounding variables at different time points. 73 

Fifth, we controlled for variables that broadly describe differences in baseline statuses (e.g. 74 

Eastern Cooperative Oncology Group performance status (PS)) of individuals who received 75 

concomitant medications and those who did not. Sixth, we compared the associations across 76 

several cancers, for which the medications are prescribed in subtly different ways that can be 77 

leveraged to gain further insight into the causal effects. Finally, we related these results to the 78 

microbes shown to be enriched or depleted in individuals who respond to ICIs. The combination 79 

of these strategies gives layers of support to defining the role of the microbiome in the context 80 

ICI treatment of cancer. 81 

 82 

METHODS 83 

Causal Model  84 

We performed a literature review of the relationship between the microbiome and 85 

response to ICIs and medications that affect the microbiome (Figure 1, references in Figure 86 

S1). From these references, a causal model was then constructed such that the nodes 87 

correspond to observable endogenous variables (Vi), as a subset of a set of U exogenous and 88 

unobserved variables that affect the relationship between the microbiome and OS in patients 89 
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treated with ICIs. Directed edges denote a relationship between variables when the following 90 

conditions are met: (1) there is a reported relationship between variables in which both variables 91 

were either observed or defined by intervention, and (2) the relationship cannot be explained 92 

through using an existing path. For example, Gopalakrishnan et al reported a correlation 93 

between the microbiome and ICI response (1). This relationship exists in the graph as mediated 94 

by the nodes Microbiome → T-cell Mediated Inflammation → ICI Response, therefore no edge 95 

is drawn directly from Microbiome → ICI Response. The resulting directed acyclic graph was 96 

constructed using the igraph and dagitty packages in R (11,12). 97 

Retrospective data collection 98 

We identified patients with advanced cancer treated between 2011 and 2017 at the Ohio 99 

State University Comprehensive Cancer Center/Arthur G. James Cancer Hospital (OSUCCC-100 

James) who received at least one dose of ICIs as part of an IRB approved retrospective study 101 

(OSU-2016C0070, OSU-2017C0063). Patient data were collected and housed in REDCap (13). 102 

Medication timing, dose and names were collected from the electronic medical record 103 

information warehouse and validated by manual chart review. 104 

Medication history curation 105 

ABx and CS data were retrieved from the information warehouse within 180 days of ICI 106 

start. All medications matching a comprehensive list of steroid generic and brand names were 107 

collected with dates and routes of administration. Medications were filtered to those confirmed 108 

to be administered and the results checked against a manually-curated subset of the records. 109 

Survival Analysis 110 

Overall survival (OS) was reported in days from the initiation of ICI to the date of death 111 

or last follow-up. All univariate and multivariate analyses were conducted using the survminer 112 

package in R (14,15). Univariate analyses used Kaplan-Meier survival curves with log-rank 113 
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tests. Multivariate analyses used Cox-Proportional Hazards models, defining the hazard 114 

function for each patient k as: 115 

h"(t) = h'(t)e{∑ +,-.+/0.	+23.+45.+678
9:, } 116 

Where h(t) is the hazard function at time t = 1 to n, A is a binary indicator of antibiotic 117 

use (+/- 28 days from start of ICIs), S is a binary indicator of corticosteroid use (+/- 28 days from 118 

start of ICIs), B is BMI, E is the Eastern Cooperative Oncology Group performance status (PS) 119 

score (1-5), and G is age. We constructed the models using the survival package and evaluated 120 

model fits using a likelihood ratio tests in R (16–18).  121 

Timing analysis 122 

A 30-day sliding window was used to evaluate the effect of medication timing on the 123 

association with OS. Patients prescribed medications within the window were compared to a 124 

cohort of individuals who were not prescribed those medications within 180 days before or after 125 

the start of ICI treatment. Kaplan-Meier survival curves were used to estimate a hazard ratio 126 

(HR) of association with each treatment window, incremented by single-days, e.g. prescribed 127 

180-150 days before ICI start vs no prescribed medications, and then prescribed 179-149 days 128 

before ICI start vs no prescribed medications. HRs and confidence intervals were calculated in 129 

the survival package and plotted with ggplot2 in R (17–19). 130 

Antibiotics and Corticosteroids classes 131 

ABx and CS were collapsed into categories by DrugBank v5.0 accession numbers (20). 132 

HRs were estimated for medication class and cancer combinations if the total sample set 133 

included at least 20 individuals. Cox Proportional Hazards models for the effects of ABx and CS 134 

class were used to allow for simultaneous estimation of the effects of more than one class, 135 

when applicable. Plots showing prescriptions of more than one class were created with the 136 

UpSetR package in R (21). 137 
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Regularized Cox Regression 138 

Regularized Cox survival models for each cancer were implemented in the glmnet 139 

package in R. We optimized the regularization parameter by coordinate descent via 10-fold 140 

cross-validation and then tested the robustness of the parameter selection and resulting 141 

covariates with 1000 bootstrap replicates of different random samples of the dataset (22,23). 142 

Reproducibility 143 

Scripts to reproduce all figures and analyses can be found at 144 

https://github.com/spakowiczlab/co-med-io. 145 

 146 

RESULTS 147 

Causal Model 148 

The relationships between clinical variables, medications, the microbiome, ICI response 149 

and OS are strongly interconnected. Our literature review to predict their causal relationships 150 

(Figure 1) led to several hypotheses observable within retrospective data. First, medications 151 

that directly affect the microbiome will alter OS via effects on T-cell mediated inflammation (i.e. 152 

ABx → Microbiome → T-cell mediated inflammation → ICI Response → OS). Second, CS and 153 

ABx may have additive effects on ICIs through a collider effect on T-cell mediated inflammation 154 

(i.e. ABx → Microbiome → T-cell mediated inflammation ← CS). Finally, the clinical variables of 155 

stage, BMI, age, and medications such as CS, confound the relationship between the 156 

microbiome and ICI response, mediated by Prostaglandin-based inflammation (which itself is a 157 

collider), and therefore must be controlled for in order to infer the role of the microbiome on OS 158 

(Figure 1).  159 

Patient Characteristics 160 

Retrospective analysis of electronic medical records from 2011 to 2017 at the OSUCCC-161 

James identified 690 patients treated with ICIs (Table 1). Most (76.6%) had a PS of 0 or 1. The 162 
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most common diagnoses were melanoma (28.5%) and non-small cell lung cancer (NSCLC) 163 

(23.4%). Cancers represented by fewer than 20 patients were categorized as “Other” (23.4%). 164 

The majority of patients (90%) had metastatic disease. ICI treatments included nivolumab in 165 

52.8% of patients, ipilimumab in 18.0% and pembrolizumab in 15.1%. 166 

Microbiome and inflammation-related concomitant medication use 167 

Among the medications included in the causal model, ABx, CS, PPIs, H2Bs, statins and 168 

NSAIDs were identified in this cohort. ABx were prescribed in 35% of patients within 28 days of 169 

the start of ICIs (Table 1). The most commonly prescribed ABx were β-lactams (Figure S1). CS 170 

were prescribed in 40% patients within 28 days of the start of ICIs. The most commonly 171 

prescribed CS were dexamethasone and prednisone (Figure S2). PPIs were prescribed in 37% 172 

of patients. Some patients received a single medication and no others during the study period, 173 

however, more frequently patients received several medications, e.g. CS with PPI and ABx, 174 

consistent with prophylaxis for developing an ulcer or pneumonia (Figure S3). The analysis 175 

strategy first tested for an association of a medication with OS without controlling for 176 

confounding effects of other medications and then further explored those medications with 177 

strong associations. 178 

Across all cancer types, patients who were prescribed ABx within 28 days of the start of 179 

ICIs showed decreased OS (Figure 2A). This was also true of patients prescribed CS (Figure 180 

2B), but not of patients prescribed other medications (Figure 2C). ABx showed a strong 181 

negative correlation with OS in RCC, NSCLC, melanoma, and bladder cancer. CS showed a 182 

strong negative correlation with OS in NSCLC, melanoma and other cancers. While other 183 

medications were not significantly associated with OS across all cancers, several showed 184 

significant associations with specific cancers. For example, H2Bs and NSAIDs associated with 185 

decreased OS in sarcoma and NSCLC, respectively. On the other hand, PPIs and Statins 186 
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positively associated with OS in sarcoma. However, we observed the strongest associations for 187 

ABx and CS, and therefore followed these medications in further analyses. 188 

Timing of medication use 189 

Next we focused on the timing of ABx and CS prescriptions and their associations with 190 

OS in each cancer, using a 30-day sliding window (see Methods). ABx showed a greater HR 191 

than CS over nearly the entire period, and both were negatively associated with OS (Figure 192 

3A). ABx treatment showed the highest HR more than 100 days before the start of ICIs with a 193 

second, lesser peak around day 0. CS showed a single, strong peak at day 0. We therefore 194 

focused the timing analyses around ICI day 0 to capture the largest HR for both ABx and CS 195 

and examined the effects across cancers and drug subclasses. 196 

Antibiotics and Corticosteroids classes 197 

The effect of ABx on treatment response in different cancer types was not consistently 198 

associated with ABx class (Figure 3B). For example, β-lactams showed the highest HR in 199 

melanoma, but vancomycin (oral) had the highest HR in head and neck squamous cell 200 

carcinoma (HNSC). In addition, the overall effect of ABx was sometimes associated with a 201 

single ABx subclass and sometimes distributed over many. Additionally, NSCLC strongly 202 

associated with fluoroquinolone ABx, and this effect was stronger than the effect observed for 203 

all ABx combined. By contrast, the combined effect of all ABx in melanoma was much stronger 204 

than any individual ABx class. In fact, tetracycline was positively associated with OS in 205 

melanoma patients, despite the overall effect of ABx being negatively associated. On the other 206 

hand, the effects of CS classes on different cancers was more consistent (Figure 3C), though 207 

these comparisons were often limited by the sample size. Particularly with small sample sizes, 208 

confounding effects of patients receiving multiple drugs, e.g. ABx and CS, may dominate 209 

associations with OS. We therefore used combined models of ABx and CS to examine the 210 

effects of each. 211 
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Combined modeling of ABx and CS, controlling for covariates 212 

Models containing both ABx and CS showed that both are significantly associated with 213 

OS. A Kaplan-Meier curve stratifying patients by ABx, CS, or both, showed nearly identical 214 

intermediate effects of either ABx or CS, and an additive combined effect (Figure 4A). We next 215 

sought to control for confounding covariates using a Cox Proportional Hazards model. Including 216 

PS, BMI, sex, stage, and age in the model confirmed that ABx and CS remained highly 217 

significant, as were PS, BMI and age (Figure 4B). This suggests that ABx and CS are affecting 218 

OS in the context of ICI therapy by a mechanism other than that which is captured by PS, BMI 219 

or age, and is consistent with the microbiome parent to T-cell inflammation and child of ABx 220 

(Figure 1).  221 

In order to estimate the effects of ABx and CS within each cancer, we applied a method 222 

that (1) allowed different covariates to be included in each cancer, commensurate with the 223 

different clinical features of each cancer, and (2) removed uninformative variables, increasing 224 

the power for those cancers with smaller numbers of patients in this dataset. In addition, we 225 

repeated the analysis with different random samplings of the data in order to estimate the 226 

robustness of the variable selection. We found ABx to consistently and significantly associate 227 

with OS in bladder cancer, melanoma and RCC, but not in HNSC, NSCLC, or sarcoma. The HR 228 

was above 1 in each of the cancers where ABx was a consistently-selected covariate. 229 

Melanoma was notable in that all variables were consistently selected, with ABx showing the 230 

highest HRs. 231 

The relationship between ABx, OS, and the microbiome 232 

The bacterial taxa that showed the strongest enrichment in responders or non-233 

responders to ICIs were selected from the literature and combined into a phylogenetic tree 234 

(Figure 5) (1–3). The taxa spanned several phyla and few ranks were consistently enriched in 235 

either responders or non-responders. For example, Firmicutes was found to be enriched in 236 
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responders (1), but within the phylum are several taxa found to be enriched in non-responders 237 

(2,3). An exception to this was Bacteroidetes, which was found to be enriched in non-238 

responders and each of the four species in the phylum were also enriched in non-responders 239 

(1,3). We performed a literature review of ABx susceptibilities for each of these taxa to estimate 240 

whether the size of the HR of the ABx would relate to the taxa for which it is active. For 241 

example, an ABx that target only bacteria enriched in non-responders may be beneficial 242 

because it may shift the community toward those taxa enriched in responders. On the other 243 

hand, if the overall diversity of the microbiome is important, broad-spectrum ABx may have 244 

higher HRs than narrow-spectrum.  245 

The ABx class with the largest HR across all cancers was the β-lactams. Within this 246 

group category are the cephalosporins, which have a relatively narrow spectrum of activity and 247 

a unique pattern relative to other ABx classes. The cephalosporins are ineffective against the 248 

Bacteroidetes, found to be enriched in non-responders, but so were ABx such as vancomycin 249 

and sulfamethoxazole-trimethoprim (SXT). However, unlike vancomycin and SXT, 250 

cephalosporins effectively target A. muciniphila, which was shown to causally modify response 251 

to ICIs. Cephalosporins are also ineffective against several Firmicutes, similar to clindamycin, 252 

macrolides and metronidazole (Figure 5). 253 

 254 

DISCUSSION 255 

The effects of medications or other variables are difficult to parse in a dynamic setting 256 

such as during treatment for cancer. We used a variety of methods to show that ABx and CS 257 

are significantly associated with decreased OS in several cancer types and that these results 258 

are consistent with mediation via the gut microbiome. 259 
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The association of CS with ICI response and OS remains controversial. Our observed 260 

association is consistent with other observations of decreased OS in NSCLC (8). However, 261 

Riccuiti et al showed no effect of CS on OS in NSCLC when given on the same day as ICI start, 262 

when the CS was prescribed for reasons other than “cancer-related palliative indications” (24). 263 

Our records lack some variables needed to replicate those results, however our results are 264 

consistent with aspects those findings. For example, dexamethasone treatment showed a 265 

strong negative association with OS across several cancer types, consistent with its use for 266 

brain metastases and anorexia, which are all indicators of poor clinical outcome. On the other 267 

hand, several of our analyses demonstrated associations between CS and OS that may not be 268 

due to selecting a sub-cohort with a poor prognosis. Our first causal strategy, the time analysis, 269 

showed similar results when restricting CS medications to a single day, but a larger effect when 270 

a wider time window was used (Table 2). Our second causal strategy, controlling for covariates, 271 

cannot be directly compared because our dataset did not include central nervous system 272 

metastases. However, when we control for metastatic stage and PS, the CS association 273 

remains. Our third causal strategy, comparisons between cancers, shows that the CS 274 

association with OS is observed in cancers for which brain metastases are not common, such 275 

as RCC, and for specific CS not typically used for brain metastases, such as 276 

methylprednisolone in HNSC. This suggests that understanding the association between CS 277 

and the response to ICIs may require more granular assessment of CS types (i.e. rather than 278 

collapsing to 10 mg prednisone equivalent) and cancers.  279 

We applied the same logical framework to ABx treatment to demonstrate an effect on 280 

OS. Unlike CS, the majority of studies have found an association between ABx use and ICI 281 

response, independent of the time window (Table 2). First, our longitudinal analysis showed a 282 

global maximum HR well before the start of ICIs, consistent with the ABx effects persisting for 283 

long periods. Given this result, it is unlikely that acute illnesses drive the association between 284 
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ABx and OS. Second, when controlling for illness-related covariates that report on the overall 285 

health status of the individual, e.g. PS, the effect of ABx remained significant. Third, the 286 

associations of ABx and OS were observed across cancer types (e.g. patients with bladder 287 

cancer versus melanoma). A larger fraction of bladder cancer patients were treated with ABx 288 

than any other cancer (56%), consistent with their use for urinary tract or as prophylaxis for 289 

invasive urologic procedures. On the other hand, melanoma patients treated with ABx were the 290 

smallest fraction of any cancer (25%), consistent with this population being less likely to 291 

undergo procedures in which prophylactic ABx are used. It is reasonable to suspect that 292 

melanoma patients treated with ABx are therefore more compromised than those not treated 293 

with ABx. However, an effect of ABx remains, even for bladder cancer. Although it remains 294 

probable that the cohorts who receive ABx are different from those who did not in ways that 295 

have not been controlled for in analyses, these three analyses add confidence to the 296 

association of ABx with OS in the context of ICIs. 297 

We next related the strength of the association of ABx classes with OS and the microbes 298 

that those ABx classes affect. The β-lactam ABx were shown to have the strongest association 299 

with OS across cancer types. The literature review of antibiotic susceptibilities showed that this 300 

diverse class is effective against the Gram-positive phylum Firmicutes. The literature review of 301 

the bacterial taxa associated with response to ICIs, showed that the Firmicutes are enriched in 302 

responders to ICIs. Moreover, β-lactams are not consistently effective against members of the 303 

phylum Bacteroidetes, which was found to be enriched in non-responders. This suggests that 304 

the β-lactams may show the strongest signal across all cancers in our dataset because they 305 

disrupt the microbiome in such a way that they reduce response to ICIs by depleting the 306 

Firmicutes more so than the Bacteroidetes. 307 

The association between ABx prescriptions and OS that we observe is consistent with 308 

direct measurements of the microbiome and response to ICIs (1–3). However, there is no 309 
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consensus for which taxa are enriched in the responders to ICIs (Figure 5). For example, there 310 

is causal evidence for Akkermansia muciniphila increasing response to ICIs, however, it was not 311 

among the most enriched in the other datasets (1–3). Nonetheless, agreement can be observed 312 

at broader taxonomic characterizations. Non-responders are enriched for taxa in the phylum 313 

Bacteroidetes and this is consistent with the strength of association we see for different classes 314 

of ABx (1,3). Narrow spectrum β-lactams (e.g. cephalosporins), which show the strongest 315 

association with OS, are effective against Firmicutes (enriched in responders) but less so 316 

against Bacteroidetes (enriched in non-responders).  317 

The results presented here contrast with several assumptions gathered from the 318 

literature and described by the causal model (Figure 1). First, we found that ABx and CS are 319 

the only medications significantly associated with OS, despite the inclusion of several 320 

medications associated with changes to the microbiome (Figure 2). This may be due to the 321 

types of changes incurred (e.g. PPIs may not significantly change the abundances of those taxa 322 

linked to ICI response) or the strength of the effect amid the noise in the data. However, the 323 

other two hypotheses were borne out by the analyses.  324 

The CS and ABx medications showed an additive effect on OS, consistent with a collider 325 

interaction in the model (Figure 4A). Also, there was an effect of ABx after controlling for many 326 

covariates, consistent with its direct effect on the microbiome and the microbiome playing a role 327 

in ICIs (Figure 4B). This result was consistent with the relationship between the strength of the 328 

ABx signal and the bacterial taxa susceptible to that ABx (Figure 5). 329 

Limitations 330 

A key challenge in this and other retrospective analyses is inferring causal relationships 331 

in non-randomized cohorts. For example, patients who receive medications such as antibiotics 332 

may be quite different from those who do not. However, it is difficult to imagine an ethical trial 333 
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that could randomize treatment with ABx in this setting. Therefore, retrospective analyses may 334 

be the best option until direct measurements of the microbiome are widely available. We used a 335 

variety of methods to show that ABx and CS are significantly associated with decreased OS 336 

across a variety of cancers and that these results are consistent with a role for the gut 337 

microbiome. 338 

Our study remains limited by being unable to account for important factors known to 339 

affect OS in the context of ICI treatment. For example, the complete ABx history of patients -- 340 

much longer than the windows reported here -- are very likely of consequence. Several groups 341 

have studied the recovery of microbiome diversity following ABx exposure and results show 342 

reasonable recovery 90 days later (25,26). However, multiple courses of ABx prevented such a 343 

recovery; i.e. diversity returned to baseline after one treatment with ABx, but not after a second 344 

ABx treatment within 60 days (27). It is therefore possible that individuals who show extreme 345 

effects of ABx treatment are beyond the time scale of this study. Without baseline microbiome 346 

diversity measures we are unable to capture such information. Similarly, estimating the effects 347 

of ABx on communities from data on microbes in isolation is, at best, approximate. A better 348 

understanding of how ABx affect complex communities is needed. Other limitations include our 349 

small sample size relative to the heterogeneity in the data. Future directions should capture 350 

variables such as other co-morbidities or the presence of brain metastases, tumor biomarkers 351 

such as tumor mutational burden and PD-1/PDL-1 status, and outcome variables like ICI 352 

response or the number of tumor-infiltrating lymphocytes. 353 

 354 

CONCLUSIONS 355 

ABx and CS, but not other medications known to affect the microbiome, are associated 356 

with reduced OS when administered near the start of ICI treatment. Our results show this finding 357 
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several cancer types, and for several subclasses of these drugs. These results are consistent 358 

with a role of the microbiome in response to ICIs and identify clinical settings where the 359 

microbiome is likely to play the largest role, namely NSCLC, melanoma, RCC, HNSC, and 360 

bladder cancer. A clear understanding of which microbes are important for ICI responses and in 361 

what cancers will require the collection of microbiome samples across a wide variety of clinical 362 

settings. However, some information can be gathered by indirect means, which identifies the 363 

settings where the microbiome is likely to have the greatest effects. Medications that affect the 364 

microbiome given concomitantly with ICIs provide evidence for where microbes play a role. 365 

Further work is needed to identify which microbes are important and identify solutions to 366 

mitigate these effects and perhaps promote greater response to ICIs. 367 

  368 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted September 13, 2019. ; https://doi.org/10.1101/19006429doi: medRxiv preprint 

https://doi.org/10.1101/19006429
http://creativecommons.org/licenses/by-nd/4.0/


 

17 
 

LIST OF ABBREVIATIONS 369 

ICIs: Immune Checkpoint Inhibitors 370 

OS: Overall Survival 371 

ABx: Antibiotics 372 

CS: Corticosteroids 373 

PS: Eastern Cooperative Oncology Group Performance Status 374 

BMI: Body Mass Index 375 

NSCLC: Non-Small Cell Lung Cancer 376 

RCC: Renal Cell Carcinoma 377 

HNSC: Head and Neck Squamous Cell Carcinoma 378 
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FIGURES AND TABLES 548 

Figure 1. Causal model for the effect of concomitant medications on Immunotherapy 549 

Response and Overall Survival. Numbers along edges refer to references supporting the 550 

connection. Hypothesized dominant pathways are shown in heavily-weighted edges. (1–3,8–551 

10,27–47) 552 
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  555 

Table 1. Cohort characteristics 
Overall  n     690 
BMI (mean (SD))  27.79 (6.66) 
Staging (%)                                        
1 1 ( 0.2) 
2 4 ( 0.7) 
3 44 ( 7.2) 
4 548 (90.0) 
Unknown 12 ( 2.0) 
Age (mean (SD)) 62.25 (13.21) 
Sex = Male (%)  403 (58.4) 
Cancer (%)                                         
Bladder Cancer  32 ( 4.9) 
Head and Neck Carcinoma  42 ( 6.5) 
Melanoma  185 (28.5) 
Non-Small Cell Lung Cancer  152 (23.4) 
Renal Cell Carcinoma  65 (10.0) 
Sarcoma  21 ( 3.2) 
Other  152 (23.4) 
Immunotherapy (%)                                  
Atezolizumab 22 ( 3.2) 
Durvalumab  12 ( 1.7) 
Durvalumab + Tremelimumab  6 ( 0.9) 
Ipilimumab 126 (18.3) 
Nivolumab  364 (52.8) 
Nivolumab + Ipilimumab  37 ( 5.4) 
Nivolumab + Chemotherapy  7 ( 1.0) 
Pembrolizumab  104 (15.1) 
Tremelimumab  3 ( 0.4) 
Other  9 ( 1.3) 
ECOG (%)                                           
0 185 (31.0) 
1 272 (45.6) 
2 113 (19.0) 
> 2 26 ( 4.4) 

ABx within 28 days of ICI  
(mean (SD)) 

0.36 (0.48) 

CS within 28 days of ICI 
(mean (SD)) 

0.40 (0.49) 
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Figure 2. The effect of medications at the start of ICI treatment across all cancers for A) 556 

Antibiotics, B) Corticosteroids, and C) other medications. The cell color indicates the p-557 

value of the Kaplan-Meier curve and the “+” or “-“ the direction of the HR, in reference to its 558 

association with OS (i.e. a “-“ indicates an association with decreased OS, therefore a HR > 1). 559 

 560 
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Figure 3. Associations of ABx and CS over time and by drug class. A) Hazard ratios with 562 

95% confidence intervals of a Cox Proportional-Hazards model comparing individuals treated 563 

with ABx or CS during a 30-day sliding window compared to indivduals who did not receive ABx 564 

or CS, respectively. The significance and direction of associations of Cox Proportional Hazards 565 

models by (B) ABx or (C) CS class and cancer, using a window 28 days around ICI treatment 566 

start. 567 

 568 
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Figure 4. Combined models for ABx and CS and controlling for covariates. (A) Kaplan-570 

Meier curves for ABx and CS in combination. B) Cox Proportional Hazards model incorporating 571 

both ABx and CS as well as several covariates. C) Cox-LASSO models for each cancer 572 

showing the hazard ratios estimated for covariates and the number of times the covariate was 573 

included in the model. The regularization parameter was selection by 10-fold cross validation, 574 

and then the robustness was assessed by 1000 bootstrap replicates using different random 575 

samples of the data. 576 

 577 
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Figure 5. Relating the ABx effect to microbes enriched in responders to ICIs. A 579 

dendrogram of the microbes recently shown to be most enriched in responders (black) or non-580 

responders (red), are related to known ABx susceptibilities (references for each cell in Table 581 

S1). The ABx are ordered by hazard ratio across all cancers (i.e. b-lactams showed the largest 582 

hazard ratio and linezolid the smallest). 583 

 584 
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SUPPLEMENTARY FIGURES AND TABLES 586 

Figure S1. Causal diagram with references. 587 

Figure S2. Number of medications prescribed across all cancers and the frequency of 588 

multiple medications.  589 

Figure S3. Number of antibiotics, separated by class, prescribed across all cancers and 590 

the frequency of multiple antibiotics. 591 

Figure S4. Number of corticosteroids, separated by class, prescribed across all cancers 592 

and the frequency of multiple antibiotics. 593 

Table S1. References for the antibiotic susceptibilities of bacterial taxa found to be 594 
enriched in responders or non-responders to ICI therapy 595 
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