
1 

Vitamin deficiency predicted by ML 

 

Efficient Prediction of Vitamin B Deficiencies via 1 

Machine-learning Using Routine Blood Test Results in Patients 2 

With Intense Psychiatric Episode 3 

 4 

Hidetaka Tamune1)2)3)5)*, Jumpei Ukita3)4)5), Yu Hamamoto1)2), Hiroko Tanaka1)2), Kenji 5 

Narushima1), Naoki Yamamoto1) 6 

1) Department of Neuropsychiatry, Tokyo Metropolitan Tama Medical Center, Tokyo, 7 

Japan 8 

2) Department of Neuropsychiatry, Graduate School of Medicine, The University of 9 

Tokyo, Tokyo, Japan 10 

3) Mental Health Research Course, Faculty of Medicine, The University of Tokyo, 11 

Tokyo, Japan 12 

4) Department of Physiology, Graduate School of Medicine, The University of Tokyo, 13 

Tokyo, Japan 14 

5) H. Tamune and JU contributed equally to this work 15 

 16 

* Correspondence: 17 

Hidetaka Tamune, M.D., tamune-tky@umin.ac.jp 18 

 19 

Abstract: 294 words  20 

Main text: 1878 words + 4 Tables + 4 Figures + 24 references 21 

Keywords: Machine Learning; Random Forest Classifier; Vitamin B Deficiency; Folic 22 

Acid; Early Diagnosis; Decision support techniques or decision making. 23 

  24 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted August 13, 2019. ; https://doi.org/10.1101/19004317doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/19004317
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

Vitamin deficiency predicted by ML 

 

Abstract 25 

Background: Vitamin B deficiency is common worldwide and may lead to psychiatric 26 

symptoms; however, vitamin B deficiency epidemiology in patients with intense 27 

psychiatric episode has rarely been examined. Moreover, vitamin deficiency testing is 28 

costly and time-consuming. It hampered to effectively rule out vitamin 29 

deficiency-induced intense psychiatric symptoms. In this study, we aimed to clarify the 30 

epidemiology of these deficiencies and efficiently predict them using machine-learning 31 

models from patient characteristics and routine blood test results that can be obtained 32 

within one hour. 33 

Methods: We reviewed 497 consecutive patients deemed to be at imminent risk of 34 

seriously harming themselves or others over 2 years. Machine-learning models were 35 

trained to predict each deficiency from age, sex, and 29 routine blood test results. 36 

Results: We found that 112 (22.5%), 80 (16.1%), and 72 (14.5%) patients had vitamin 37 

B1, vitamin B12, and folate (vitamin B9) deficiency, respectively. Also, the 38 

machine-learning models well generalized to predict the deficiency in the future unseen 39 

data; areas under the receiver operating characteristic curves for the validation dataset 40 

(i.e. dataset not used for training the models) were 0.716, 0.599, and 0.796, respectively. 41 

The Gini importance of these vitamins provided further evidence of a relationship 42 

between these vitamins and the complete blood count, while also indicating a hitherto 43 

rarely considered, potential association between these vitamins and alkaline phosphatase 44 

(ALP) or thyroid stimulating hormone (TSH). 45 

Discussion: This study demonstrates that machine-learning can efficiently predict some 46 

vitamin deficiencies in patients with active psychiatric symptoms, based on the largest 47 

cohort to date with intense psychiatric episode. The prediction method may expedite 48 

risk stratification and clinical decision-making regarding whether replacement therapy 49 

should be prescribed. Further research includes validating its external generalizability in 50 

other clinical situations and clarify whether interventions based on this method can 51 
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improve patient care and cost-effectiveness. 52 
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1. Introduction 54 

Vitamin B deficiency is common worldwide and may lead to psychiatric 55 

symptoms1–4. For example, meta-analyses have shown that patients with schizophrenia 56 

or first-episode psychosis have lower folate (vitamin B9) levels than their healthy 57 

counterparts4,5. Moreover, vitamin therapy can effectively alleviate symptoms in a 58 

subgroup of patients with schizophrenia3,6–8. However, the epidemiology of vitamin B 59 

deficiency in patients with active mental symptoms requiring immediate hospitalization 60 

has rarely been examined. 61 

In a psychiatric emergency, psychiatrists should promptly distinguish treatable 62 

patients with altered mental status due to a physical disease from patients with an 63 

authentic mental disorder (international statistical classification of diseases and related 64 

health problems-10, ICD-10 code: F2-9). However, vitamin deficiency testing is very 65 

costly (around 60 dollars for each measurement of vitamin B1 (vitB1), vitamin B12 66 

(vitB12), or folate in the U.S.; 15–25 dollars for each test in Japan) and usually requires 67 

at least two days. Therefore, an efficient, cost-effective method of predicting vitamin B 68 

deficiency is needed. 69 

 Although several studies have applied machine-learning to the prediction of 70 

diagnosis or treatment outcomes9–11, no study using machine-learning has focused on 71 

vitamin B deficiencies. We herein explore whether vitB1, vitB12, and folate deficiencies 72 

can be predicted using a machine-learning classifier from patient characteristics and 73 

routine blood test results obtained within one hour based on a large cohort of patients 74 

requiring urgent psychiatric hospitalization. 75 
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2. Methods 77 

2.1. Medical chart review 78 

 We reviewed consecutive patients admitted to the Department of 79 

Neuropsychiatry at Tokyo Metropolitan Tama Medical Center between September 2015 80 

and August 2017 under the urgent involuntary hospitalization law, which requires the 81 

immediate psychiatric hospitalization of patients at imminent risk of seriously harming 82 

themselves or others. The necessity of hospitalization was judged by designated mental 83 

health specialists. The patient characteristics, ICD-10 codes, and laboratory data were 84 

gathered retrospectively. 85 

 Since the reference ranges for vitB1, vitB12, and folate are 70–180 nmol/L 86 

(30–77 ng/mL), 180–914 ng/L, and > 4.0 μg/L, respectively12, a deficiency of the 87 

nutrients was defined as < 30 ng/mL, < 180 ng/L, and < 4.0 μg/L, respectively, unless 88 

otherwise stated. 89 

 90 

2.2. Random forest classifier and statistics 91 

 A random forest classifier was trained to predict the deficiency of each 92 

substance from age, sex, and 29 routine blood variables (described in the Result section 93 

with values). The random forest classifier was trained using the dataset populated in the 94 

period from September 2015 to December 2016 (the “Training set”). First, we 95 

optimized the hyperparameters of the classifier by selecting the best combination of 96 

hyperparameters that maximized the "5-fold cross validation" accuracy, among many 97 

combinations within appropriate ranges. The cross-validation accuracy was computed as 98 

follows; in one session, the classifier was trained using 80% of the training set and 99 

evaluated on the withheld 20% of the training set. This session was performed five 100 

times so that every data would be withheld once. The accuracies were finally averaged 101 

across sessions to yield the cross-validation accuracy. By incorporating this process, the 102 

classifier was generalized to unseen data (Graphical method is shown in Figure 1). 103 
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Using the optimized hyperparameters, the classifiers were then validated using 104 

data collected from January 2017 through August 2017 (the “Validation set”). We report 105 

the classification performance on the validation set in the results section unless 106 

otherwise stated. We quantified the sensitivity, specificity, and accuracy (defined as the 107 

average of the sensitivity and the specificity on the optimal operating point) using 108 

receiver operating characteristic curves (ROCs). We also quantified the 95% confidence 109 

interval of the accuracy using 1000-times bootstrapping. 110 

When investigating the Gini importance and the partial dependency13, we 111 

retrained the classifiers using all datasets. All data analyses were performed using 112 

Python (2.7.10) with the Scikit-learn package (0.19.0) and R (3.4.2) with the edarf 113 

package (1.1.1). 114 

 115 

2.3. Ethical considerations 116 

 Informed consent was obtained from participants using an opt-out form on the 117 

website. The study protocol was approved by the Research Ethics Committee, Tokyo 118 

Metropolitan Tama Medical Center (Approval number: 28-8). The study complied with 119 

the Declaration of Helsinki and the STROBE statement. 120 

  121 
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3. Results 122 

3.1. Eligible patients 123 

During the 2-year study period, 497 consecutive patients (496 were Asian) 124 

were enrolled. The mean age (standard deviation, SD) was 42.3 (±15.4) years, and 228 125 

patients (45.9%) were women. F2 (Schizophrenia, schizotypal, delusional, and other 126 

non-mood psychotic disorders) was diagnosed in over 60% of the patients. The ICD-10 127 

codes of the patients and the number of deficiencies at several cut-off values for vitB1, 128 

vitB12, and folate are shown in Table 1. According to the predefined cut-off values12, 129 

112 (22.5%), 80 (16.1%), and 72 (14.5%) patients exhibited a deficiency of vitB1 (<30 130 

ng/mL), vitB12 (<180 ng/L), and folate (<4.0 μg/L), respectively. Vitamin B deficiencies 131 

in sub-groups are shown in Table 2. A summary of the full dataset is shown in Table 3. 132 

Detailed information (sub-datasets) is shown in Supplementary Table 1, 2, and 3 133 

online. Histograms of vitB1, vitB12, and folate values are shown in Figure 2 A-C. 134 

 135 

3.2. Prediction via machine-learning using routine blood test results 136 

A random forest classifier was trained to predict the deficiency of each 137 

substance from patient characteristics and routine blood test results. The classifier was 138 

trained using the dataset gathered in the period from September 2015 to December 2016 139 

(the “Training set”, n = 373), which was then validated from January 2017 through 140 

August 2017 (the “Validation set”, n = 124). 141 

The area under the ROCs (AUCs) for the validation set were 0.716, 0.599, and 142 

0.796, for vitB1, vitB12, and folate, respectively (Figure 2 D-F and Table 4). With some 143 

operative points on the ROC, the sensitivity, specificity and accuracy for the validation 144 

set were calculated (Table 4. See also Supplementary Table 4 for training set and 145 

Supplementary Table 5 for different operating points). 146 

When the prediction performances were compared between the classifiers 147 

trained using the dataset from the F2 population and the classifiers trained using the 148 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted August 13, 2019. ; https://doi.org/10.1101/19004317doi: medRxiv preprint 

https://doi.org/10.1101/19004317
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

Vitamin deficiency predicted by ML 

 

dataset from the other population, the AUC was not statistically different (DeLong’s 149 

test), except in the case of vitB1 (see Supplementary Table 6). 150 

 Figure 3 shows the Gini importance (a–c) and partial dependency plots (d–f) 151 

for the eight most important variables for each substance. The results provided further 152 

evidence of a relationship between the vitamin B levels and complete blood count while 153 

also indicating the hitherto rarely considered, potential association between these 154 

vitamins and alkaline phosphatase (ALP) or thyroid stimulating hormone (TSH). 155 

 156 

3.3. Robustness verification 157 

We verified the robustness of the results by two independent means. First, we 158 

used different cut-off values to define the deficiency14–16. Although the AUC for the 159 

validation set, shown in Supplementary Table 7, tended to be higher when strict 160 

cut-off values were used, the obtained AUCs were not statistically significant (p > 0.05, 161 

DeLong’s test with Bonferroni correction).  162 

Second, we trained and evaluated random forest classifiers using a dataset split 163 

in a different way; the classifier was trained using the dataset collected in the period 164 

from the 31st of January, 2016 to August 2017, which was then validated with data 165 

gathered from September 2015 to the 31st of January, 2016. Note that the sample sizes 166 

of the training and validation sets were equal to those in the original setting. The AUCs 167 

for the validation set were 0.771, 0.621, and 0.745 for vitB1, vitB12, and folate, 168 

respectively; none were statistically different from the AUC trained using the original 169 

setting (DeLong’s test), further demonstrating the robustness of the performance. 170 

  171 
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4. Discussion 172 

4.1. Relevance of the present study 173 

 Based on the largest cohort to date of patients at imminent risk of seriously 174 

harming themselves or others, this study indicated that deficiency of certain vitamins 175 

can be predicted in an efficient manner via machine-learning using routine blood test 176 

results. Given the large number of patients with vitamin B deficiencies, empirical 177 

therapy might be acceptable; however, risk stratification is preferred for personalized 178 

medicine and shared decision-making. The prediction method presented here may 179 

expedite clinical decision-making as to whether vitamins should be prescribed to a 180 

patient (Graphical abstract is shown in Figure 4). 181 

Remarkably, the AUC for folate deficiency was 0.796. Folate features the 182 

potential to maintain neuronal integrity and is one of the homocysteine-reducing 183 

B-vitamins5; homocysteine has been linked to the etiology of schizophrenia17, and 184 

vitamin B supplements have been reported to reduce psychiatric symptoms significantly 185 

in patients with schizophrenia7. As our study does not present longitudinal results, an 186 

intervention effect of folate supplementation in the cohort remains to be clarified. 187 

 188 

4.2. Trade-off of interpretability and generalizability using machine-learning 189 

Compared to the AUC of folate, AUCs of vitB1 and vitB12 were relatively low. 190 

Using other parameters that were not incorporated into this model or using other models 191 

including deep neural networks might increase the accuracy of prediction. 192 

However, interpretability and completeness of machine-learning classifiers are 193 

subject to trade-off17. Although completeness and generalizability are desirable, 194 

interpretability is also indispensable, especially in clinical settings, since it provides 195 

meaningful and trustworthy findings for clinical physicians as well as new biological 196 

insights18. In this study we chose random forest classifiers since they provide expressive 197 

and interpretable data, with sufficient accuracy. 198 
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 199 

4.3. Biological mechanism suggestion 200 

Using the random forest classifiers, as shown in Figure 3, we identified several 201 

items related to complete blood count as top hits. Notably, our classifier was blind to 202 

any biological knowledge, including the well-established association between anemia 203 

and vitamin B deficiency, including folate19. The results provide further evidence of a 204 

relationship between vitamin B levels and the complete blood count and support the use 205 

of machine-learning to investigate novel, underlying biological mechanisms20. 206 

ALP and its metabolites indicate the vitamin B6 status21; low vitB12 is 207 

potentially associated with low ALP22. More generally, ALP may have a close and 208 

complicated relationship with the overall vitamin B group. Autoimmune disorders, 209 

especially thyroid disease, are commonly associated with pernicious anaemia23, but 210 

there has been no established hypothesis regarding the causal relationships between 211 

thyroid disease and vitamin B deficiencies. The potential association between the levels 212 

of these vitamins and ALP or TSH awaits further study, both investigations of 213 

populations and basic research24. 214 

 215 

4.4. Limitations 216 

This study is subject to several limitations. First, the findings of this 217 

single-center retrospective study may have limited generalizability. Second, the patients’ 218 

long-term prognosis was not investigated due to administrative restrictions; the extent to 219 

which this method can expedite clinical decision-making is therefore unclear. Further, 220 

we did not investigate the relationship between serological values and the need for 221 

intervention. The lack of data for vitamin B deficiency in the Japanese general 222 

population hampered the comparison between the experimental cohort and their 223 

counterparts who lacked psychiatric symptoms. Establishing appropriate reference 224 

values and an assessment method requires further investigation. Finally, we did not 225 
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assess the predictive value of other nutritional impairments, including vitamin B6 and 226 

homocysteine deficiency, which were previously shown to have a close link with 227 

psychiatric symptoms3,5; however, our study provides fundamental data on nutritional 228 

impairment based on the largest cohort of patients with intense psychiatric episode ever 229 

assembled for this purpose and presents a potential framework for predicting nutritional 230 

impairment using machine-learning. 231 

 232 

4.5. Conclusion 233 

The present report is, to the best of our knowledge, the first to demonstrate that 234 

machine-learning can efficiently predict nutritional impairment. Further research is 235 

needed to validate the external generalizability of the findings in other clinical situations 236 

and clarify whether interventions based on this method can improve patient care and 237 

cost-effectiveness. 238 

  239 
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5. Contribution to the Field Statement 240 

Vitamin B deficiency is common worldwide and may lead to psychiatric 241 

symptoms; however, vitamin B deficiency epidemiology in patients with intense 242 

psychiatric symptoms has rarely been examined. Moreover, vitamin deficiency testing is 243 

costly and time-consuming. Based on the largest cohort to date of patients at imminent 244 

risk of seriously harming themselves or others, this study demonstrated that the 245 

deficiency of certain vitamins can be predicted in an efficient manner via 246 

machine-learning models from patient characteristics and routine blood test results 247 

obtained within one hour. 248 

In detail, among the 497 patients investigated (over 60% was diagnosed with 249 

schizophrenia or related psychotic disorders), 22.5%, 16.1%, and 14.5% patients had a 250 

deficiency of vitamin B1, B12, and folate, respectively, by direct measurement. Also, the 251 

machine-learning models well generalized to predict the deficiency in unseen datasets; 252 

areas under the receiver operating characteristic curves for the validation dataset were 253 

0.716, 0.599, and 0.796, respectively. The prediction method presented in this study 254 

may expedite risk stratification and clinical decision-making regarding whether 255 

replacement therapy should be prescribed. The results also provided further evidence for 256 

a well-known relationship between these vitamins and the complete blood count and 257 

supported the application of machine-learning to investigate novel, underlying 258 

biological mechanisms. 259 
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Legends 359 

Figure 1: Graphical illustration of method of machine-learning 360 

 361 

Figure 2: Histogram and ROC curves of each vitamin B value 362 

 (A-C) The histograms for vitamin B1, vitamin B12, and folate (vitamin B9). 363 

Their medians (1st–3rd quartile) are 35 (30–42) ng/mL, 285 (206–431) ng/L, and 7.2 364 

(4.9–10.8) μg/L, respectively. 365 

 (D-F) ROC curves for vitamin B1, vitamin B12, and folate. Operating points 366 

used in Table 4 and Supplementary Table 5 are depicted in blue. 367 

Abbreviations: Vit B1, vitamin B1; Vit B12, vitamin B12. 368 

 369 

Figure 3: Gini importance and partial dependence plots of vitamin B deficiencies 370 

The Gini importance (A-C) and partial dependency plots of the probability of 371 

deficiency (D-F) are shown for the eight most important variables for vitamin B1, 372 

vitamin B12, and folate (vitamin B9). Combined with these, this machine-learning 373 

classifier without hypothesis also provided further evidence of a relationship between 374 

vitamin B levels and the complete blood count while also indicating a potential 375 

association between these vitamins and alkaline phosphatase (ALP) or 376 

thyroid-stimulating hormone (TSH). 377 

Abbreviations: Vit B1, vitamin B1; Vit B12, vitamin B12; Hb, hemoglobin; Hct, 378 

hematocrit; WBC, white blood cell count; CK, creatine kinase; RDW.CV, red blood cell 379 

distribution width-coefficient variation; Plt, platelet; ALT, alanine transaminase; Lym, 380 

lymphocyte fraction; Cre, creatinine; Neu, neutrocyte fraction; γGTP, 381 

γ-glutamyltransferase; MCV, mean corpuscular volume; glu, plasma glucose. 382 

 383 

Figure 4: Graphical abstract 384 

  385 
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Table 1. Patient distribution data (n = 497) 386 

 387 

 
ICD-10 code 

 
VitB1 

 
VitB12 

 
Folate 

  F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 
 

<20 <28 <30* 
 

<150 <180* <200 
 

<3.0 <4.0* <5.0 

N 28 21 300 58 16 0 29 20 24 1 
 

15 81 112 
 

37 80 107 
 

29 72 134 

% 5.6 4.2 60.4 11.7 3.2 0.0 5.8 4.0 4.8 0.2 
 

3.0 16.3 22.5 
 

7.4  16.1 21.5 
 

5.8 14.5 27.0 

 388 

Asterisks show the predefined cut-off values for vitamin B1, vitamin B12, and folate 389 

(vitamin B9) based on a reference12; different cut-off values based on other papers14–16 390 

are also presented for further investigation. 391 

 392 

ICD-10 codes. F0, Mental disorders due to known physiological conditions; F1, Mental 393 

and behavioral disorders due to psychoactive substance use; F2, Schizophrenia, 394 

schizotypal, delusional, and other non-mood psychotic disorders; F3, Mood disorders; 395 

F4, Anxiety, dissociative, stress-related, somatoform, and other non-psychotic mental 396 

disorders; F5, Behavioral syndromes associated with physiological disturbances and 397 

physical factors; F6, Disorders of adult personality and behavior; F7, Intellectual 398 

disabilities; F8, Pervasive and specific developmental disorders; F9, Behavioral and 399 

emotional disorders with onset usually occurring in childhood and adolescence. 400 

  401 
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Table 2. Vitamin B deficiencies in sub-groups 402 

 403 

 F0 F1 F2 F3 F4 F6 F7 F8 F9 

vitB1 < 30 9 

(32%) 

4 

(19%) 

70 (23%) 11 (19%) 3 

(19%) 

7 

(24%) 

5 

(25%) 

3 

(13%) 

0 

vitB12 < 180 5 

(18%) 

4 

(19%) 

53 (18%) 7 (12%) 3 

(19%) 

1 (3%) 4 

(20%) 

3 

(13%) 

0 

Folate < 4.0 5 

(18%) 

7 

(33%) 

38 (13%) 6(10%) 5 

(31%) 

3 

(10%) 

4 

(20%) 

4 

(17%) 

0 

 404 

Abbreviations; see Table 1. 405 

 406 

407 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted August 13, 2019. ; https://doi.org/10.1101/19004317doi: medRxiv preprint 

https://doi.org/10.1101/19004317
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

Vitamin deficiency predicted by ML 

 

Table 3. Summary of full dataset of age, sex, and 29 parameters for 408 

machine-learning 409 

 410 

Parameters Units Mean SD 
 

UN mg/dL 12.9 6.7 

Age years 42.3 15.4 
 

Cre mg/dL 0.7 0.2 

Sex Woman n = 228   T.bil mg/dL 0.7 0.4 

WBC ×103/µL 8.2 2.8 
 

Na mmol/L 139 3 

Hb g/dL 13.7 1.7 
 

Cl mmol/L 105 4 

Hct % 40.3 4.5 
 

K mmol/L 3.7 0.4 

MCV fL 89 6.6 
 

cor.Ca mg/dL 9.1 0.5 

Plt ×104/µL 24.9 6.3 
 

CK IU/L 514 1230 

RDW.CV % 13.5 1.3 
 

AST IU/L 31 34 

Neu % 70 11 
 

ALT IU/L 27 24 

Lym % 23 10 
 

LDH IU/L 239 91 

Mono % 6 2 
 

ALP IU/L 224 81 

Eo % 1 2 
 

γGTP IU/L 37 63 

Baso % 0 0 
 

Glu mg/dL 112 40 

TP g/dL 7.2 0.6 
 

CRP mg/dL 0.4 0.9 

Alb g/dL 4.4 0.4 
 

TSH μIU/mL 1.7 2.4 

 411 

Two patients lacked age data (no photo ID was available), and one patient lacked 412 

biochemistry data (inappropriate sample processing). For machine-learning, the missing 413 

values were replaced using the mean. 414 

 415 

Abbreviations: WBC, white blood cell count; Hb, hemoglobin; Hct, hematocrit; MCV, 416 

mean corpuscular volume; RDW.CV, red blood cell distribution width-coefficient 417 

variation; Plt, platelet; Neu, neutrocyte fraction; Lym, lymphocyte fraction; Mono, 418 

monocyte fraction; Eo, eosinocyte fraction; Baso, basocyte fraction; TP, total protein; 419 

Alb, albumin; UN, urea nitrogen; Cre, creatinine; T.bil, total bilirubin; Na, sodium; Cl, 420 
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chloride; K, potassium; cor.Ca, corrected calcium; CK, creatine kinase; AST, aspartate 421 

transaminase; ALT, alanine transaminase; LDH, lactate dehydrogenase; ALP, alkaline 422 

phosphatase; γGTP, γ-glutamyltransferase; Glu, plasma glucose; CRP, C-reactive 423 

protein; TSH, thyroid-stimulating hormone. 424 
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Table 4. Summary of AUC, sensitivity, specificity, and accuracy for the validation 426 

set 427 

 428 

 vitB1 vitB12 Folate 

AUC 0.716 0.599 0.796 

Sensitivity 0.594 0.316 0.667 

Specificity 0.783 0.943 0.917 

Accuracy 0.688 [0.597–0.787] 0.629 [0.523–0.746] 0.792 [0.665–0.909] 

 429 

Generalization performance of the classifiers was evaluated using AUC of the validation 430 

set. Sensitivity, specificity, and accuracy of the classification at the optimal operating 431 

points that maximized accuracy on the receiver operating characteristic curve of the 432 

validation set are also shown (see also Figure 2 D-F). Accuracy was defined as the 433 

average of the sensitivity and specificity. Square brackets indicate the 95% CI. Note that 434 

the 95% CI of each accuracy does not include 0.5, which demonstrates statistical 435 

significance. For further information, see Figure 2 and Supplementary Table 5. 436 

 437 

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, 438 

confidence interval. 439 

 440 
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