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ABSTRACT 

Objective: 

We aimed to identify (1) differences in opioid poisoning mortality among population groups, (2) 

geographic clusters of opioid-related deaths over time, and (3) health conditions co-occurring with opioid-

related death in Ohio by computational analysis. 

Materials and Methods: 

We used a large-scale Ohio vital statistic dataset from the Ohio Department of Health (ODH) and U.S. 

Census data from 2010-2016. We surveyed population differences with demographic profiling and use of 

relative proportions, conducted spatiotemporal pattern analysis with spatial autocorrelation via Moran 

statistics at the census tract level, and performed comorbidity analysis using frequent itemset mining and 

association rule mining.  

Results: 

Our analyses found higher rates of opioid-related death in people aged 25-54, whites, and males. We also 

found that opioid-related deaths in Ohio became more spatially concentrated during 2010-2016, and 

tended to be most clustered around Cleveland, Columbus and Cincinnati. Drug abuse, anxiety and 

cardiovascular disease were found to predict opioid-related death. 

Discussion: 

Comprehensive data-driven spatiotemporal analysis of opioid-related deaths provides essential 

identification of demographic, geographic and health factors related to opioid abuse. Future research 

should access personal health information for more detailed comorbidity analysis, as well as expand 

spatiotemporal models for real-time use. 

Conclusion: 

Computational analyses revealed demographic differences in opioid poisoning, changing regional patterns 

of opioid-related deaths, and health conditions co-occurring with opioid overdose for Ohio from 2010-

2016, providing essential knowledge for both government officials and caregivers to establish policies 

and strategies to best combat the opioid epidemic. 
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INTRODUCTION 

Opioids are a class of drugs derived from the opium poppy plant that block the reception of pain signals 

in the brain. Opioids include prescription pain relievers such as oxycodone, hydrocodone, codeine, and 

morphine and are used to alleviate chronic pain and manage postoperative pain. Opioids are also used 

illegally, including heroin and synthetic opioids such as fentanyl (which is also used medically). While 

the number of opioid prescriptions written has skyrocketed in the last two decades, illegal opioid use, 

opioid abuse and accidental opioid overdose have also increased.[1] Opioid-related overdoses are 

commonly referred to and categorized as “opioid poisoning (T40.0-T40.4, T40.6)” according to 

International Classification of Disease (ICD) codes (ICD-10).[2] The mortality rate due to opioid 

poisoning has consistently increased each year and now it is recognized as a national crisis.[3] Since 2000, 

death from drug overdoses has increased by 137%, while deaths from opioid overdoses has increased by 

200%.[4] According to the data released by the U.S Department of Health and Human Services, 130 

people died each day from opioid-related drug overdoses in 2017 and 11.5 million people misused 

prescription opioids.[5]  

The opioid epidemic is a nationwide issue, and scientific research is key to identifying causal factors, 

discovering susceptible communities and developing policies to address this problem. Increased 

availability of healthcare data presents a tremendous opportunity for data analysis to identify potential 

predictors of opioid misuse and predict patients susceptible to opioid misuse.[6] There have been several 

attempts to apply computational or statistical analysis to solve the problems associated with the opioid 

epidemic.[7-11] The purposes of these studies varied, ranging from understanding and detecting 

geographical clusters or hot spots where opioid misuse has occurred within urban neighborhoods,[12] to 

developing a surveillance model to identify patients who are misusing opioids or are over-prescribed.[10] 

Spatiotemporal analysis has been applied to identify relationships between environmental or economic 

factors and opioid misuse or overdose.[12-14] Through these attempts, several predictive covariates were 

revealed. Housing vacancy, dilapidated housing and misdemeanor arrests have been shown to be 

significantly associated with illicit drug activity.[12, 13] Additionally, individuals with a higher income 
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and greater access to healthcare have been found to be associated with prescription opioid poisoning.[14] 

Existing research on comorbidity with opioid abuse mostly focuses on psychiatric disorders and co-

occurring substance abuse.[7-9,15-18] Logistic regression models have been developed to predict patients 

who may be susceptible to prescription opioid abuse.[7-9] Comorbid psychiatric disorders have been 

considered for their impact on the efficacy of various treatments of opioid use disorder,[15] and literature 

reviews have found high rates of co-occurrence between opioid use disorder and anxiety, psychiatric 

comorbidity, and drug use.[16-18] 

These studies focus on either city-level spatiotemporal patterns, and/or solely on abuse of a single class of 

opioids. Our research performs comprehensive profiling, spatial pattern mining, and comorbidity analysis 

on a large-sized dataset collected at a state-wide level for all opioid-related deaths. Our research utilizes a 

large-scale vital statistic dataset from the Ohio Department of Health (ODH) and U.S. Census datasets to 

perform retrospective and extensive analysis at a statewide and census tract level. The purpose of this 

study is to identify demographic and spatial factors, as well as co-occurring health conditions that are 

associated with opioid-related overdose. To achieve this, we applied several data mining approaches such 

as clustering and frequent pattern mining. We expect that our results will inform policy makers, law 

enforcement, emergency health services, and caregivers to predict and prevent opioid abuse throughout 

Ohio. 

METHODS 

Data description 

In this paper, we used ODH mortality data containing decedent information by opioid poisoning and 

misuse.  We were approved to access limited and identifiable data, completed the Data Use Agreement 

(DUA), and de-identified decedent data. Access and use of the data was approved by the ODH IRB. We 

filtered ODH mortality data by selecting only opioid-related records.  We considered a death opioid-

related if the record had a positive value for any of the following nine indicators: Methadone, opiates, 

prescription opiates, Fentanyl, Fentanyl and Analogues, Carfentanil, designer opioids, commonly 

prescribed opioids, and/or other opioids. Then, we chose records for analysis which contained positive 
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values for “Opioid Related Death,” “Unintended Death,” “Undetermined death,” and “Drug Poisoning 

Injury Mechanism.” 

As a result, 13,094 records satisfied these conditions from 2010-2016. Of these records, 13,057 were not 

missing any values in the demographic and location fields. Figure 1 shows the entire process of data 

refinement. This dataset was used in our comorbidity analysis mentioned in the next section. 

This dataset was used for the remaining analysis and is hereafter referred to as “ODH-Opioid data.” We 

obtained publicly available demographic data from the 2010 U.S. Census Bureau and from the American 

Community Survey (ACS) from 2011-2016 to gather characteristics of the entire population of Ohio, as 

well as from each Ohio census tract.[19] 

Analysis 

Our analysis of 2010-2016 opioid overdose data is composed of the following three sections: 1) 

demographic-based analysis to survey differences among population groups; 2) spatiotemporal pattern 

analysis (census tract level) to discover potential global and local spatial clusters; 3) co-occurrence 

analysis with cause of death and its corresponding health condition to identify potential patterns or rules 

between them. As the data covers a seven-year period, it is possible to confirm trends and patterns over 

the years.  

1. Demographic-based analysis to survey disparities among population groups  

Decedent demographic information, such as age, race and sex, was taken from ODH-Opioid data.  Then, 

the same population-level demographic data in Ohio was obtained from the ACS. Based on these datasets, 

we compared and analyzed the prevalence of opioid-induced deaths in population groups relative to 

population distribution. We calculated relative proportions for each population group based on these two 

datasets for seven years. Then, we performed a paired t-test to investigate the statistical difference 

between the proportion values of two datasets.  

2. Spatiotemporal pattern analysis (census tract level) to discover potential global and local spatial 

clusters 
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Each record in ODH-Opioid data contains geographical information about a given decedent, such as 

residence or place of death. It is necessary to investigate whether deaths tend to be focused in a specific 

region or dispersed within a dataset to predict spatial patterns of opioid abuse. To achieve this, we applied 

spatial autocorrelation, which can measure the degree to which an object is similar to other nearby objects. 

More specifically, a positive value of spatial autocorrelation indicates the relationship between the value 

at a location and the values of its neighbors is positive; otherwise, the spatial autocorrelation is negative. 

Moran statistics are one of the commonly used approaches to measure this relationship.[20] There are two 

types of Moran’s I statistics: global and local.  

Global Moran’s I statistics provide a single measure of spatial autocorrelation for an attribute in a region 

as a whole, whereas Local Moran’s I statistics provide a measure of the tendency of a given unit to have 

an attribute value that is correlated with values of nearby areas. Local spatial autocorrelation analysis is 

based on LISA (Local Indicators of Spatial Autocorrelation) statistics and is computed for each individual 

unit. The following two functions represent Global and Local Moran’s I statistics: 
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N indicates the number of units in the whole region, y is the attribute value for each unit, W indicates 

weight matrix (Wij represent connectivity between unit i and j) and Z is the standardized score of attribute 

values for the corresponding unit. In Local Moran’s I, j indicates neighboring units of i. Informally, +1 

indicates strong positive spatial autocorrelation (i.e., clustering of similar values), 0 indicates random 

spatial ordering and -1 indicates  strong negative spatial autocorrelation (perfect dispersion, i.e., a 

checkerboard pattern). 
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In our analysis, we used census tract as the unit of region. Census tracts are small, relatively permanent 

statistical subdivisions within a county. We aggregated the number of deaths by census tract level and 

then normalized the number of deaths by dividing the total population in the corresponding Tract ID. This 

normalization allowed spatial autocorrelation to be performed with the ratio of the actual population to 

the number of deaths in the area. We used these census tract death rates for spatiotemporal pattern 

analysis. 

We performed spatiotemporal pattern analysis by using a free, open source software tool, GeoDa.[21] We 

applied Global Moran’s I statistics to Ohio at the state-level and LISA statistics to each region by census 

tract. GeoDa also reported p-values to show statistical significance, and we applied 0.05 as our alpha level. 

3. Comorbidity analysis with cause of death and its corresponding health condition 

This analysis aimed to identify which health conditions frequently co-occurred with opioid poisoning, and 

whether the cause of death exhibited significant associations with co-occurring health conditions. We 

applied frequent itemset mining and association rule mining to ODH-Opioid data to carry out these 

analyses. Although ODH-Opioid data are filtered as “death by opioid misuse,” the specific causes of 

death are more diverse. In the ODH mortality dataset, cause of death was listed by ICD codes (ICD-9 and 

ICD-10). In order to analyze the observed health conditions, we had to simplify the literal text as reported 

for the deceased person to a standard term. Figure 2 shows the overall workflow for the text clustering 

method we used to convert the literal text to a structured term. Then, we integrated cause of death with 

converted health condition and applied frequent itemset mining to reveal which events (i.e. itemset) 

frequently occur together.[22]  

From the results of our frequent itemset mining, we performed association rule mining with a minimum 

confidence of 0.5 in order to quantify the association between two itemsets. After sorting all rules by Lift 

value, only the rules with at least one health condition in itemset A and at least one cause of death in 

itemset B were selected from the results (Lift > 1: positive relationship, which means if A is present, then 

B happens).  

RESULTS 
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1. Demographic-based analysis to survey disparities among population groups 

Using ODH-Opioid data, we compared the demographics between the overall Ohio population and those 

who died due opioid poisoning. Figure 3 (A) shows the difference between population proportion and 

mortality proportion by opioid poisoning across seven years for each age group. For example, while the 

group aged 24-44 years made up an average of 25.1% of the overall population across the 7 years, the 

same age group consisted of an average of 51.3% of the opioid deaths. There was a significant difference 

between the two groups for all ages except the 55-60 age group. This result implies that the pattern of 

mortality by opioid poisoning is different from the general population distribution. In particular, groups 

aged 25-44 and 45-54 years died by opioid poisoning more frequently than any other age groups 

compared to the general population distribution. We performed the same analysis for race and sex. 

Figures 3 (B) and (C) show the comparison results. There was a statistically significant difference 

identified between the mortality and population distribution for all races except for “Native Hawaiian or 

Other Pacific Islander,” with the white population exhibiting the highest mortality counts. Similarly, there 

was a statistically significant difference for both males and females, with a higher fatality proportion for 

males, and a lower fatality proportion for females, as compared to their respective population proportions. 

In summary, between 2010-2016 in Ohio, people who were white, male and aged 25-54 years were most 

likely to die by opioid poisoning. Table 1 shows detailed results of the statistical tests. 

Finally, as shown in Figure 3 (D), we calculated the mortality rate per 10,000 people for each age group 

in each year. As we concluded earlier, morality rates for age groups 25-44 and 45-54 were the highest and 

the ratio increased with time.   

Table 1. Detailed results of the statistical tests for investigating disparities between population groups. 

Category Group Significant? Mean1 Mean2 Difference 
SE of 

difference 
t ratio Adjusted P Value 

Age  

Under 5 Yes 6.11 0.13 5.99 0.07 90.72 <0.000000000000001 

5 to 17 Yes 17.24 0.29 16.96 0.14 118.10 <0.000000000000001 

18 to 24 Yes 9.53 8.64 0.89 0.25 3.54 0.008147083 

25 to 44 Yes 25.13 51.27 -26.14 1.40 18.72 1.20224E-09 

45 to 54 Yes 14.63 25.90 -11.27 1.65 6.85 5.34781E-05 

55 to 64 No 12.84 12.17 0.67 0.48 1.39 0.190856629 
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65 to 74 Yes 7.79 1.40 6.39 0.24 27.00 2.045E-11 

Over 75 Yes 6.74 0.19 6.56 0.07 98.61 <0.000000000000001 

Race  

White Yes 84.71 91.17 -6.46 0.28 23.31 1.15872E-10 

Black or 
African 

American 
Yes 12.43 7.91 4.51 0.29 15.41 1.13898E-08 

American 
Indian or 
Alaska 
Native 

Yes 0.20 0.09 0.11 0.01 8.00 1.12797E-05 

Asian Yes 1.79 0.17 1.61 0.06 27.68 1.8327E-11 

Native 
Hawaiian 
or Other 
Pacific 
Islander 

No 0.00 0.01 -0.01 0.01 1.00 0.337049058 

Other No 0.86 0.69 0.17 0.07 2.58 0.047787177 

Sex 
Male Yes 48.87 66.76 -17.89 0.59 30.41 2.007E-12 

Female Yes 51.13 33.24 17.89 0.59 30.41 2.007E-12 

 

 

2. Spatiotemporal pattern analysis (census tract level) to discover potential global and local spatial 

clusters 

As seen in Figure 4, the Global Moran's I value, which provides a single measure of spatial 

autocorrelation for an attribute in a region as a whole, continuously increased from 2010-2016. This 

signifies higher specificity and lower randomization of clustering, meaning that the opioid crisis became 

more spatially concentrated during these years.  

Figure 5 demonstrates the results of our spatiotemporal pattern analysis for each census tract. As shown in 

Figure 5, there are four types of patterns of LISA statistics as follows: High-High, High-Low, Low-High, 

and Low-Low. The first field of a given LISA pattern indicates the degree of LISA statistics in the 

corresponding region and the second field of a given LISA pattern indicates the degree of LISA statistics 

of the neighboring regions. For example, a High-Low designation for a certain region means the LISA 

statistics of the region is significantly high but the values of its neighboring regions are significantly low. 

Generally, we can consider High-High and Low-Low status as spatial clusters because these regions have 

similar LISA statistics values. It was revealed that the High-High and Low-Low regions have become 

increasingly dispersed from 2010 to 2016.  
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Table 2 shows the top 10 census tracts represented by county name based on the LISA statistics value. As 

a result, it was confirmed that the counties located inside or near Cleveland, Columbus, and Cincinnati, 

which are the most populated in Ohio, had the highest concentration of deaths by opioid poisoning.  

Table 2. List of top 10 census tracts and their corresponding county by statistics value from 2010 to 2016. 
Three large cities, Cleveland, Columbus and Cincinnati, experienced more clustering of opioid poisoning than any 
other regions. 

Year 2010 2011 2012 2013 2014 2015 2016 

Representing 
with County  
for top 10 
Tract by 

LISA 

Hamilton Hamilton Hamilton Cuyahoga Butler Butler Summit 
Franklin Hamilton Cuyahoga Butler Butler Butler Montgomery 
Franklin Cuyahoga Montgomery Butler Butler Hamilton Cuyahoga 

Cuyahoga Hamilton Franklin Cuyahoga Hamilton Butler Montgomery 
Franklin Hamilton Montgomery Cuyahoga Butler Clark Summit 

Ross Franklin Cuyahoga Butler Butler Montgomery Summit 
Franklin Franklin Cuyahoga Cuyahoga Hamilton Hamilton Montgomery 
Franklin Cuyahoga Hamilton Cuyahoga Butler Clark Summit 
Franklin Clark Cuyahoga Cuyahoga Butler Butler Summit 
Franklin Cuyahoga Mahoning Cuyahoga Butler Butler Butler 

Most 
Popular 
County 

 
(how 

Popular) 
(near city) 

Franklin 
County: 

 7/10  
(in 

Columbus) 

Hamilton 
County: 

4/10 
(in 

Cincinnati) 

Cuyahoga 
County: 

4/10 
(in 

Cleveland) 

Cuyahoga 
County: 

7/10 
(in 

Cleveland) 

Butler 
County: 

8/10 
(in 

Cincinnati) 

Butler 
County: 

5/10 
(in 

Cincinnati) 

Summit 
County: 

5/10 
(in Akron) 

LISA_I 
(P-value < 

0.05) 

22.713 10.792 15.508 15.683 33.174 26.137 19.071 
7.835 6.930 15.091 13.258 28.665 17.406 18.977 
5.897 6.305 15.000 12.516 13.559 17.028 14.672 
5.316 5.288 13.030 11.431 11.540 16.645 13.514 
5.052 5.068 11.734 10.880 11.525 13.854 12.387 
4.521 4.610 11.374 10.306 11.471 13.344 11.337 
4.203 4.243 10.623 7.317 11.382 11.492 11.096 
3.846 3.745 9.057 7.185 11.199 9.197 10.254 
3.716 3.654 8.903 7.074 6.632 8.781 9.744 
3.447 3.499 8.203 6.606 6.565 8.055 9.102 

 

3. Co-occurrence analysis with cause of death and its corresponding health condition  

Table 3 shows the representative terms for health conditions of the deceased derived from a text 

clustering approach. As mentioned in the Methods section, we used these health condition terms and 

cause of death classified by ICD-10 code as an input of frequent itemset and pattern mining to reveal the 

underlying relationship between health condition and cause of death with regard to opioid poisoning 

mortality. Of the total 13,094 records, only 2,887 records contained data for both health condition and 

cause of death, so the remaining records which had a value of “NA” were excluded for the co-occurrence 

analysis. 
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Frequent itemset mining was performed after setting the minimum support count to 200. From the results, 

the itemsets which had more than two items including one or more health conditions were selected. Table 

4 shows the top 10 results based on frequency for this analysis. We revealed that cardiovascular disease 

was the most prevalent concomitant health condition in decedents by opioid poisoning. Cardiovascular 

disease frequently occurred with death due to hypertensive heart disease without heart failure. Drug abuse 

frequently occurred with death due to mental and behavioral disorders because of multiple drug use. 

Additionally, mental health conditions, such as anxiety, were frequently associated with opioid poisoning 

mortality. 

Table 5 shows the results of association rule mining. We identified that drug abuse, anxiety and 

cardiovascular disease were significantly and positively correlated with opioid poisoning mortality. 

 

 

Table 3. Results of clustering health conditions. We set the number of clusters to 70 through several empirical 
experiments. For each cluster, we selected the most frequent term, and then redundant clusters were manually 
removed by an expert. Through this post-processing, we could obtain 31 representative terms which indicates a 
given decedent’s health condition. 

Representative terms (from health condition) 

Acute Respiratory Failure 
Alcohol Abuse 
Anoxic Encephalopathy 
Anxiety 
Bipolar Disorder 
Cardiomegaly 
Cardiovascular Disease 
Chronic Back Pain 
Chronic Obstructive Lung Disease 
Chronic Obstructive Pulmonary Disease 
Chronic Urinary Tract Infections, Bi-Polar Disorder, Multiple Abdominal Surgeries, Psoriasis 
Cirrhosis 
Cocaine Abuse 
Coronary Artery Disease 
Depression 
Diabetes Mellitus 
Dilated Cardiomyopathy 
Drug Abuse 
Emphysema 
Exposure To A Cold Environment 
Extensive Pulmonary Thromboembolism With Polarizable Foreign Material Consistent With Recent 
And Remote Iv Drug Abuse 
Fatty Liver 
Hepatitis C 
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Morbid Obesity 
Pneumonia 
Pulmonary Edema 
Seizure Disorder, Drug And Alcohol Abuse, Remote Traumatic Brain Injury 
Sleep Apnea 
Thrombosis Of Right Common Iliac Artery With Attached, Occlusive Thrombus Of Greenfield Type 
Filter Of Inferior Vena Cava 
Tobacco Smoke Exposure-Related Lung Disease 
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Table 4. List of top 10 most frequent results which have more than two items including one or more health 
conditions in frequent itemset. We could identify that cardiovascular disease was the most prevalent concomitant 
health condition in decedents. 

Frequent 
Itemset 

Frequency Count Description for cause of death 
Description for 
health condition 

X42, clu_4 0.168 483 
Accidental poisoning by and exposure to narcotics and 
psychodysleptics [hallucinogens], not elsewhere classified 

Cardiovascular 
disease 

I119, clu_4 0.149 429 
Hypertensive heart disease without (congestive) heart 
failure 

Cardiovascular 
disease 

T509, clu_4 0.139 400 
Poisoning: Other and unspecified drugs, medicaments and 
biological substances 

Cardiovascular 
disease 

T402, clu_4 0.113 325 Poisoning: Other opioids 
Cardiovascular 
disease 

T509, clu_23 0.112 324 
Poisoning: Other and unspecified drugs, medicaments and 
biological substances 

Anxiety 

I250, clu_4 0.110 319 Atherosclerotic cardiovascular disease, so described 
Cardiovascular 
disease 

F191, clu_1 0.109 314 
Mental and behavioral disorders due to multiple drug use 
and use of other psychoactive substances: harmful use 

Drug abuse 

T401, clu_4 0.103 297 Poisoning: Heroin 
Cardiovascular 
disease 

X42, clu_1 0.102 295 
Accidental poisoning by and exposure to narcotics and 
psychodysleptics [hallucinogens], not elsewhere classified 

Drug abuse 

I119, X42, 
clu_4 

0.098 283 

Hypertensive heart disease without (congestive) heart 
failure 
Accidental poisoning by and exposure to narcotics and 
psychodysleptics [hallucinogens], not elsewhere classified 

Cardiovascular 
disease 

 

Table 5. List of the selected association rules which contain health condition in itemset A and cause of death 
in itemset B ordered by Lift value (≥1).  

Rule: A � B 
Confidence 

( > 0.5) 

Lift (correlation for 
dependency or 

independency between 
A and B) 

Detailed description for rules itemset 
A 

itemset 
B 

clu_6 I517 0.737 7.161 Cardiomegaly � Cardiomegaly 

clu_4 I119 0.542 3.396 
Cardiovascular Disease � Hypertensive heart disease 
without (congestive) heart failure 

clu_1 F191 0.631 2.754 
Drug abuse � Mental and behavioral disorders due to 
multiple drug use and use of other psychoactive 
substances: harmful use 

clu_23 T402 0.504 1.364 Anxiety � Poisoning: Other opioids 
clu_1 T401 0.502 1.322 Drug abuse � Poisoning: Heroin 

clu_23 T509 0.582 1.117 
Anxiety � Poisoning: Other and unspecified drugs, 
medicaments and biological substances 

clu_1 T509 0.558 1.072 
Drug abuse � Poisoning: Other and unspecified drugs, 
medicaments and biological substances 

clu_4 X42 0.612 1.053 
Cardiovascular disease � Accidental poisoning by and 
exposure to narcotics and psychodysleptics 
[hallucinogens], not elsewhere classified 

clu_1 X42 0.592 1.020 
Drug abuse � Accidental poisoning by and exposure to 
narcotics and psychodysleptics [hallucinogens], not 
elsewhere classified 
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DISCUSSION 

The opioid epidemic is one of the most pressing issues affecting Ohio, and news reports of overdose 

deaths constantly remind us of this. In August 2019, six people died of suspected fentanyl overdose 

within 24 hours, bringing the opioid-overdose death count to 10 for a three-day period.[23] All 10 deaths 

occurred within Cuyahoga County, Ohio, which encompasses Cleveland. This horrific event reminds us 

as researchers of the crucial need for research to prevent more deaths due to opioid overdose.  Thus, with 

the accessibility to opioid abuse and overdose data, it is imperative to apply computational analysis to 

understanding the opioid epidemic. 

To the best of our knowledge, there are currently no large-scale data driven approaches covering 

comprehensive analysis including profiling, spatial pattern mining, and association rule mining with 

statewide mortality records for all opioid-related deaths. Our research provides a comprehensive analysis 

in these areas, showing that various data mining algorithms such as text mining, spatial clustering and 

frequent pattern mining can be used to predict opioid overdose. The opioid epidemic is not only an 

important issue for research in the public health field, but also in the computer science field.  

The first approach of our three-pronged analysis utilized demographic profiling and relative proportions 

to find disparities in opioid abuse among population groups. We found that people aged 25-44 and 45-54 

died due to opioids more frequently than any other age group, and that whites and males also had higher 

rates of death due to opioid overdose. Our second approach used spatial autocorrelation to map 

geographical patterns of opioid abuse, and we found that opioid-related deaths have become more 

spatially concentrated over time. In particular, Cleveland, Columbus and Cincinnati had the highest 

concentration of deaths. Finally, our third approach focused on identifying health conditions that co-

occurred with opioid-related death. We found that drug abuse, anxiety and cardiovascular disease were 

significantly and positively correlated with death due to opioid overdose. 

The increasing spatial concentration of opioid overdose deaths that we observed is an interesting finding. 

From 1999-2004, the rate of opioid-related death rates in rural areas exceeded that in urban areas,[24] but 

recent data from the Centers for Disease Control and Prevention (CDC) shows an increase of drug 
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overdose deaths in urban areas compared to that of rural areas in 2017.[25] Our results are consistent with 

this national pattern, which may suggest that Ohio undergoes similar changes in the spatial distribution of 

opioid abuse, and/or that our spatiotemporal model can be used as a tool to predict patterns of opioid use 

in consecutive years. Predictive geographical models would be essential in targeting prevention strategies 

for specific regions, as well as allocating resources to areas most in need. 

Our comorbidity findings are consistent with existing studies that have identified anxiety, mental illness, 

and drug use to be associated with opioid abuse.[7,8,16-18] However, to our knowledge, other studies 

have not found an association between opioid abuse and cardiovascular disease. This finding may be due 

to the limited information from death records; only 22% contained information in the health condition 

field.  In future studies, we plan to collect more robust data by combining vital records from ODH data 

and patient Electronic Health Record (EHR) data at the Cleveland Clinic. We recommend that similar 

studies be performed with data from hospitals in Columbus and Cincinnati to understand larger patterns. 

Such analyses can be used to develop a predictive model to stratify patient risk based on previously 

identified predictors of opioid misuse, which will aid caregivers in prescription decision-making.   

Furthermore, we suggest specific application of spatial pattern mining to be used to identify areas of 

opioid abuse real-time, rather than solely in a retrospective fashion. A real-time predictive model would 

be indispensable for law enforcement agents and emergency health service providers to predict and 

prevent opioid abuse.  

CONCLUSION 

As data related to opioid abuse and overdose have recently become available, large-scale, computational 

approaches to analysis are an imperative tool to combat the opioid epidemic. In this study, we utilized 

seven years of Ohio vital statistics data to reveal the race, age group, and regional differences of opioid 

poisoning. Additionally, we identified several prevalent health conditions that are frequently associated 

with opioid-related deaths. Although the data we utilized was limited to Ohio and was retrospective in 

nature, our findings help to understand the patterns and factors associated with opioid-related deaths, 

which could be useful in the development of predictive models. We expect that our findings provide 
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essential knowledge to identify predictors of opioid misuse and predict the changing geographic pattern of 

opioid overdoses, enabling government officials and caregivers to improve their strategies for prevention 

and treatment of opioid abuse and to allocate resources most efficiently.   
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Figure 1. The process of data refinement. From the entire ODH mortality data, we finally extracted 13,094 records related with
opioid poisoning. 
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Figure 2. Entire workflow of co-occurrence analysis with the list of cause of death and corresponding health condition. 

 

 

 

Figure 3. Comparison of population and mortality proportion by several demographic factors. 
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Figure 4. Changing pattern of Global Moran’s I statistics for seven years in Ohio, 2010-2016.   
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Figure 5. Spatial clusters with normalized mortality (number of deaths divided by number of population) for opioid
poisoning by census tract, Ohio, 2010-2016.    
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