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Abstract8

Seasonal variation in the age distribution of influenza A cases suggests that factors other than age shape susceptibility to9

infection. We ask whether these differences can be explained in part by protection conferred by childhood influenza infection,10

which has lasting impacts on immune responses to influenza and protection against novel influenza A subtypes (phenomena11

known as original antigenic sin and immune imprinting). Fitting a statistical model to data from studies of influenza vaccine12

effectiveness (VE), we find that primary infection appears to reduce the risk of medically attended infection with that subtype13

throughout life. This effect is stronger for H1N1 compared to H3N2. Additionally, we find evidence that influenza VE varies14

with both age and birth year, but not with the imprinting subtype, indicating that VE may be sensitive to particular exposure15

histories. The ability to predict age-specific risk might improve forecasting models and vaccination strategies to combat16

seasonal influenza.17

Introduction18

Seasonal influenza is a serious public health concern, resulting in over 100,000 hospitalizations and 4,000 deaths per year in19

the United States despite extensive annual vaccination campaigns (Reed et al., 2015). The rapid evolution of the virus to20

escape preexisting immunity contributes to the relatively high incidence of influenza, including in previously infected older21

children and adults. How susceptibility arises and changes over time in the host population has been difficult to quantify.22

A pathogen’s rate of antigenic evolution should affect the mean age of the hosts it infects, and differences in the rate of23

antigenic evolution have been proposed to explain differences in the age distributions of the two subtypes of influenza A.24

Compared to H3N2, H1N1 disproportionately infects children (Caini et al., 2018; Khiabanian et al., 2009). It also evolves25

antigenically more slowly (Bedford et al., 2015). Thus, compared to H3N2, H1N1 is slower to escape immunity in individuals26

who have experienced prior infection (namely older children and adults), making them less susceptible to reinfection (Bedford27

et al., 2015; Beauté et al., 2015; Caini et al., 2018; Khiabanian et al., 2009). H3N2, in contrast, exhibits well known changes28

in antigenic phenotype that are expected to drive cases toward adults (Smith et al., 2004; Cobey and Koelle, 2008). Under this29

simple model, hosts previously infected with a subtype face equal risk of reinfection (on challenge) with an antigenic variant30

of that subtype.31

The age distributions of influenza infections in exceptional circumstances—pandemics and spillovers of avian influenza—32

have shown unexpected variation that suggests potentially complex effects of prior infection. Excess mortality in some adult33

cohorts during the 1918 and 2009 H1N1 pandemics has been linked to childhood infection with particular subtypes (Gagnon34

et al., 2013; Worobey et al., 2014; Gagnon et al., 2018). In the post-2009 pandemic period, excess mortality and hospitalization35

in these cohorts was observed during H1N1-dominated seasons (Budd et al., 2019). Similarly, the subtypes circulating in36

childhood predict individuals’ susceptibility to severe zoonotic infections with avian H5N1 and H7N9, regardless of later37

exposure to other seasonal subtypes (Gostic et al., 2016). These patterns suggest that early influenza infections, and not prior38

infection per se, strongly shape susceptibility.39

Early infections might also affect the protection conferred by influenza vaccination. Foundational work on the theory of40

original antigenic sin demonstrated that an individual’s immune response to influenza vaccination is biased toward antigens41

similar to those encountered in childhood (Davenport and Hennessy, 1956, 1957). In some cases, this may result in an42

extremely narrow antibody response focused on a single epitope (Davis et al., 2018). This phenomenon has been suggested43
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to explain an unexpected decrease in vaccine effectiveness (VE) in the middle-aged in the 2015-2016 influenza season44

(Skowronski et al., 2017b; Flannery et al., 2018). More generally, it has been hypothesized that biases in immune memory can45

arise from both past infections and vaccinations, leading to variation in vaccine effectiveness that is sensitive to the precise46

history of exposures (Smith et al., 1999; Skowronski et al., 2017a).47

To measure the effect of early exposures on infection risk and VE, we fitted statistical models to 3493 influenza cases48

identified through seasonal studies of influenza VE from the 2007-2008 to 2017-2018 seasons in Marshfield, Wisconsin49

(Belongia et al., 2009, 2011; Griffin et al., 2011; Treanor et al., 2012; Ohmit et al., 2014; McLean et al., 2014b; Gaglani et al.,50

2016; Zimmerman et al., 2016; Jackson et al., 2017; Flannery et al., 2018). Each season, individuals in a defined community51

cohort were recruited and tested for influenza when seeking outpatient care for acute respiratory infection. Eligibility was52

restricted to individuals >6 months of age living near Marshfield who received routine care from the Marshfield Clinic. After53

obtaining informed consent, a mid-turbinate swab was obtained for influenza detection. RT-PCR was performed using CDC54

primers and probes to identify influenza cases, including type and subtype.55

We sought to explain the variation in the age distribution of these cases by subtype and over time. Our model predicted56

the relative number of cases of influenza in each birth year each season as a function of the age structure of the population,57

age-specific differences in the risk of medically attended influenza A infection, early influenza infection, and vaccination.58

Despite the extensive antigenic evolution in both subtypes over the study period, we found strong evidence of protection from59

the subtype to which a birth cohort was likely first infected (the imprinting subtype) and variation in VE by birth cohort.60

Results61

The age distribution of cases varies significantly between seasons and subtypes62

We examined the age distribution of cases of the dominant (most common) subtype in each season between 2007-200863

and 2017-2018 among enrolled patients. We excluded the subdominant subtype in each season due to concerns that short-64

term interference between the subtypes (Laurie et al., 2015; Goldstein et al., 2011) would disproportionately affect the age65

distribution of the rarer subtype. Differences between all pairs of seasons were evaluated by the G-test of independence and66

corrected for multiple tests (Materials and Methods: "Calculating differences in the age distribution between seasons").67

The age distribution of cases varies significantly between subtypes. The relative burden of cases is consistently higher68

in people over 65 years old during H3N2-dominated seasons compared to H1N1-dominated seasons (Figure 1), and nearly69

all H1N1-dominated seasons have significantly different age distributions from all H3N2-dominated seasons (Figure 1-70

Supplement 1, off-diagonal quadrants).71

The age distribution also varies significantly within subtypes over time (Figure 1-Supplement 1, diagonal quadrants).72

The seven H3N2-dominated seasons display three types of age distributions (Figure 1-Supplement 1, white patches in upper73

left-hand quadrant), and two correspond to major antigenic clusters (2007-2008 Fonville et al., 2015, 2010-2012 Ann et al.,74

2012). These differences sometimes coincide with significant shifts in the age distribution between seasons. For instance, the75

highest fraction of H3N2 cases occurs in 20-29 year olds in the 2007-2008 season, but this age group has the lowest fraction76

of cases in the next H3N2-dominated season (2010-2011, Figure 1C). In H1N1, the shift from seasonal to pandemic strains is77

associated with a significant change in the age distribution (Figure 1-Supplement 1, lower right-hand quadrant). The high78

fraction of cases among 40-64 year-olds in the 2013-2014 season (Figure 1B) has been attributed to the emergence of strains79

to which this group was especially susceptible (Linderman et al., 2014; Petrie et al., 2016).80

We found further evidence that age groups differed in their susceptibility across seasons by examining the relative risk of81

infection during the first versus second half of each epidemic period (Materials and Methods: "Calculating relative risk").82

Because more susceptible populations experience higher attack rates, individuals in these populations should be infected83

disproportionately early rather than late in an epidemic (Worby et al., 2015). We confirmed that an age group’s relative risk of84

infection in the first versus the second half of each epidemic correlates with the total fraction of cases in that age group that85

season (Spearman’s �=0.41, p=0.001, Figure 1-Supplement 2A). This trend is significant for H1N1 (Spearman’s �=0.47,86

p=0.02, Figure 1-Supplement 2A) and H3N2 seasons separately (Spearman’s �=0.35, p=0.05, Figure 1-Supplement 2A). The87

positive correlation in all seasons is robust to undersampling of cases at the start or end of specific seasons (Materials and88

Methods: "Sensitivity to sampling effort", Figure 1-Supplement 2B). This provides supporting evidence that the different89

numbers of cases in each age group reflect underlying differences in susceptibility.90

Just as the age distribution of cases varies over time, the age groups with the highest relative risk of infection, and by91

implication susceptibility, also change across seasons. For instance, 5-17 year olds had the highest relative risk of early92
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Figure 1. A. The age distributions of cases from the 2007-2008 through the 2017-2018 influenza seasons in Marshfield. Dark lines with
open circles indicate the average fraction of cases in each age group. Lighter-colored lines show the age distribution for individual seasons. B.
The age distribution of cases in H1N1-dominated seasons. C. The age distribution of cases in H3N2-dominated seasons.

infection in the 2008-2009 season, whereas 50-64 year-olds had the highest relative risk in the 2013-2014 season (Figure 1-93

Supplement 3). Relative risk in Marshfield is considerably more variable than national estimates, which showed that 5-1794

year-olds had the highest relative risk in all but one season from the 2009 pandemic to 2013-2014 (Worby et al., 2015). These95

differences may be due in part to the fact that our measurements of relative risk used outpatient visits, whereas the national96

estimates used hospitalizations.97

Taken together, these findings suggest that the risk of influenza infection is not a simple function of age alone. Other98

factors, such as past influenza infections and vaccination, might explain the changing age distributions of cases in time.99

Imprinting probabilities of age groups change over time100

We hypothesized that variation in the age distribution of cases could be explained by the aging of birth cohorts with similar101

early exposure histories. This would cause the early exposure history of an age group to change in time. To calculate the102

probability that an individual in a particular age group had their first influenza A infection with a particular subtype, we103

adapted the approach from Gostic et al., 2016. Briefly, we calculated the probability that an individual born in a specific year104

had their first infection with H1N1, H2N2, or H3N2 using data on relative epidemic sizes and the frequencies of circulating105

subtypes (Figure 2-Supplement 1).106

As expected, age groups’ early exposures are not static and change over time (Figure 2). Older people nonetheless tend to107

be imprinted to H1N1 or H2N2, whereas younger people have higher probabilities of imprinting to H3N2. The effects of the108

2009 H1N1 pandemic are evident in the three youngest age groups as a transient increase (from 2009 to approximately 2013)109

in their H1N1 imprinting probability.110

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted September 8, 2019. ; https://doi.org/10.1101/19001875doi: medRxiv preprint 

https://doi.org/10.1101/19001875
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.5

1.0
0-4

0.0

0.5

1.0
10-14

0.0

0.5

1.0

Im
pr

in
tin

g 
pr

ob
ab

ili
ty

15-19

0.0

0.5

1.0
20-29

0.0

0.5

1.0
30-39

20
07

-2
00

8
20

08
-2

00
9

20
09

Pa
n

20
09

-2
01

0
20

10
-2

01
1

20
11

-2
01

2
20

12
-2

01
3

20
13

-2
01

4
20

14
-2

01
5

20
15

-2
01

6
20

16
-2

01
7

20
17

-2
01

8

0.0

0.5

1.0
40-49

0.0

0.5

1.0
5-9

20
07

-2
00

8
20

08
-2

00
9

20
09

Pa
n

20
09

-2
01

0
20

10
-2

01
1

20
11

-2
01

2
20

12
-2

01
3

20
13

-2
01

4
20

14
-2

01
5

20
15

-2
01

6
20

16
-2

01
7

20
17

-2
01

8

Season

0.0

0.5

1.0
50-64

20
07

-2
00

8
20

08
-2

00
9

20
09

Pa
n

20
09

-2
01

0
20

10
-2

01
1

20
11

-2
01

2
20

12
-2

01
3

20
13

-2
01

4
20

14
-2

01
5

20
15

-2
01

6
20

16
-2

01
7

20
17

-2
01

8

0.0

0.5

1.0
65+

H1N1 H2N2 H3N2 Naive

Figure 2. The imprinting probabilities of age groups change over time. Each panel shows the imprinting probabilities of an age group from
the 2007-2008 season through the 2017-2018 season. The color of each bar corresponds to the imprinting subtype or naive individuals, who
have not yet been infected.
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Modeling approach111

We fitted a set of models to estimate the effects of demography, age, imprinting, and vaccination on the age distribution112

of influenza cases. The number of observed cases in influenza season t among people born in year y is proportional to a113

combination of these factors:114

1. Demography. The age distribution of our study cohort is not static over the study period. All models adjust for the115

changing fractions of the population in each birth cohort and season (Figure 3-Supplement 1, Materials and Methods:116

"Demography").117

2. Age-specific effects. We consider that age itself may be associated with differences in influenza A infection risk118

stemming from differences in susceptibility and/or rates of contact with infectious people. Additionally, we expect that119

age groups may intrinsically differ in their healthcare-seeking behaviors. These factors are inseparable in our data, and120

all models represent their combined effects with a static age-specific parameter shared by both subtypes that describes121

the risk of age-specific medically attended influenza A infection (Materials and Methods: "Age-specific factors"). Thus,122

we assume no intrinsic differences in the age-specific virulence of the two subtypes. These age-specific parameters123

are fitted. We also adjust for other potential sources of age-specific bias, including age-specific differences in study124

approachment and enrollment rates (Materials and Methods: "Age-specific factors").125

3. Imprinting. We tested several hypotheses of how primary exposures could affect the risk of infection with H1N1 and126

H3N2. In each version, we estimated fractional reductions in risk to H1N1 and H3N2 due to primary (i.e., imprinting)127

exposure to the same type:128

• Subtype-specific imprinting: Influenza has two main antigens, hemagglutinin (HA) and neuraminadase (NA).129

Imprinting could in theory derive from responses to either or both antigens. Because H1N1 is the only seasonal130

subtype of influenza with N1, we cannot separate the effects of initial N1 exposure from initial H1 exposure.131

However, since N2 appears in both H3N2 and H2N2 viruses, we can estimate protection against H3N2 infection132

from initial N2 exposure separately from protection from initial H3 exposure (Materials and Methods: "HA133

subtype imprinting" and "N2 imprinting").134

• Group-level imprinting: Influenza A viruses fall into two groups (I and II) corresponding to the two phylogenetic135

clades of HA. Gostic et al., 2016 found that primary infection by a virus belonging to one group protected against136

severe infection by another subtype in the same group. If group-level imprinting were influential, we would137

see primary infection with H2N2 conferring protection against H1N1, another group I virus, as well as H1N1138

protecting against H1N1 and H3N2 against H3N2. We considered a separate class of models that assumes139

group-level protection instead of subtype-specific protection (Materials and Methods: "HA group imprinting").140

4. Vaccination. Approximately 45% of the population of Marshfield is vaccinated against influenza each year. We141

estimated cases in vaccinated and unvaccinated individuals of each birth year separately. Naively, we expect that142

vaccinated individuals should seek medical attention for acute respiratory infection (ARI) proportionally to the fraction143

of their cohort vaccinated that season. However, vaccinated individuals may seek medical attention for ARI more144

frequently than expected due to positive associations between the decision to vaccinate, healthcare-seeking behavior,145

and underlying medical conditions (Jackson et al., 2005a,b; Belongia et al., 2009). We attempted to adjust for this by146

calculating the fraction of vaccinated people among those who had a medically attended acute respiratory infection147

(MAARI) and tested negative for influenza (i.e., the test-negative controls, Materials and Methods: "Vaccination"). We148

find that this correlates with but exceeds vaccination coverage for most age groups, suggesting vaccinated individuals149

are overrepresented among cases for reasons unrelated to influenza (Figure 3-Supplement 2). We also assume that150

vaccination is not perfectly effective, defining VE as the fractional reduction in cases expected in vaccinated compared151

to unvaccinated individuals after controlling for the effects described above. We estimated subtype-specific VE under152

five scenarios: (i) constant across age groups and seasons; (ii) season-specific and constant across age groups; (iii)153

age-specific and constant across seasons; (iv) imprinting-specific; and (v) birth-cohort-specific. We assumed that154

vaccination affects risk only in the current season, i.e., there are no residual effects from prior vaccination (Materials155

and Methods: "Vaccination").156

With these considerations, we evaluated the models by maximum likelihood and compared their performance using the157

corrected Akaike information criterion (cAIC, Figure 3).158
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Figure 3. All models include demography, age effects, and the option of N2 imprinting. Ten different models result from considering
different combinations of HA imprinting and VE.
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Figure 4. Open circles represent the maximum likelihood estimates of parameters describing age-specific differences in medically attended
influenza A infection risk. Lines show the 95% confidence interval.

Age-specific differences in medically attended influenza A infection risk affect epidemic patterns159

As expected, the cases reveal age-specific differences in the risk of medically attended influenza A infection. (Figure 4;160

Figure 4-Supplement 1; Appendix 1 Table 1). The risk of medically attended influenza A infection is roughly threefold higher161

among children less than four years old compared to adults 20-29 years old, after adjusting for other effects (Figure 4). This162

decline in risk with age is consistent with findings that attack rates decrease with age (Monto et al., 1985; Bodewes et al.,163

2011; Wu et al., 2010, 2017; Huang et al., 2019). Additionally, rates of healthcare-seeking behavior have been shown to164

decline with age before rising in adults over 65 years old (Biggerstaff et al., 2014; Brooks-Pollock et al., 2011; Van Cauteren165

et al., 2012), consistent with our results. Finally, the increased risk of medically attended influenza A infection among people166

≥ 65 years old relative to other adults may be related to the increasing prevalence of high-risk medical conditions with age167

(Figure 4-Supplement 2).168

Initial infection confers long-lasting, subtype-specific protection against future infection169

Our best-fitting model supports subtype-specific imprinting for H1N1 and H3N2 (Figure 5, top row; Appendix 1 Table 1).170

The risk of future medically attended infection by H1N1 is reduced by 66% (95% CI 53-77%) in people imprinted to H1N1,171

whereas the risk of future medically attended infection by H3N2 is reduced by 33% (95% CI 17-46%) in people imprinted to172

H3N2. We found no evidence of a protective effect from imprinting to N2 (0%, 95% CI 0-7%). Our estimates of imprinting173

protection are insensitive to our choice of age groups for medically attended influenza A infection risk and VE (Appendix174

1 Table 3) as well as undersampling of influenza cases in some seasons (Figure 5-Supplement 1, Figure 5-Supplement 2,175

Materials and Methods, "Sensitivity to sampling effort").176

We also tested whether vaccination is a plausible mechanism of imprinting (Figure 5-Supplement 3, Materials and177

Methods, "Calculating imprinting probabilities") and found that primary exposure via vaccination provided similar protection178

as imprinting from primary infection (100% of the effect of primary infection, 95% CI 74-100%, Figure 5-Supplement 4,179
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Figure 5. Imprinting is more protective against H1N1 infection than H3N2 infection. Open circles represent the maximum likelihood
estimates of imprinting parameters from the best-fitting model for the indicated age group. Black lines show 95% confidence intervals.

Materials and Methods, "Vaccine imprinting"). However, the estimated protection could be confounded with residual180

protection from prior season vaccination (Ohmit et al., 2014; McLean et al., 2014a,b) which the model excludes.181

In theory, the protective effects of imprinting that we measured could be influenced by cross-protection rather than the182

impact of first infection per se. Because first infections are also recent infections in children, we reasoned that the observed183

imprinting effects might arise from confounding with recent infections in these ages. When we excluded the youngest age184

groups, our estimates of H1N1 imprinting protection decreased while H3N2 imprinting protection increased (Figure 5, second185

row). However, initial infection by H1N1 was still more protective than initial infection by H3N2, both imprinting effects186

remained significantly positive, and there was no significant change in the values of other estimated parameters (Appendix 1187

Table 1 and Table 2).188

We expect that confounding with recent infection should also manifest in the difference between the observed and estimated189

number of cases (i.e., the excess cases, Materials and Methods: "Calculating excess cases"), since our model does not take190

prior season infections into account when estimating cases for the current season. More infections within a population in one191

season should reduce susceptibility in that population at the start of the next season. We thus expect that a large number of192

excess cases in one season will be followed by a small number of excess cases in the next season with the same dominant193

subtype (i.e., a negative correlation). Instead, we observed that excess cases for each birth cohort have a weak positive194

correlation from season to season, suggesting that immunity from recent infections is not a primary driver of variation in the195

age distribution of cases (Figure 5-Supplement 5).196

Since older adults have the highest probability of primary infection with H1N1, we also reasoned that older adults might197

disproportionately drive the strong protection from H1N1 imprinting we observe. People born before 1947 were likely198

exposed to H1N1 strains that are antigenically similar to the post-pandemic H1N1 strains that comprise most of our H1N1199

infection data (Manicassamy et al., 2010; O’Donnell et al., 2012), creating the possibility that strain-specific cross-immunity200

drives the pattern we attribute to subtype-specific imprinting. Excluding the oldest adults, however, does not significantly201

change our estimates of imprinting protection or other parameters (Figure 5, third row, Appendix 1 Table 1, Table 2). When202

we exclude both the youngest and oldest age groups, initial infections by H1N1 and H3N2 have similar protective effects203

(Figure 5, bottom row). This shows that the combined effects of cross-protection in both the youngest and oldest individuals204

contribute to the signal of imprinting protection we observe, but they are not its sole drivers.205

VE varies by birth cohort in older children and adults206

The best-fitting model includes age-specific VE (Figure 4-Supplement 1, Appendix 1 Table 2). While serological responses207

to influenza vaccination are weakest in the young (Englund et al., 2005; Neuzil et al., 2006) and old (Lee et al., 2018;208

DiazGranados et al., 2014), it is unclear what age-related factors would drive variation in VE in other age groups. We209
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hypothesized that VE in these ages is specific to exposure history, which correlates with birth year, rather than age.210

To test this hypothesis, we fitted a model with birth-cohort-specific VE to data excluding either children <10 years old211

or adults ≥ 65 years old. We chose birth cohorts that corresponded to the age groups of the original model in 2017-2018212

(Materials and Methods: "Vaccination"), keeping the number of parameters the same (e.g., VE in the 20-29 age group became213

VE in the 1988-1997 birth year cohort). We find that age-specific VE still outperforms all other models after we exclude the214

oldest age group (≥65 years old). In contrast, birth-cohort-specific VE performs better when we exclude children <10 years215

old (Figure 6-Supplement 1). Estimates of imprinting protection and age-specific risk of medically attended influenza in the216

birth-cohort-specific VE models are not significantly different from estimates from the best-fitting model fitted to all ages217

(Appendix 1 Table 1). Taken together, these results suggest that birth-cohort-specific VE best explains the case distribution in218

older children and adults, who have likely experienced their first influenza infection, whereas age-specific VE best explains219

cases in younger children, who have less influenza exposure.220

VE differs between birth cohorts that have similar imprinting by subtype (Figure 6, Appendix 1 Table 4), suggesting that221

specific infection history (beyond imprinting subtype) is important. For example, the 1968-1977 and 1988-1997 cohorts222

have similar probabilities of primary exposure to H1N1 and H3N2, but they differ substantially in their VE to both subtypes223

(Figure 6). The 1988-1997 and 1998-2002 cohorts also have similar probabilities of primary exposure to each subtype and224

have similar H1N1 VEs, but have significantly different H3N2 VEs (Figure 6). Antigenic differences within each subtype225

might explain this variation.226

Our results support the idea that biases in immune memory from early exposures (i.e., original antigenic sin; Davenport227

and Hennessy, 1957; Francis, 1960; Groth and Webster, 1966) influence VE. The model with birth-cohort-specific VE better228

estimates cases among vaccinated 50-64 year-olds (born 1953-1967) in the 2015-2016 season than the model with age-specific229

VE (Figure 6-Supplement 2, Materials and Methods: "Calculating excess cases"). Reduced VE in this age group has been230

attributed to the exacerbation of antigenic mismatch by the vaccine in adults whose antibody responses were focused on a231

non-protective site (Skowronski et al., 2017b; Flannery et al., 2018). The improved performance of birth-cohort-specific VE232

relative to age-specific VE suggests other seasons and age groups where original antigenic sin might have influenced VE,233

such as 20-29 year-olds in the 2007-2008 influenza season.234

Discrepancies partly explained by antigenic evolution235

The best-fitting model accurately reproduces the age distributions of vaccinated and unvaccinated cases of each subtype,236

aggregated across seasons (Figure 7A). The only exception is that it underestimates H1N1 cases in unvaccinated 5-9 year-olds.237

By examining the differences between predicted and observed cases for each season, we see that this is largely driven by238

infection during the 2009 H1N1 pandemic (Figure 7B). Such a large antigenic change may have negated any protection from239

previous infection in 5-9 year-olds and made them particularly susceptible to pandemic infection.240

The model underestimates cases in unvaccinated individuals >30 years old in the 2013-2014 season. This is further241

evidence that subtype-specific imprinting cannot explain all age variation. As mentioned before, this season provided one of242

the first examples that original antigenic sin could affect protection: middle-aged adults had been targeting a familiar site243

on the pandemic strain that then mutated; other age groups were effectively blind to these changes, owing to their different244

exposure histories (Linderman et al., 2014; Huang et al., 2015; Arriola et al., 2014; Dávila et al., 2014; Petrie et al., 2016).245

Discussion246

The distribution of influenza cases by birth year is consistent with subtype-level imprinting, whereby initial infection with a247

subtype protects against future infections by the same subtype. The stronger protective effect observed for primary H1N1248

infection compared to primary H3N2 infection may be caused by greater cross-protective responses to conserved epitopes.249

This is in line with previous work modeling antibody titer dynamics that showed that protection conferred by H1N1 infection250

is longer-lasting than protection conferred by H3N2 infection (Ranjeva et al., 2019). Subtype-specific protection is more251

specific than the previously reported group-level imprinting (Gostic et al., 2016) but clearly arises from primary infection252

rather than any prior exposure.253

In contrast to the clear role of the imprinting subtype in protection from infection, the model implicates the imprinting254

strain or other attributes of exposure history in VE. Birth-cohort-specific VE predicts the distribution of cases in older children255

and adults better than age-specific or imprinting-subtype-specific VE. Although seasonal estimates of VE routinely stratify256

by age, shifts in VE from one season to the next might be easier to interpret in light of infection history (e.g., Skowronski257

et al., 2017b; Flannery et al., 2018). The results suggest this effect may be complex, i.e., influenced by strains’ specific258
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Figure 6. Birth-cohort-specific VE differs significantly between subtypes and birth cohorts. The location of each pie chart represents the
H3N2 (x-axis) and H1N1 (y-axis) VE estimates for a birth cohort (indicated by text) obtained from our model excluding children <10 years
old. Pie charts are colored by the probability of first infection by each subtype (i.e., imprinting probability). 95% confidence intervals of the
VE estimates are indicated by light grey solid lines. The dashed grey line shows the diagonal where the VE estimate for H1N1 is equal to the
VE estimate for H3N2.
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A

B

Figure 7. A. Best-fitting model accurately predicts the overall age distribution of cases across seasons and age groups. The best-fitting model
includes the effects of demography, age, VE by age class, and subtype-specific HA imprinting. Each row depicts the age distribution of cases
among unvaccinated (top) and vaccinated (bottom) individuals over all sampled seasons (2007-2008 through 2017-2018). Each column
indicates H1N1 cases (left, blue) and H3N2 cases (right, red). Open circles represent observed cases, solid lines represent the predicted
number of cases from the best-fitting model, the shaded area represents the 95% prediction interval of the best-fitting model. B. Excess cases
of dominant subtype for each season. Each panel shows the excess cases of the dominant subtype for each season for each age group among
unvaccinated (dark bars) and vaccinated (light bars) individuals. Excess cases are defined as the predicted number of cases from the
best-fitting model - observed cases. Grey error bars show the 95% prediction interval.
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identities rather than merely their subtype. Our model cannot distinguish between the possibility that the precise identity of259

the imprinting strain primarily determines later VE, or if individuals’ responses to vaccination are shaped by a particular260

succession of exposures, which will be common to others in the same birth cohort. Regardless, variation in VE between birth261

cohorts appears substantial and suggests a role for past exposure in the effectiveness of vaccination. This presents a challenge262

for the improvement of vaccination strategies (Erbelding et al., 2018).263

Biases associated with our methodology and the vaccination history of our study population may confound our estimates264

of VE. Potential selection and misclassification biases are associated with studies that use influenza test-negative controls265

to control for differences in healthcare-seeking behavior (Lewnard et al., 2018; Sullivan et al., 2016). Because we also use266

test-negative controls to set our null expectation for the distribution of cases among birth cohorts, our VE estimates are subject267

to these biases as well. Moreover, our study population is heavily vaccinated, and the most participants are frequent vaccinees268

(Figure 3-Supplement 3). Frequent vaccination has been associated with reduced VE (McLean et al., 2014b; Saito et al.,269

2018; Skowronski et al., 2016). Therefore, the model may underestimate VE in less vaccinated populations. We observed an270

unusually high H1N1 VE in the 2003-2006 birth cohort. Because we restricted cases in this analysis to people ≥10 years old,271

this VE estimate included data from only the 2013-2014 and 2015-2016 influenza seasons. No H1N1 cases among vaccinated272

or unvaccinated individuals were observed in this birth cohort for those seasons, which in turn led to this high estimate of273

H1N1 VE. To reduce stochastic effects, our estimates are worth repeating in a larger population.274

Incorporating differences in susceptibility based on exposure history might improve methods to forecast influenza seasons.275

Our analysis of the relative risk of infection during the first half of each season shows more variation in the most susceptible276

age groups from season to season than previously estimated (Worby et al., 2015). While the smaller sample sizes in Marshfield277

compared to national data create uncertainty in our estimates, the correlation between the relative risk and total fraction of278

cases indicates that the age groups driving epidemics change from season to season. As our results show, these differences in279

susceptibility may derive from differences in exposure history. Therefore, incorporating information on exposure history into280

epidemic models may allow for more accurate identification of at-risk populations.281

While the rate of antigenic evolution affects the rate at which different populations become susceptible to infection, the282

heterogeneity in susceptibility we observe here may also drive antigenic evolution. This heterogeneity in susceptibility implies283

that influenza viruses face different selective pressures in groups with different exposure histories (Cobey and Hensley, 2017).284

Recent research consistent with this hypothesis has shown that sera isolated from different individuals can select for distinct285

influenza escape mutants (Lee et al., 2019). More careful study of how immune memory to influenza evolves from infection286

and vaccination might improve understanding of influenza’s evolution.287

Materials and Methods288

Study cohort289

Cases of PCR-confirmed, medically attended influenza were identified from annual community cohorts based on residency in290

the Marshfield Epidemiologic Study Area (MESA) in central Wisconsin. MESA is a 14-ZIP-code geographic area surrounding291

Marshfield, Wisconsin, where nearly all residents receive outpatient and inpatient care from the Marshfield Clinic Health292

System. For each influenza season from 2007-2008 through 2017-2018, we identified a subset of MESA residents >6 months293

of age who received routine care from the Marshfield Clinic. These individuals were eligible for recruitment into a VE study294

if they sought care for acute respiratory illness during each influenza season. Most patients with MAARI were recruited in295

the outpatient setting, but inpatient recruitment also occurred in 2007-08 and 2008-09. Recruitment occurred in primary296

care departments, including urgent care, pediatrics, combined internal medicine and pediatrics, internal medicine, and family297

practice. The proportion of patients with MAARI who were screened for enrollment varied by season. We excluded patients298

recruited in an inpatient (hospital) setting.299

Each season, recruitment began when influenza activity was detected in the community and usually continued for 12-15300

weeks. Symptom eligibility criteria varied by season but included fever/feverishness or cough during most seasons. We301

retroactively standardized symptom eligibility criteria to only require cough as a symptom. Individuals with illness duration302

>7 days were excluded. After obtaining informed consent, a mid-turbinate swab was obtained for influenza detection. RT-PCR303

was performed using CDC primers and probes to identify influenza cases, including type and subtype.304

The Marshfield Clinic generally does not capture MAARI in nursing facilities with dedicated medical staff, causing305

undersampling of the oldest age groups. We adjusted for this ("Age-specific factors" below).306

We considered subjects vaccinated if they received that season’s influenza vaccine ≥14 days before enrollment. For the307
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2009-2010 season, we only considered receipt of the 2009 monovalent vaccine.308

Calculating differences in the age distribution between seasons309

We defined the age distribution of each season as the number of cases of the dominant subtype in each of nine age groups (0-4310

year-olds, 5-9 year-olds, 10-14 year-olds, 15-19 year-olds, 20-29 year-olds, 30-39 year-olds, 40-49 year-olds, 50-64 year-olds,311

and >64 years old). The G-test of independence was used to determine whether each pair of seasons had significantly different312

age distributions. We considered differences significant if the Bonferroni-corrected p-value was <0.05.313

Calculating relative risk314

We used an approach similar to Worby et al., 2015 in calculating relative risk. We defined the midpoint of each season as the315

week in which the cumulative number of cases of the dominant subtype exceeded 50% of the total for that season. Weeks316

before and after this point were assigned to the first and second half of the season, respectively. We assigned each case to one317

of the five age groups used by Worby et al., 2015 (0-4 year-olds, 5-17 year-olds, 18-49 year-olds, 50-64 year olds, and >64318

years old). For each age group g, we defined relative risk as319

Cfirst,t,g
Csecond,t,g

,

where Cfirst,t,g and Csecond,t,g are the fraction of cases of the dominant subtype in age group g during influenza season t that320

occurred during the first or second half of the season, respectively. A relative risk >1 indicates that cases in an age group321

were more likely to occur during the first half of the season.322

Calculating imprinting probabilities323

Seasonal intensity324

We define the intensity of an influenza season as the product of the mean fraction of patients with influenza-like illness (ILI)325

and the percentage of specimens testing positive for influenza A that season,326

It =
ILItFt
Nt

,

where ILIt is the mean fraction of all patients with ILI in season t adjusted for differences in state population size (CDC,327

2018), Ft is the number of respiratory specimens testing positive for influenza A in season t, andNt is the total number of328

respiratory specimens tested in season t. For seasons 1997-1998 through 2017-2018, these data were obtained from the U.S.329

Outpatient Influenza-like Illness Surveillance Network (ILINet) and the World Health Organization/National Respiratory330

and Enteric Virus Surveillance System (WHO/NREVSS) Collaborating Labs (CDC, 2018). For seasons 1976-1977 through331

1996-1997, we assumed that the mean ILI was equal to the mean of mean ILI for seasons 1997-1998 through 2017-2018. We332

obtained data on Ft andNt for these seasons from Thompson et al., 2003. We then normalized the intensity of each season by333

dividing It by the mean of It from the 1976-1977 through 2017-2018 seasons. For all seasons before 1976-1977, we assumed334

that the intensity of influenza A equalled the mean intensity of seasons 1976-1977 through 2017-2018.335

Fraction of season experienced336

We define the fraction of a given influenza season fw,t occurring in week w of season t as337

fw,t =
ILIw,tFw,t

Nw,t
∑wf

w′=w0

ILIw′ ,tFw′ ,t
Nw′ ,t

,

where ILIw,t is the weighted fraction of all patients with ILI in weekw of season t, Fw,t is the number of respiratory specimens
testing positive for influenza A in week w of season t, and Nw,t is the number of specimens tested in week w of season
t. ∑wf

w′=w0

ILIw′ ,tFw′ ,t
Nw′ ,t

is the product of ILI and the fraction of positive influenza A specimens summed over all weeks of the
influenza season t, where w0 is the first week of the season and wf is the final week of the season. We define the start of
the influenza season as week 40 of the calendar year, which usually falls at the beginning of October. For seasons before
1997-1998, where weekly data is unavailable, we assume that the fraction of the influenza season experienced in week w is

fw,t = f̄w,t,

where f̄w,t is the mean fraction of the influenza season experienced at week w for all seasons after 1997-1998.338
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We use fw,t to calculate the fraction of an influenza season experienced by an individual born in year y. We assume that339

people born in year y are born randomly throughout the year. We also assume that due to maternal immunity, infants do not340

experience immunizing exposure to influenza until they are at least 180 days old. Let py,w,t be the proportion of individuals341

born in year y that are over 180 days old in week w of season t and ey,t be the fraction of individuals born in year y exposed to342

influenza season t. Then343

ey,t =
wf
∑

w=w0

fw,tpy,w,t.

Imprinting probability344

We emulate the approach of Gostic et al., 2016 in calculating the probability that people born in a particular year had their345

initial influenza exposure to a particular subtype.346

To obtain imprinting probabilities, we calculate the probability that an individual born in year y receives their first347

influenza A exposure in influenza season t. Specifically, we consider two possible scenarios. First, we assume that only348

infections result in an imprinting exposure. Second, we modify our calculation to include the possibility that both vaccination349

and infection result in an imprinting exposure.350

We set the probability of infection for naive individuals at 0.28 (Bodewes et al., 2011; Gostic et al., 2016). Using this351

probability, we can calculate a per-season attack rate a assuming an exponential hazard:352

a = −ln(0.72).

We then scale this attack rate by the intensity of influenza season t (It) and the fraction of influenza season t experienced353

by an individual born in year y (ey,t, "Seasonal intensity" above). The probability that a naive individual born in year y is354

infected in influenza season t is355

py,t = 1 − e−Itey,ta.

Considering only infection,356

Pr(unexposed, t) ≡ N(t)

N(t = 0) = 1

Pr(first exposure in season t) = Pr(infected|unexposed)Pr(unexposed) = py,tN(t)
N(t + 1) = N(t)(1 − py,t)

We calculate subtype-specific imprinting probabilities by multiplying py,tN(t) by the subtype frequencies for each season357

(Figure 2-Supplement 1).358

To incorporate vaccination, we make a simplifying assumption that for all seasons except the 2009 pandemic and the359

2009-2010 influenza seasons (discussed below), vaccination occurs before infection. We also consider that given vaccination360

coverage for a particular birth cohort and season (cy,t), only a fraction of those individuals will be receiving their first361

vaccination because people who get vaccinated are more likely to get vaccinated again. We calculated this probability of first362

vaccination by age (fa,t) using the vaccination status of children enrolled in our study (Figure 5-Supplement 7).363

We track the fraction of a birth cohort naive to any exposure (N(t) as above) and the fraction of a birth cohort naive to364

vaccination (Nv(t)). Therefore, to calculate imprinting probabilities, we first consider vaccination:365

N(t = 0) = Nv(t = 0) = 1

Pr(first vaccination in season t) = Pr(vaccinated)Pr(first vaccination|vaccinated)
Pr(naive to vaccination) =

cy,tfa,t
Nv(t)

Pr(first exposure via vaccination in season t) = cy,tfa,t
Nv(t)

N(t)

Nv(t + 1) = Nv(t)(1 −
cy,tfa,t
Nv(t)

)
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Then, we updateN(t) to reflect vaccination and use this new value ofN(t) to calculate the fraction of people infected:366

N(t) = N(t)(1 −
cy,tfa,t
Nv(t)

)

Pr(first exposure via infection in season t) = Pr(infected|unexposed)Pr(unexposed) = py,tN(t)
N(t + 1) = N(t)(1 − py,t)

During the 2009 H1N1 pandemic and 2009-2010 seasons, infection, vaccination with the seasonal vaccine, and vaccination367

with the monovalent vaccine occurred simultaneously. Therefore, we used weekly rates of vaccination and infection to estimate368

the probability that an individual’s first exposure for that season was infection, seasonal vaccination, or monovalent vaccination.369

Vaccination coverage370

Seasonal influenza vaccination coverage for MESA Central was collected by age in the 2007-2008 through 2017-2018 seasons371

using a real-time immunization registry (Irving et al., 2009). Monovalent vaccination coverage for the 2009-2010 season was372

obtained by directly measuring monovalent vaccination coverage in enrolled individuals and fitting a smoothing spline to the373

data (Figure 5-Supplement 6).374

For seasons before 2007-2008, we used U.S. national data on vaccination coverage in children (2002-2003 through375

2003-2004; Santibanez et al., 2006, 2004-2005 through 2006-2007; Santibanez et al., 2014). We assumed that vaccination376

coverage in children (i.e., potentially imprinting vaccination) was 0 before the 2002-2003 season, since the that was the first377

season in which the Advisory Committee on Immunization Practices encouraged children 6-23 months old to receive influenza378

vaccination (Bridges et al., 2002).379

Model components380

We aim to infer ps,t,y,v, the predicted fraction of all PCR-confirmed influenza cases of dominant subtype s in influenza season t381

among people born in year y with vaccine status v.382

We normalize all models such that for each season t,∑ymax
y=1918 ps,t,y,unvac. +

∑ymax
y=1918 ps,t,y,vac. = 1. Let p′s,t,y,v be the unnormal-383

ized proportions. Then for season t,384

ps,t,y,v =
p′s,t,y,v

∑ymax
y=1918 ps,t,y,unvac. +

∑ymax
y=1918 ps,t,y,vac.

.

For convenience, let kM,t, the normalizing constant for season t in modelM , be

kM,t =
1

∑ymax
y=1918 ps,t,y,unvac. +

∑ymax
y=1918 ps,t,y,vac.

.

Demography385

We used Marshfield-specific data on the age distribution for each season (Kieke et al., 2015). Individuals ≥90 years old were386

grouped into a single age class. We therefore estimated the number of people in each age by assuming a geometric decline in387

the age distribution. We converted the raw age distribution for each season into a distribution by birth year by distributing388

people of a specific age into the two possible birth years of that age in a specific season. Specifically, we assumed that people389

were born uniformly throughout the year. We defined a breakpoint date prior to the start of the enrollment period based390

on when the the 6 month-old age limit cutoff was set (e.g., if the breakpoint date was Ocotober 1, then infants had to be 6391

months old by that date to be eligible for enrollment). We used this date to calculate the fraction of people of age a in season t392

who were born in year t − y (f1,a,t) or year t − y − 1 (f2,a,t). A fraction f1,a,t of the total population of age a in season t was393

assigned to birth year t − y and f2,a,t to t − y − 1. Breakpoint dates ranged from September 1 through January 1 with the394

exception of the pandemic season which had a breakpoint date of May 1, 2009. The start of the enrollment period ranged395

from December to January with the exception of the 2009 pandemic season, when enrollment began in May 2009. For the396

2009 pandemic season, we assumed that the age distribution was the same as the 2008-2009 season. The above procedure397

allows us to calculate Dt,y, the fraction of people born in year y during influenza season t. Therefore,398

ps,t,y,v ∝ Dt,y.
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Age-specific factors399

We modeled age-specific differences in influenza infection risk and healthcare-seeking behavior by using parameters that400

represent the relative risk of medically attended influenza A infection in each age group. These parameters combine the effects401

of underlying age-specific differences in influenza A infection risk as well as age-specific differences in healthcare-seeking402

behavior. We consider the same age groups as before (0-4 year-olds, 5-9 year-olds, 10-14 year-olds, 15-19 year-olds, 20-29403

year-olds, 30-39 year-olds, 40-49 year-olds, 50-64 year-olds, and >64 years old). We choose 20-29 year-olds as our reference404

age group. All age groups aside from 20-29 year-olds have an associated parameter that models their risk of medically405

attended influenza A infection relative to 20-29 year-olds. These parameters can take on any positive value. To map these406

age-specific parameters to birth cohorts, we consider that each birth cohort has two possible ages in each season (a1 and a2).407

Let G(a) be a function that specifies the age group g of a given age a. Then At,y the age-specific risk of medically attended408

influenza A infection for a person born in year y in season t is409

At,y = fa1,t,yAG(a1) + fa2,t,yAG(a2)

where fa1,t,y and fa2,t,y are the fractions of birth cohort y who are age a1 or a2 in influenza season t, and AG(a1) and AG(a2) are410

the age-group-specific parameters for a1 and a2. With this, we model age-specific effects as411

ps,t,y,v ∝ At,y.

The relative rates at which different age groups were approached for study enrollment (the approachment rate, papproach)412

varied between seasons. Similarly, the relative rates at which different age groups enrolled in the study after being approached413

(the enrollment rate, penroll) also varied between seasons. Enrollment rates also varied between vaccinated and unvaccinated414

individuals.415

We defined the approachment rate of an age group g in season t as416

papproach,t,g =
Napproached,t,g
NMAARI,t,g

,

whereNapproached,t,g is the number of people in age group g during season twho were approached for enrollment, andNMAARI,t,g417

is the total number of people in the Marshfield cohort who presented with MAARI regardless of whether they were approached418

for enrollment.419

We defined the enrollment rate of age group g in season t with vaccination status v as420

penroll,,t,g,v =
Nenrolled,t,g,v
Napproached,t,g,v

whereNenrolled,t,g,v is the number of people in age group g with vaccination status v who enrolled in the study in season t, and421

Napproached,t,g,v is the number of people in age group g with vaccination status v who were approached for enrollment in season422

t. Due to differences in data collection for the 2007-2008 and 2008-2009 seasons, complete vaccination records for eligible423

unenrolled individuals were not available, so we assumed that the enrollment rates by age group and vaccination status in424

those seasons were equal to the mean enrollment rate for each age group and vaccination status across all other seasons.425

We normalized papproach,t,g by the value of papproach,t,g for the reference age group (i.e., 20-29 year-olds) in each season.426

Similarly, we normalized penroll,,t,g,v to the value of penroll,,t,g,v for unvaccinated members of the reference age group for each427

season. This yielded the relative approachment and enrollment rates p′approach,t,g and p′enroll,t,g,v. We converted both p′approach,t,g428

and p′enroll,t,g,v to birth-year specific covariates (i.e. covariates by y instead of g) using the same procedure described above for429

the estimated age-specific parameters.430

Finally, the study did not enroll residents of skilled nursing facilities with dedicated medical staff. To account for this, we431

estimated the proportion of the population in nursing facilities within the study area. We obtained the total number of beds in432

nursing facilities within the Marshfield study area in 2018 from the Wisconsin Department of Health Services (WDHS, 2018).433

We assumed that the total number of beds did not change between 2007-2008 and 2017-2018. We also used data from the434

Centers for Medicare and Medicaid Services (CMS, 2015) to calculate the percent of beds occupied in Wisconsin nursing435

facilities by age for 2011 through 2014 and the fraction of people in a nursing facility by age group. We used a smoothing436

spline to obtain the fraction of people of a given age in a nursing facility. For seasons before 2010-2011 and after 2013-2014,437

we assumed that the fraction of people of a given age in a nursing facility was the average value for 2011-2014. Given the438
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total population of the study area by age and season, we could then calculate the fraction of people in a given age a and season439

t who are in nursing facilities (st,a). We convert this to a covariate by birth year (st,y) using the same procedure described440

above for the age-specific parameters.441

Thus, the combination of estimated age-specific effects and age-specific covariates is modeled as442

ps,t,y,v ∝ At,yp
′
approach,t,yp

′
enroll,t,y,v(1 − st,y).

Vaccination443

Vaccinated individuals may seek healthcare for symptomatic influenza at a different rate than unvaccinated individuals.444

Moreover, because vaccines are routinely recommended for individuals with underlying health conditions, pre-existing445

susceptibility to acute respiratory infection among vaccinated individuals may also differ from unvaccinated individuals. Let446

Rt,g represent the fraction of vaccinated individuals in age group g in season t that present with MAARI. We use test-negative447

controls to estimate this as448

Rt,g =
v−t,g

u−t,g + v−t,g
,

where v−t,g and u−t,g are the number of vaccinated or unvaccinated individuals born in year g presenting with MAARI and449

testing negative for influenza in season t. We compared this quantity to the vaccination coverage of age group g in season t,450

ct,g (Figure 3-Supplement 2).451

We converted Rt,g to Rt,y (i.e., to a birth cohort-indexed covariate) using the same procedure described above to convert452

age group-specific parameters to birth-cohort-specific parameters.453

We tested five different VE schemes: subtype-specific VE that remained constant across seasons and cohorts (2 parameters),454

subtype-specific VE that varied between the age groups described above (18 parameters), VE that varied between seasons (12455

parameters), VE for each possible imprinting subtype (6 parameters), and birth-cohort-specific VE (18 parameters). These456

VE parameters (V ) reduce the probability of medically attended influenza A infection among vaccinated individuals within a457

birth cohort, i.e.,458

ps,t,y,vac. ∝ Rt,yV ,

ps,t,y,unvac. ∝ (1 − Rt,y),

where V depends on the specific implementation of VE used.459

For constant VE, V = Vs = 1 − vs.460

For season-specific VE, V = Vs,t = 1 − vs,t.461

For age-specific VE, we use a similar approach as described above for the age-specific parameters. We use the same age462

classes but do not consider a reference age class, so that each age group has an associated VE parameter for each subtype.463

Therefore,464

V = Vs,t,y = 1 − (fa1,t,yvG(a1),s + fa2,t,yvG(a2),s),

where vG(a1),s and vG(a2),s are age-specific VE parameters for a1 and a2. Recall that the function G specifies an age group for a465

given age.466

For imprinting-specific VE, we use the imprinting probabilities for each birth cohort described above such that467

V = Vs,t,y =
∏

z∈{H1N1, H2N2, H3N2}
(1 − vs,zmz,t,y),

where vs,z is the VE among people imprinted to subtype z against infection by dominant subtype s, and mz is the imprinting468

probability for subtype z in season t for birth cohort y.469

For birth-cohort-specific VE, we defined nine birth cohorts corresponding to the nine age groups we used for the 2017-2018470

season: 1918-1952, 1953-1967, 1968-1977, 1978-1987, 1988-1997, 1998-2002, 2003-2007, 2008-2012, and 2013-2017. Let471

Q(y) be the birth cohort of people born in year y. Then472

V = Vs,y = 1 − vQ(y),s,

where vQ(y),s is the VE among people in cohort Q(y) against infection by dominant subtype s.473
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N2 imprinting474

We consider that imprinting to N2 reduces a birth cohort’s risk of H3N2 infection. Therefore,475

pH3N2,t,y,v ∝ 1 − nm(mH3N2,t,y + mH2N2,t,y),

where nm is the strength of N2 imprinting, and mH3N2,t,y and mH2N2,t,y are the imprinting probabilities of birth cohort y in476

season t to H3N2 and H2N2.477

HA subtype imprinting478

We consider that imprinting to HA reduces a birth cohort’s risk of future infection from the same HA subtype. Therefore,479

ps,t,y,v ∝ 1 − ℎsms,t,y,

where ℎs is the strength of HA imprinting for subtype s. and ms,t,y is the imprinting probability of birth cohort y in season t to480

subtype s.481

HA group imprinting482

We consider that imprinting to HA reduces a birth cohort’s risk of future infection from the viruses within the same HA group.483

Therefore,484

pH1N1,t,y,v ∝ 1 − g1(mH1N1,t,y + mH2N2,t,y),

pH3N2,t,y,v ∝ 1 − g2mH3N2,t,y, ,

where g1 is the strength of HA imprinting for group 1 viruses and g2 is the strength of HA imprinting for group 2 viruses.485

Vaccine imprinting486

We consider that imprinting via vaccination confers a fraction (x) of the protection conferred by infection. If x = 0, vaccination487

prevents imprinting via infection without protecting against infection in future seasons. If x = 1, vaccination imprints as well488

as infection. Because seasonal vaccines are polyvalent, we assume that imprinting via vaccination protects against both H1N1489

and H3N2 infections. Imprinting via vaccination by the monovalent pandemic vaccine only protects against H1N1 infections.490

Therefore, for subtype-specific imprinting,491

ps,t,y,v ∝ 1 − xℎsmv,t,y,

where mv,t,y is the probability of imprinting via vaccination in season t for birth cohort y. Similarly, for group-specific492

imprinting,493

pH1N1,t,y,v ∝ 1 − xg1mv,t,y

pH3N2,t,y,v ∝ 1 − xg2mv,t,y.

In models including vaccine imprinting, the imprinting probabilities for infection differ from the infection-only model.494

That is, we use the imprinting probabilities from Figure 5-Supplement 3 and not the probabilities from Figure 2. We assume495

that the protection conferred by imprinting via vaccination cannot exceed protection conferred by initial infection and therefore496

restrict x to lie between 0 and 1.497

Model likelihood498

Let ns,t,y,v be the number of PCR-confirmed influenza cases of dominant subtype s in influenza season t among people born in499

year y with vaccination status v. The total number of PCR-confirmed cases of dominant subtype s in season t is500

Ns,t =
ymax
∑

y=1918
ns,t,y,unvac. +

ymax
∑

y=1918
ns,t,y,vac..

For models fitted to a restricted set of ages, we limited the cases for each season to the birth cohorts that were guaranteed501

to meet the age requirements in that season.502
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We aim to infer ps,t,y,v, the predicted fraction of all PCR-confirmed influenza cases of subtype s in influenza season t503

among people born in year y with vaccination status v.504

For a specific modelM , we consider all possible model components j described above (demography, age, vaccination,505

and imprinting). Then,506

ps,t,y,v = kM,t

∏

j
jMj ,

whereMj indicates whether modelM contains component j (e.g., for HA subtype imprinting, j = 1 − ℎsms,t,y).507

The likelihood for season t is given by the multinomial likelihood,508

t =
Ns,t!p

ns,t,1918,unvac.
s,t,1918,unvac.p

ns,t,1918,vac.
s,t,1918,vac. ⋯ p

ns,t,ymax,t ,unvac.
s,t,ymax,t ,unvac.p

ns,t,ymax,t ,vac.
s,t,ymax,t ,vac.

ns,t,1918,unvac.!ns,t,1918,vac.!⋯ ns,t,ymax,t ,unvac.!ns,t,ymax,t ,vac.!
,

where ymax,t is the maximum birth year possible for a specific season t.509

The full model likelihood for all observed seasons is510

 =
2017-2018
∏

t=2007-2008
t.

We fitted the model to case data using the L-BFGS-B algorithm implemented in the R package optimx. We estimated 95%511

confidence intervals for parameters of the best-fitting model by evaluating likelihood profiles at 15 evenly spaced points and512

interpolating the entire profile using a smoothing spline.513

Sensitivity analyses514

Sensitivity to age groups515

To test whether our models were sensitive to our choice of age groups, we fit revised versions of all our models with different516

age groups:517

• 0-4 years, 5-17 years, 18-49 years, 50-64 years, and ≥65 years518

• 0-4 years, 5-17 years, 18-64 years, and ≥65 years519

These models with alternate age groupings were fitted to case data to determine whether our findings on the strength of520

protection from initial H1N1 and H3N2 infection significantly changed from our fits using the higher-resolution age grouping521

described above (Appendix 1 Table 3).522

Sensitivity to sampling effort523

Sampling effort was not even across seasons, and analysis of the number of influenza cases per sampling day suggested that a524

significant number of cases may have been missed at the beginning or end of a specific seasons (Figure 5-Supplement 1). As525

our analysis of relative risk indicates, different age groups are more susceptible during different points in the influenza season,526

and therefore missing data from the beginning or end of a season could introduce bias in the observed age distribution of527

cases.528

To adjust for this, we simulated cases for seasons which did not have sufficient sampling of the start or end of the epidemic529

period. We considered a season sufficiently sampled if530

• the number of cases per sampling day in the first week of the enrollment period was <1 and531

• the number of cases per sampling day in the last week of the enrollment period was <1.532

To extrapolate the start of a season, we linearly regressed the number of cases of the dominant subtype per sampling day533

for each week of the first half of the season and identified the week of the season where the number of cases per sampling534

day fell below 1 (t0). For each week from t0 to the first week of the enrollment period, we used the regression of cases per535

sampling day to calculate the number of cases we expected to see in each week. Summing these yields the total number of536

unsampled cases at the beginning of the season. We used a similar approach to extrapolate the number of unsampled cases at537

the end of a season by instead regressing cases per sampling day for each week of the latter half of the season. We did not538

extrapolate cases for the 2010-2011 season for this analysis since the observed number of cases per sampling day did not539

follow a typical epidemic curve.540
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We stochastically assigned a birth year and vaccination status to these cases according to a multinomial distribution. The541

success probabilities of this distribution were set using the age distribution of cases of the dominant subtype from the first two542

weeks of the enrollment period (if extrapolating the beginning of a season) or the last two weeks of the enrollment period (if543

extrapolating the end of a season). Specifically, we calculated the distribution of observed cases in the first or last two weeks544

of the enrollment period among nine age groups (described above in "Age-specific factors") with their associated vaccination545

status. We then assumed that cases were uniformly distributed among all birth years contained in an age group. This yielded546

a set of probabilities describing the probability of infection given birth year and vaccination status in a specific season.547

We sampled from these multinomial distributions 1000 times to obtain augmented datasets that combined observed and548

extrapolated cases. For each replicate simulation, we calculated the age distribution of cases for the entire season as well as549

the relative risk of each age group in the first versus the latter half of the season (Figure 1-Supplement 2B). We also fitted the550

best-fitting model to 100 of these datasets (excluding the 2010-2011 season) and recorded the estimated imprinting strength551

for both H1N1 and H3N2 for each fit (Figure 5-Supplement 2).552

Calculating excess cases553

We defined excess cases for a given birth cohort or age group as the number of observed cases for that birth cohort or age group554

minus the number of predicted cases for that age group. Predictions were obtained by multiplying the multinomial probabilities555

produced by the model by the total number of cases of the dominant subtype in each season. A 95% prediction interval556

was obtained by simulating 100 datasets using the multinomial probabilities from a specific model (Figure 6-Supplement 2,557

Figure 7).558

To test whether recent infection might be confounding our estimates, we calculated the correlation between excess cases559

in each birth cohort in each season with excess cases of the same birth cohort in the next season with the same dominant560

subtype (Figure 5-Supplement 5).561

Code and data availability562

The code and data used to perform the analyses for this project are available at https://github.com/cobeylab/FluAImprinting.563
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Appendix 1 Table 3. Estimates of imprinting protection for models with different age groups.

Age groups (years) Best-fitting model H1 imprinting
protection (%,
95% CI)

H3 imprinting
protection (%,
95% CI)

0-4, 5-17, 18-64, 65+ Demography, age,
HA imprinting, age-
specific VE

56 (40, 68) 36 (25, 46)

0-8, 9-17, 18-49, 50-64,
65+

Demography, age,
HA imprinting, age-
specific VE

62 (47, 74) 35 (21, 48)

Appendix 1 Table 4. Estimates for VE from model with birth-cohort-specific VE fitted to people ≥ 10 years old.

Birth cohort H1N1 VE (%, MLE, 95% CI) H3N2 VE (%, MLE, 95% CI)
2003-2006 100 (70, 100) 7 (0, 41)
1998-2002 93 (80, 97) 29 (6, 47)
1988-1997 88 (75, 92) 54 (38, 67)
1978-1987 54 (26, 75) 16 (0, 34)
1968-1977 14 (0, 41) 25 (2, 43)
1953-1967 19 (0, 40) 44 (32, 54)
1918-1952 52 (24, 71) 45 (33, 55)

27

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted September 8, 2019. ; https://doi.org/10.1101/19001875doi: medRxiv preprint 

https://doi.org/10.1101/19001875
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

40

80

120

160

200
G

-statistic

0

500

C
as

es

H3N2 H1N1

20
07

-20
08

20
10

-20
11

20
11

-20
12

20
12

-20
13

20
14

-20
15

20
16

-20
17

20
17

-20
18

20
08

-20
09

20
09

Pan

20
09

-20
10

20
13

-20
14

20
15

-20
16

Test season

2007-2008
2010-2011
2011-2012
2012-2013
2014-2015
2016-2017
2017-2018
2008-2009

2009Pan
2009-2010
2013-2014
2015-2016

R
ef

er
en

ce
 s

ea
so

n

Figure 1–Supplement 1. Seasons differ significantly in their age distributions. Colored cells indicate that two seasons have
significantly different age distributions (Bonferroni-corrected p<0.05), and color intensity shows the observed G-test statistic
(Materials and Methods: "Calculating differences in the age distribution between seasons."). White cells denote seasons that
did not have significantly different age distributions from each other. The dominant subtype of each season is indicated by the
label color.
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Figure 1–Supplement 2. A. Each point shows an age group’s relative risk of infection during the first half compared to
the second half of an epidemic period (y-axis) and the fraction of cases belonging to that age group (x-axis) (Materials and
Methods: "Calculating relative risk"). Points are colored by the dominant subtype of the season. B. To account for potential
undersampling of cases at the beginning and end of specific seasons, we simulated 1000 replicate epidemics (Materials and
Methods: "Sensitivity to sampling effort") and calculated the same correlation as in panel A. The range is indicated by a
vertical line and the median by a square. Horizontal dashed black line indicates the critical value of � below which the
correlation is not significant.
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Figure 1–Supplement 3. Each panel shows the relative risk of infection in the first versus the second half of an epidemic
for different age groups in each season (Materials and Methods: "Calculating relative risk"). Relative risk greater than 1
(indicated by the grey dashed line) means that an age group was more likely to be infected at during the first rather than
second half of an epidemic. Age groups with no cases in the latter half of a season are indicated by asterisks and no bar. The
dominant subtype of each subtype is indicated by the bar color. 95% binomial confidence intervals are indicated by grey
vertical lines. Bars with asterisks over them indicate that the 95% confidence interval includes the scenario where all cases
occur in the first half of the season.
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Figure 2–Supplement 1. The intensity (top panel) and subtype frequencies (bottom panel) of influenza A seasons in the
United States. Intensity is measured as the product of influenza-like illness (ILI) and the fraction of respiratory specimens
testing positive for influenza A in national surveillance data (Materials and Methods: "Seasonal intensity"). This is normalized
to the average intensity value between 1977 and 2017-2018. Seasons before 1977 where United States ILI surveillance
data are unavailable are assumed to have an intensity score of 1 (i.e., the average score over all other seasons). Subtype
frequencies were obtained from national surveillance data before the 2007-2008 season and directly from the Marshfield
studies afterwards.
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Figure 3–Supplement 1. Each panel shows the population distribution of all individuals in the study area who met the age
criteria for study enrollment. People under 6 months old at the start of the sampling period in a season were not eligible to
participate.
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Figure 3–Supplement 2. Vaccinated individuals seek healthcare for MAARI at a higher rate than predicted by vaccination
coverage. We measured the fraction of vaccinated people among all who presented with MAARI and tested negative for
influenza (R = Vaccinated test-negative controls

Unvaccinated test-negative controls+Vaccinated test-negative controls , Materials and Methods: "Vaccination"). This is plotted
against vaccination coverage by season for different age groups. The dashed grey line shows whereR and vaccination coverage
are equal. Vaccination coverage for the 2009-2010 season uses monovalent vaccination coverage estimated directly from all
individuals with MAARI. We do not show the 2009 pandemic season because the monovalent vaccine was not distributed
until the second wave of the pandemic.
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Figure 3–Supplement 3. Repeat vaccination varies by age group and season. Each bar shows the fraction of individuals who
were vaccinated in that season who also received at least one influenza vaccination in the previous two seasons.
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Figure 4–Supplement 1. The best-fitting model includes age-specific risk of medically attended influenza A infection, HA
subtype imprinting, and age-specific VE. The ten main models are shown as rows with colored squares indicating whether
that model included parameters indicated by the columns. Orange squares indicate covariates that were not estimated. Light
green squares mean that a given estimated parameter was supported. Dark green squares mean that the model did not support
the inclusion of the parameters indicated by the column (i.e., the CI includes 0). Models are sorted by their cAIC relative to
the best-fitting model.
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Figure 4–Supplement 2. High-risk medical status varies with age but stays relatively consistent across seasons. Each plot
shows the fraction of enrolled people who had a high-risk medical condition for each season. High-risk medical condition
data was not collected for the 2009 pandemic season.
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Figure 5–Supplement 1. The starts and ends of some seasons were undersampled. Each panel shows the number of cases
per sampling day (green circles). We extrapolated cases at the start and end of the season (orange dashed line) if the observed
number of cases per day exceeded 1 (black line) at the start and end of that season (Materials and Methods: "Sensitivity to
sampling effort").
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Figure 5–Supplement 2. The strength of imprinting protection does not change significantly after correction for unequal
sampling between seasons. We fitted the model to simulated cases in seasons where the enrollment period does not fully
overlap the epidemic period and recorded the maximum likelihood estimates for H1N1 and H3N2 imprinting protection
(Materials and Methods: "Sensitivity to sampling effort"). The distributions of these values are shown as violin plots and the
medians are shown as squares. Estimates of imprinting protection from the best fitting model without simulated data with a
95% confidence interval are shown as circles with error bars.
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Figure 5–Supplement 3. Each panel shows the imprinting probabilities for a specific age group from the 2007-2008 season
through the 2017-2018 season, including vaccination as a potential first exposure.
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Figure 5–Supplement 4. Vaccine imprinting improves model fit. Plot shows the likelihood profile of the parameter x, which
describes the strength of protection from initial exposure via vaccination as a fraction of the protection conferred by initial
infection (Materials and Methods: "Vaccine imprinting"). The solid black line shows the log-likelihood of the best-fitting
model without protection from vaccine imprinting, and the dashed line shows the log-likelihood threshold for a ΔcAIC of 0
compared to the best fitting model with the addition of one free parameter (i.e., x). Shaded area shows 95% CI for x.
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Figure 5–Supplement 5. Excess cases in a season are weakly correlated with excess cases in the next season with the same
dominant subtype. We tested whether excess cases in each birth cohort were negatively correlated with excess cases in
the same birth cohort in the next season of the same subtype (Materials and Methods: "Calculating excess cases"). If the
protective effects of recent infection are not captured in our model, we expect that an excess of cases in one season should
lead to a depletion in cases in the next season (i.e., negative correlation). We instead find a weak positive correlation for cases
of H1N1 (Spearman’s �=0.12, p=0.02) and H3N2 (Spearman’s �=0.05, p=0.19).

804

40

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted September 8, 2019. ; https://doi.org/10.1101/19001875doi: medRxiv preprint 

https://doi.org/10.1101/19001875
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.5

1.0
Va

cc
in

at
io

n
co

ve
ra

ge

2007-2008

0.0

0.5

1.0
2008-2009

0.0

0.5

1.0

Va
cc

in
at

io
n

co
ve

ra
ge

2009-2010
seasonal

0.0

0.5

1.0
2010-2011

0.0

0.5

1.0
2011-2012

0.0

0.5

1.0

Va
cc

in
at

io
n

co
ve

ra
ge

2012-2013

0.0

0.5

1.0
2013-2014

0.0

0.5

1.0
2014-2015

0 50 100
Age

0.0

0.5

1.0

Va
cc

in
at

io
n

co
ve

ra
ge

2015-2016

0 50 100
Age

0.0

0.5

1.0
2016-2017

0 50 100
Age

0.0

0.5

1.0
2017-2018

0.0

0.5

1.0

2009-2010
monovalent

Figure 5–Supplement 6. Vaccination coverage in the Marshfield Epidemiological Study Area for seasons 2007-2008 through
2017-2018. We estimated monovalent vaccination coverage in 2009-2010 by measuring vaccination coverage among enrolled
people and fitting a smoothing spline to the data (solid line).
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Figure 5–Supplement 7. The probability of an individual receiving their first vaccination declines with age. Each point
represents the fraction of people enrolled in the Marshfield study who received their first vaccination among all vaccinated
individuals of that age.
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Figure 6–Supplement 1. A model including age-specific risk of medically attended influenza A infection, HA subtype
imprinting, and birth-cohort-specific VE best fits cases of people ≥ 10 years old. The ten main models are shown as rows with
colored squares indicating whether that model uses parameters indicated by the columns. Orange squares indicate covariates
that were not estimated. Light green squares mean that a given estimated parameter was supported. Dark green squares mean
that the model did not support the inclusion of the parameters indicated by the column (i.e., the CI includes 0). Models are
sorted by their cAIC relative to the best-fitting model.
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Figure 6–Supplement 2. The birth-cohort-specific VE model predicts observed cases better than the age-specific VE model
for people ≥ 10 years old. Bars show the excess cases in vaccinated individuals relative to the birth-cohort-specific VE model
(dark colors) and the age-specific VE model (light colors) for age groups ≥ 10 years old. Colors indicate the dominant subtype
of a given season. 95% prediction intervals are shown as grey error bars.
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