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Attention deficit hyperactivity disorder (ADHD) is a heterogeneous neurodevelopmental disorder that affects 5% 32	

of the pediatric and adult population worldwide. The diagnosis remains essentially clinical, based on history and 33	

exam, with no available biomarkers. In this paper, we describe a deep convolutional neural network (DCNN) for 34	

ADHD classification derived from the time-frequency decomposition of electroencephalography data (EEG), 35	

particularly of event-related potentials (ERP) during the Flanker Task collected from 20 ADHD adult patients and 36	

20 healthy controls (HC). The model reaches a classification accuracy of 88%, superior to resting state EEG 37	

spectrograms and with the key advantage, compared with other machine learning approaches, of avoiding the need 38	

for manual selection of EEG spectral or channel features. Finally, through the use of feature visualization 39	

techniques, we show that the main features exciting the DCNN nodes are a decreased power in the alpha band and 40	

an increased power in the delta-theta band around 100ms for ADHD patients compared to HC, suggestive of 41	

attentional and inhibition deficits, which have been previously suggested as pathophyisiological signatures of 42	

ADHD. While confirmation with larger clinical samples is necessary, these results highlight the potential of this 43	

methodology to develop CNS biomarkers of practical clinical utility. 44	

  45	
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Introduction 46	

 47	

Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by 48	

deficits in attention, impulsivity (motor and non-motor) and executive dysfunction. It is associated with high 49	

morbidity and disability1,2, and affects up to 5% of adults worldwide3-5. The diagnosis of ADHD remains 50	

essentially clinical, based on history and exam. It can be supported by neuropsychological assessments, but given 51	

the heterogeneous cognitive profiles in patients with ADHD, these provide a supportive, not fully diagnostic, 52	

function. Significantly, there are many different conditions that present with disordered attention, impulsivity and 53	

dysexecutive syndromes, and the range of normal cognitive profiles with variable strengths and weaknesses in 54	

these domains is wide, often complicating the differential diagnosis. Hence, a biomarker to reduce the inherent 55	

uncertainty of clinical diagnosis would be of great value. 56	

 57	

Electroencephalographic (EEG) signals contain rich information associated with functional dynamics in the brain. 58	

The use of EEG in ADHD began more than 75 years ago with Jasper et al.6 reporting an increase in the EEG 59	

power of low frequencies in fronto-central areas. Since then, human electrophysiological studies using EEG 60	

spectral analyses and event-related potentials (ERPs) have established relevant signatures of executive dysfunction 61	

in ADHD7. In contrast to spontaneous EEG, ERPs reflect changes in the electrical activity of the brain that are 62	

time-locked to the occurrence of a specific event, that is, a response to a discrete external stimulus or an internal 63	

mental process8. ERPs also provide non-invasive neurophysiological measurements with high temporal resolution, 64	

allowing to assess dysfunctional brain dynamics, including cognitive processes that may not be apparent at the 65	

behavioral level9,10. Indeed, ERPs are commonly used clinically in neurophysiological diagnostic units to support 66	

the assessment of neuropsychiatric disorders (e.g., multiple sclerosis11) and sensory disorders (e.g., screening of 67	

neonates for hearing impairments12). 68	

 69	

Artificial neural networks (ANNs) have recently become a promising application of artificial intelligence (AI) in 70	

healthcare13. Machine learning, a subtype of AI, and deep learning, a specialized sub-field of machine learning, 71	

have been increasingly used in clinical research with promising results. Machine learning can be described as the 72	

practice of using algorithms to train a system by using large amounts of data, with the goal of giving it the ability 73	

to learn how to perform a specific task, and then make an accurate classification or prediction. Deep learning is a 74	

subset of machine learning algorithms that break down the tasks in smaller units (neural networks, NNs) often 75	
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providing higher levels of accuracy.  76	

 77	

NNs are characterized by their network architecture, defined by the anatomical layout of its connected processing 78	

units, the artificial “neurons”, according to a loss or optimization function that specifies the overall goal of the 79	

learning process. Connections are “trained”, or taught how to do the desired task, by using a training algorithm 80	

that iteratively changes parameters of the NN such that the target function is ultimately optimized based on the 81	

inputs the NN receives. There are different types of NNs with different designs and architectures derived from 82	

different principles, or conceived for different purposes. The most basic ones are the feed-forward NNs (FNNs), in 83	

which activity is propagated unidirectionally layer-by-layer from the input up to the output stage, with no feedback 84	

connections within or between layers. We have previously used a specific type of FFNs (feed-forward 85	

autoencoders) for the analysis of EEG data with promising outcomes14.  Recurrent Neural Networks (RNN) are 86	

another type of NN that, unlike FFNs, are based on architectures with feedback (“recurrent”) connections within or 87	

between layers. In related work, we used Echo State Networks (ESNs), a particular type of RNN, to classify 88	

Parkinson patients from HC using EEG time-frequency decompositions15 with successful results. The main 89	

limitation of RNNs is, however, their computational cost16. In addition, one of the main critics to deep NN is their 90	

“black-box” nature, i.e., the difficulty in tracing a prediction back to which features are important and 91	

understanding how the network reached the final output, which will be later addressed in this study. 92	

 93	

Previous studies have successfully classified ADHD patients from HC using machine learning techniques with 94	

accuracies of more than 90%17-23, but the selection of disease-characterizing features from EEG was done 95	

manually after an extensive search in the frequency or time domain. However, EEG signals exhibit non-linear 96	

dynamics (chaotic signals that do not behave linearly and cannot be represented as combination of basic sub-97	

signals) and non-stationarity across temporal scales (signals with a mean and variance that do not stay constant 98	

over time) that cannot be studied properly using classical machine learning approaches. There is a need for tools 99	

capable of capturing the rich spatiotemporal hierarchical structures hidden in these signals. In a previous study24, 100	

we trained a machine learning system with pre-defined complexity metrics of time-frequency decompositions of 101	

EEG data that showed statistically significant differences between REM Sleep Behavior Disorder (RBD) patients 102	

and HC, indicating that such metrics may be useful for classification or scoring. While this approach is useful in 103	

several domains, it would be advantageous to use methods where the relevant features are found directly by the 104	

algorithms instead of pre-defining them manually. 105	
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 106	

With the goal of building a discrimination system that can classify ADHD patients from HCs, here we explore a 107	

deep learning approach inspired by recent successes in image classification using Deep Convolutional Neural 108	

Networks (DCNNs), a particular type of NN designed to exploit compositional and translationally invariant 109	

features in the data that are present in EEG, i.e., features that are recognizable even if their appearance varies in 110	

some way16. These networks were originally developed to deal with image data (2D arrays) from different 111	

channels or audio data25, and more recently, EEG data26,27. Similarly, here we train a DCNN with multi-channel 112	

two-dimensional time-frequency maps (spectrograms or 2D time-frequency maps), representing EEG spectral 113	

dynamics as images with the equivalent image depth provided by multiple EEG channels. These networks treat 114	

EEG-channel data as an audio file, and our approach mimics similar uses of deep networks in that domain. 115	

Specifically, we use a similar strategy as the one presented by Ruffini et al.28, but instead of using spontaneous 116	

EEG spectrograms, we use ERP spectrograms (also called Event-Related Spectral perturbation, ERSP) recorded 117	

during a Flanker-Eriksen Task (EFT), a well-established experimental task to assess sustained attention, conflict 118	

monitoring and response inhibition. Our assumption is that relevant qualities of ERP data are contained in 119	

compositional features embedded in this time-frequency representation. Particularly, we expect that DCNNs may 120	

be able to efficiently learn to identify features in the time-frequency domain associated to event-related bursting 121	

across frequency bands that may help separate classes, similar to what is known as “bump analysis”29. For 122	

comparison purposes, we also trained a RNN based on Long Short-Term Memory (LSTM) networks, which can 123	

learn long sequences of data but require higher computational demands, and a Shallow Neural Network (SNN) as 124	

a baseline, a more basic type of network with only one layer. We also compared the performance of the ERSP data 125	

with a dataset of spontaneous EEG data recorded while the participants were at resting state. Lastly, we propose 126	

the utilization of deep learning visualization techniques for the mechanistic interpretation of results, particularly 127	

the method popularly known as DeepDream30. This is important to identify pathophysiological features driving the 128	

translational and clinical value of the application, and for the optimized further development and acceptance of 129	

such techniques in the clinical domain, where black-box approaches have been extensively criticized.  130	

 131	

Methods 132	

Participants 133	

A total of 40 participants including 20 healthy adults (10 males, 10 females) and 20 ADHD adult patients (10 134	

males, 10 females) participated in the present study (Table 1). The inclusion criteria for ADHD patients consisted 135	
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of a diagnosis of ADHD made by a board-certified clinician according to the Diagnostic and Statistical Manual of 136	

Mental Disorders, Fifth Edition (DSM-5)31. Symptom profiles and severity were assessed with the Adult ADHD 137	

Self-Report Scale (ASRS-v1.1)32. Patients were either off stimulant medications or, if undergoing treatment with 138	

stimulants, were asked to discontinue two days prior to the experiment, under a physician-guided protocol, and 139	

allowed to resume afterwards. Psychiatric comorbidities were allowed as long as ADHD was the primary 140	

diagnosis. Psychosis, bipolar disorder, substance use disorder and neurological conditions were exclusion criteria. 141	

Healthy participants were included if they did not have any psychiatric or neurologic condition and were not 142	

taking any psychoactive medications. All participants gave informed and written consent for participation. The 143	

study was approved by the Partners HealthCare System’s Institutional Review Board and all experiments were 144	

performed in accordance with relevant guidelines and regulations at Massachusetts General Hospital. 145	

Table 1. Participant characteristics   

 ADHD (n=20) HC (n=20) Significance 

Demographic mean (SD)* mean (SD)* p value  (T test) 

 Age  43.85 (14.78) 29.90 (10.77) 0.0006 

Females 10 (50%) 10 (50%) 0.5 

Baseline Scores    

 ASRS 62.6 (9.17) 36.47 (11.33) <0.0001 

Current medications – N (%)    

No medication 11 (55%)   

Adderall 2 (15%)   

Vyvanse 2 (10%)   

Concerta 1 (5%)   

Verapamil 1 (5%)   

Aspirin 1 (5%)   

Levothyroxine 1 (5%)   

Modafinil 1 (5%)   
Abbreviations. SD: Standard Deviation 146	
(*) All figures are mean (Standard Deviation) unless otherwise specified. 147	
 148	

Experimental Task: Eriksen-Flanker task (EFT) 149	

Each patient underwent three identical experimental sessions separated by 1-2 weeks in which they performed the 150	

Eriksen-Flanker task (EFT) (Figure 1) while EEG data was recorded. The EFT is a classic behavioral paradigm in 151	

which subjects must attend and respond to the direction of a central arrow that is surrounded (“flanked”) by 152	

distracting stimuli. The flanking arrows can either have the same (congruent trials) or opposing (incongruent trials) 153	

orientation as the central one. Participants are instructed to press the left or right arrow buttons in a keyboard 154	

following the direction of the central arrow, ignoring the flankers. In this study there were a total of 140 trials, and 155	

each subject had a different, fully random sequence of congruent and incongruent trials, with 2 congruent trials for 156	
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each incongruent trial, in order to build a tendency towards the prepotent congruent responses and thus increase 157	

the difficulty of conflict detection in incongruent trials. Only incongruent trials were used for classification 158	

purposes, as they are the ones that most elicit the conflict-related ERP components that characterize the executive 159	

function subtasks of selective attention, inhibition and cognitive control33, primarily impaired in ADHD. The 160	

accuracy (percentage of correct/incorrect responses) and the reaction time (RT) were measured for each trial, 161	

while also recording EEG data during the task. RT of single trials was introduced into a Generalized Linear Model 162	

with Mixed Effects (GLMM) with a Gamma distribution, with Group as a fixed factor (ADHD/HC) and Subject 163	

ID as a random intercept. Accuracy was also modeled using a generalized logistic regression model with mixed 164	

effects and a binomial distribution.  165	

 166	

 167	

Figure 1. Flanker task design scheme. The flanker arrows were first presented alone for duration of 136ms, 114ms, 92ms, 168	

70ms or 48ms depending on the baseline performance of each subject, and were then joined by the target arrow for 62ms, 169	

52ms, 42ms, 32ms or 22ms, respectively (the duration of the stimuli was adjusted to the psychometric spot in which each 170	

subject reached a performance of 80-85%). Stimulus presentation was followed by a black screen for 500 ms. The time-171	

window for participants’ response was 600 ms after target onset. If the participant did not respond within the response window, 172	

a screen reading ‘TOO SLOW!’ was presented for 300 ms. Participants were told that if they saw this screen, they should speed 173	

up. If a response was made before the deadline, the ‘TOO SLOW!’ screen was omitted and the black screen remained on screen 174	

for the 300 ms interval. Finally, each trial ended with presentation of the fixation cross for an additional randomly chosen 175	

duration (200, 300 or 400 ms) in order to avoid any habituation or expectation by the subject. Thus, trial duration varied 176	

between 1070–1400 ms.  177	

 178	

EEG data acquisition and preprocessing 179	
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EEG was recorded with the Starstim system (Neuroelectrics, Cambridge, MA, USA) from 7 positions covering the 180	

primary hubs of the fronto-parietal executive control network (Fp1, Fp2, F3, Fz, F4, P3 and P4) with 3.14cm2 181	

Ag/AgCl electrodes and digitalized with 24-bit resolution at a sampling frequency of 500 samples/second. EEG 182	

data was referenced to the right mastoid. Independent component analysis (ICA) was utilized to identify and 183	

remove activity associated with blinks, eye movements, and other artifacts. Data was filtered from 1Hz to 20Hz to 184	

remove non-neural physiological activity (skin/sweat potentials) and noise from electrical outlets. Trials were 185	

epoched within a time frame of 200ms before and 800ms after the stimulus onset. The mean of the pre-stimulus 186	

baseline [-200,0]ms was then subtracted from the entire ERP waveform for each epoch to eliminate any voltage 187	

offset.  188	

 189	

To create the ERP spectrograms (or ERSP), the Wavelet transform was applied to each singe trial as implemented 190	

in EEGlab’s newtimef function, with 1 wavelet cycle at the lowest frequency to 10 cycles at the highest, leading to 191	

22 frequency bins logarithmically spaced in the [3, 20]Hz  range and 20 linear time bins in the [0, 800]ms range, 192	

where 0 represents the onset of the target stimuli in incongruent trials. The input data frames were thus 193	

multidimensional arrays of the form [22 Frequency bins] x [20 Time bins] x [7 channels], with 3 minutes of data 194	

per subject approximately. For comparison purposes, we also processed with the same parameters a dataset of 195	

spontaneous EEG data recorded while the same subjects and ADHD patients were resting with eyes closed (no 196	

cognitive task performed). 197	

 198	

Neural network architecture  199	

The DCNN, implemented in Tensorflow34, is a relatively simple four layer convolutional network, as shown in 200	

Figure 2a. In order to avoid overfitting the data (i.e., overtraining the system to the extent that it negatively 201	

impacts the performance of the model on new data), we used the so-called “Dropout” method, a regularization 202	

technique in which that randomly selected neurons are ignored during training35. The number of iterations in the 203	

training process was also limited to the point after which more iterations did not improve training significantly and 204	

may lead to overfitting, a method known as “early stopping”36. The patch size of the convolutional filter, the 205	

pooling parameters and the number of hidden units indicated in Figure 2, as well as the Stochastic Gradient 206	

Descent hyper-parameters (number of steps=600, batch size=32), were determined from our previous work using 207	

EEG spectrograms28, but no fine-tuning or optimization of parameters was applied. 208	

 209	
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We compared the DCNN’s performance with a Shallow Neural Network (SNN) (Figure 2c), a more basic machine 210	

neural network with a hidden layer, and with a RNN consisting of stacked LSTM16,37, a type of RNN capable of 211	

using information about events in the past (memory) to inform predictions in the future (Figure 2b).  212	

 213	

a) DCNN 214	

 215	
 216	
b) RNN       c) SNN 217	
 218	

    219	
 220	

Figure 2. Network architectures. a) DCNN model displaying input, convolution with pooling layers, and hidden-unit layers. 221	

The first two layers perform the convolution, the Rectified Linear Units (ReLU) function and the pooling processes for feature 222	

extraction. The last two layers with 128 and 64 hidden nodes perform the class classification in HC or ADHD. For each trial (or 223	

frame), the classifier outputs the probability of the frame belonging to each class (using the softmax function16) and, after 224	

averaging over frames per subject, we obtained the probability of the subject belonging to each class. Classification was 225	

performed by choosing the class with maximal probability. b) RNN consisting of three stacked layers of LSTM cells, where 226	

Feature	map	
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each cell uses as input the outputs of the previous one. Each cell used 32 hidden units, and dropout was used to regularize it. c) 227	

SNN architecture used for comparison with one layer of 1024 units.  228	

 229	

Performance assessment 230	

The performance metrics assessed for each architecture were accuracy (probability of good a classification) and 231	

area under the curve (AUC)38. Classification performance was validated using the leave-pair out cross-validation 232	

(LPO), a method for model selection and performance assessment of deep learning algorithms that consists of 233	

training the network N=20x20=400 times (all possible combinations of pairing 1 HC with 1 ADHD), holding one 234	

sample from each group out from the training set at a time, and measuring the performance using the held out pair 235	

as a test set38. 236	

 237	

To account for the significant differences in age between the ADHD and HC groups, we applied the Inverse 238	

Probability Weighting (IPW) method39, which assigns different weights to the subjects in the training process 239	

according to their propensity score40. The IPW method lead to the same performance without adjustment in all 240	

architectures, thus ruling out the effect of age as a confounding factor. 241	

 242	

Feature visualization 243	

Once the network was trained, it was used to find out what type of inputs optimally excite the output nodes using a 244	

method popularly known as “DeepDream”, which refers to the generation of synthetic images that produce desired 245	

activations in a trained deep network by exaggerating small features within them30. The algorithm maximizes a 246	

particular class score using gradient descent, starting from a null or random noise image. In particular, we 247	

computed the DeepDream spectrograms averaged over N=400 experiments by maximizing the output logits after 248	

30 iterations in steps of 1, initializing with different random images (seeds). 249	

 250	

Results 251	

The results from classification using different methods and datasets are detailed in  Figure 3a and 3b, showing that 252	

the DCNN trained with ERSPs reached an accuracy of 88% (AUC=96%), very similar to the RNN performance  253	

(Accuracy=86%, AUC=95%) and outperforming the SNN (Accuracy=78%, AUC=92%). In comparison with 254	

spontaneous EEG spectrograms, ERSPs provided better performance for all architectures. To assess the 255	

performance of each individual channel, we also trained the DCNN with ERSP data from single channels and 256	
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found that frontal (F3, Fz and F4) and parietal electrodes (P3, P4) provide the best performance compared to 257	

frontopolar (Fp1, Fp2) electrodes (Figure 3c and 3d). 258	

 259	

 260	
Figure 3. Performance assessment. Neural networks accuracy (a) and AUC (b) with ERSP and spontaneous EEG data. 261	

Electrode accuracy (c) and AUC (d) in a DCNN trained with ERSP data from single channels. Error bars indicate mean square 262	

error. 263	

 264	

The mean DeepDream ERSP averaged over channels can be seen in Figure 4 (see Table S1 for individual 265	

channels).  The difference between groups reveals that the main feature that optimally excites the network nodes is 266	

an increased power for the ADHD group in the delta-theta band (3-7 Hz) around 100 ms and a decreased power in 267	

the alpha band (7-12 Hz) along the entire time course, with a residual decrease in theta and beta. Note that the 268	

patterns shown in the DeepDream ERSP are very similar to the patterns of the ERSP computed from the real data 269	

(Table S1), thus showing that the network is actually learning real neurophysiologically identifiable differences 270	

between groups.  271	
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 272	
Figure 4. Mean DeepDream ERSP. Mean DeepDream ERSP averaged over channels generated after 400 experiments for 273	

healthy controls (a), ADHD patients (b) and their difference (c). Color bar units = dB. 274	

 275	

Behaviorally, the mean reaction time was significantly slower for ADHD compared to HC (RTADHD=368ms, 276	

RTHC=321ms, β=46ms, CI=[38,53]ms, p<0.001), which can be expected with this type of population with 277	

attention deficits, but the mean percentage of responses for each group was not significantly different 278	

(AccuracyADHD=62%, AccuracyHC=65%, β=0.12, CI=[0.02, 0.26], p=0.10). 279	

 280	

Discussion 281	

In this study we present a viable deep learning model for effective discrimination of patients with ADHD, 282	

providing a new tool for the analysis of EEG dynamics in ADHD and supporting the potential of deep learning 283	

strategies for biomarker development in neuropsychiatry. We deem this approach to be particularly interesting for 284	

various reasons. First, it largely mitigates the need for EEG feature selection (spectral bands, time ranges, specific 285	

ERP components and channels). Second, results with ERSPs represent an improvement over spontaneous EEG 286	

spectrograms (e.g. subject Accuracy with DCNN was 88% for ERSP vs. 66% for spontaneous resting-state data). 287	

Third, the performances of the proposed DCNN and RNN systems are very similar and they outperform the SNN 288	

used for comparison. Finally, through the use of feature visualization, we identify neurophysiologically 289	

interpretable features that can be extracted from the model, providing further validation and evidence that the 290	
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network performance is not driven by noise or artifact signals in the data and providing a mechanistic model with 291	

added value to understand pathophysiology.  292	

 293	

The higher accuracy provided by DCNN and RNN compared to SNN proves that the complex deep approaches 294	

with more layers and units provide better performance than more shallow networks. The similar performance of 295	

DCNN compared to RNN shows, however, that the higher computational demands of RNN do not provide better 296	

performance than the DCNN approaches, thus proving DCNN as a more efficient method than RNN.  297	

 298	

The fact that ERSP data provide better performance than spontaneous EEG data with all architectures also shows 299	

that event-related data from a highly yield task that elicits the primary executive functions impaired in ADHD is a 300	

better predictor than spontaneous EEG data recorded while the participants are at resting state.  301	

 302	

Finally, through the use of feature visualization we show that the main spectral features picked up by the DCNN 303	

nodes are a decrease in alpha activity over the entire time course and an increased delta-theta activity around 100 304	

ms for ADHD patients compared to HC. There is evidence that an increased alpha activity (or alpha Event-Related 305	

Synchronization, ERS) in conflict and inhibitory tasks is related with an improved inhibition of the prepotent 306	

response, reflecting a top-down inhibitory control process41. Therefore, we interpret the decrease in alpha power in 307	

ADHD as a deficit in cognitive control. On the other hand, the increased delta-theta activity is localized to 100ms 308	

and is probably related to the increase in N100 amplitude in the time domain (Table S1). N100 is a visual sensory 309	

evoked potential that is thought to index sensory analysis of simple stimulus features and whose amplitude is 310	

influenced by selective attention42. The increased delta-theta power in that latency suggests that ADHD patients 311	

manifest specific alterations in the process of early selection of visual task stimuli43. Given that there were no 312	

significant differences in the percentage of correct responses between ADHD and HC, we interpret this as a 313	

compensation strategy to offset inhibitory deficits by shifting more attention to the task44,45. 314	

 315	

Note that the DeepDream spectrograms generated for Fp1 and Fp2 are substantially different and provide lower 316	

performance that the other positions (F3, F4, Fz, P3, P4), which may be explained by the lower signal quality of 317	

frontopolar positions due to blinks, muscle artefacts and sweat. The lower performance of F3 and P3 electrodes 318	

compared to F4 and P4 may also be related to the lower power scale in their DeepDream spectrogram, respectively 319	
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(Table S1). This may suggest the existence of inter-hemispheric differences in the features driving the 320	

discrimination between ADHD and HC. 321	

 322	
Similar studies have explored the application of deep learning to EEG signals. For example, DCNNs have been 323	

used for epilepsy prediction and monitoring46, mental workload classification47 and motor imagery classification48-50. 324	

Deep neural networks have also shown convincing results in classifying psychiatric disorders such as dementia51 325	

and ADHD52-57, mostly with MRI data. To our knowledge, this is the first study using a deep learning approach 326	

with EEG event-related spectral data to discriminate adult ADHD patients from HC with no prior selection of 327	

EEG features and the combination with feature visualization techniques to provide further mechanistic evidence of 328	

the underlying pathophysiology driving the classification. This is particularly important, as it not only allows to 329	

develop clinical tools but also to delineate pathological signatures and disease mechanisms. 330	

 331	

One of the limitations of this study is the relatively small size of the dataset, with the consequent limitation on the 332	

network due to susceptibility to overfitting. Although “early stopping” and regularization should mitigate this 333	

issue, further improvements could be achieved with bigger datasets. Another limitation is the age difference 334	

between the two groups. While the mean ages are well after the period of brain maturation when myelination and 335	

ADHD symptoms are still changing, and well before a geriatric threshold when other type of biological changes 336	

(including normal aging) may affect cognition, we addressed this possible confounder using Inverse Probability 337	

Weighting. The age difference was an artifact caused by the fact that the two cohorts were recruited prospectively 338	

for independent studies (though at the same time and with the same exact protocol and hardware) and then 339	

analyzed together retrospectively to address the proposed questions, hence the lack of appropriately age-matched 340	

controls. Future prospective validation studies should use larger cohorts and randomize age-matched controls.  341	

 342	

It is also worth mentioning that, although the current work considerably eliminates the need for manual extraction 343	

of features, it is still focused on classification during high yield incongruent trials of a specific task. While this 344	

requires a priori knowledge constrains, if validated with higher definition EEG and bigger datasets, it may be a 345	

helpful diagnostic and biomarker development strategy (i.e. choosing high yield events of a high yield task) with 346	

practical future procedural advantages (i.e. it would be easy to implement it in clinical settings with currently 347	

existing tools, such as tasks for neuropsychological assessments and standard EEG for electrophysiological 348	

diagnosis). 349	

 350	
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Our findings may also have several implications from the clinical perspective by bringing new information to 351	

inform the clinician’s decisions. Although the networks in this study have been trained with a small dataset of 40 352	
subjects, if validated with bigger datasets this approach could be used to support the diagnosis of ADHD on a 353	

single-patient basis. The fact that the current networks have been trained with low-resolution EEG datasets (7 354	
channels) of short duration (3 minutes) would make it easy to implement them not only in an EEG clinical unit, 355	
but possibly by an outpatient clinician, eliminating the need to get longer or higher quality data with sophisticated 356	

and clinically unpractical EEG systems. However, even if these deep learning systems are properly validated in the 357	
future, clinicians should view their output as statistical predictions, not as a ground truth, and they should judge 358	
whether the prediction applies to that specific patient and decide if additional data or expertise is needed to inform 359	

that decision.  360	

 361	

Future work should include the exploration of this approach with larger datasets as well as a more systematic study 362	

of network architecture and regularization schemes. This includes the use of deeper architectures, improved data 363	

augmentation methods, alternative data segmentation and normalization schemes. With regards to data 364	

preprocessing, we should consider improved spectral estimation using more advanced techniques such as state-365	

space estimation and multitapering58, and the use of cortical or scalp-mapped EEG data prior creation of 366	

spectrograms. 367	

 368	

Finally, we note that we make no attempt to fully-optimize our architecture in this study. In particular, no fine-369	

tuning of hyper-parameters has been carried out using a validation set approach, a task we reserve for future work 370	

with larger datasets. Our aim was to validate the idea that deep learning approaches can provide value for the 371	

analysis of time-frequency representations of EEG, and particularly ERSP data, for the effective discrimination of 372	

ADHD. 373	

 374	
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