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ABSTRACT 15 

Objective: the auditory brainstem response is widely employed to evaluate hearing 16 

function of test subjects for both clinical and research purposes. Currently, hearing 17 

threshold estimation still relies on trained professionals to assess the audiograms, 18 

resulting in the largest cost component of the test. The objective of this study was to 19 

develop an automated approach to objectively and reliably detect the hearing thresholds. 20 

Design: From eight mice and four human participants, we recorded for each sound level 21 

hundreds of single sweeps and asked how many sweeps were minimum required for a 22 
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response being detected from cumulative averages using correlation function. We 23 

named this procedure the adaptive averaging approach. 24 

Result: We found an exponential increase in the required sweeps at near-threshold 25 

sound levels, modeling of which allowed objective and precise threshold estimation. 26 

The results from mouse and human recordings deviated consistently less than 5 dB 27 

from the expert-assessed values. Moreover, up to 69 % sweeps at suprathreshold sound 28 

tests were found redundant for the threshold estimation and could be avoided to 29 

improve test efficiency. 30 

Conclusions: The adaptive averaging approach achieved objective and precise hearing 31 

threshold detection and implementation of this approach in commercial recording 32 

devices will automate the hearing test in a more reliable and cost-effective way. 33 

 34 

 35 

INTRODUCTION 36 

The auditory brainstem responses (ABRs) are brain electrical potential changes due to 37 

the synchronous neuronal activities evoked by suprathreshold acoustic stimuli (Jewett 38 

et al., 1970). In a hearing test, surface electrodes are placed on the scalp of the test 39 

subject to monitor the threshold sound level below which ABRs are no longer 40 

detectable. As a non-invasive technique, the ABR test has been worldwide employed in 41 

hospitals and clinics to exam auditory function, particularly for infants, adults with 42 

learning disabilities as well as patients undergoing operation, to whom a test through 43 

communication or body movements is not applicable (Jacobson et al., 1990). Typical 44 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted August 13, 2019. ; https://doi.org/10.1101/19003301doi: medRxiv preprint 

https://doi.org/10.1101/19003301
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

ABR waveform is composed of five peaks in the early onset (up to ten milliseconds) of 45 

sound evoked potentials. These peaks appear to be one millisecond (ms) apart and have 46 

an amplitude of few hundreds nanovolt (nV), corresponding to synchronous activities 47 

arising from (I) auditory nerve, (II) cochlear nucleus, (III) superior olivary complex, 48 

(IV) lateral lemniscus and (V) inferior colliculus, respectively (Basbaum, 2008). Over 49 

decades, the ABR has not only been used to estimate the hearing threshold, also features 50 

of the waveform including peak latencies and amplitudes provide clinically significant 51 

information, for instance hidden hearing loss (Bramhall et al., 2018b; Mehraei et al., 52 

2016; Ridley et al., 2018), tinnitus (Bramhall et al., 2018a; Castaneda et al., 2019), site 53 

of lesions or tumors in the auditory system (Roeser et al., 2007) based on the way how 54 

the waveform is altered. 55 

 56 

Although the ABR test itself is considered objective, the waveform recognition at near-57 

threshold sound levels is not always trivial and requires visual inspection from trained 58 

professionals under established guidelines. Currently, the test still demands audiologists 59 

or clinicians who are experienced in this technique to conduct recordings and interpret 60 

outcomes on site, which raises the largest cost component in such test. Moreover, 61 

according to a previous report (Vidler et al., 2004) cases with limited consensus about 62 

the assessed hearing thresholds are not rare, because the accuracy of waveform 63 

recognition highly depends on the skill and the experience of the assessors, especially 64 

when untypical waveforms or high background noise level are encountered. As 65 

extensive hearing test is employed for instance to diagnose progressive and acquired 66 
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hearing loss in preschool children (Lu et al., 2014; Lu et al., 2011) as well as to evaluate 67 

drug ototoxicity, there is a clear need for an automated approach of high accuracy and 68 

robustness to make the test less labor-intense and more objective. 69 

 70 

Single-sweep ABR recordings are contaminated with background noise generated from 71 

muscle activity, adjacent power lines, etc. Therefore, it is almost exclusively required 72 

averaging over more than hundreds of sweeps to suppress random noise peaks, so that 73 

the signal-to-noise ratio (SNR) of the average responses is sufficient for an 74 

unambiguous ABR waveform recognition. In clinic, the waveform assessment is 75 

mainly based on visual inspecting of average responses and assisted by statistic 76 

measures like well-known single-point F ratio (Fsp) to evaluate the signal and noise 77 

characteristics (Elberling et al., 1984). Despite of recent progress using machine 78 

learning (McKearney et al., 2019), reliable assessments still heavily involve human 79 

supervision in a semi-objective fashion. In the last few decades, several methods have 80 

been proposed to automate the procedure. With the criterion whether sweep averages 81 

or single-sweeps are processed, they fall into two major categories, namely feature- and 82 

statistics-based detection strategies (Dobie, 1993). The former utilizes either 83 

quantification of the similarity between measured waveforms and existing templates 84 

from database (Valderrama et al., 2014), or feature recognition using trained artificial 85 

neural networks on human-annotated datasets (Alpsan et al., 1991; McKearney et al., 86 

2019), but detection accuracy is still limited by the waveform heterogeneity, varying 87 

data quality, as well as inconsistent training data (McKearney et al., 2019). The latter 88 
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measures either inter-sweep variability to detect stable signals using correlation 89 

function (Bershad et al., 1974; Weber et al., 1980; Xu et al., 1995) or level of residual 90 

noise (Don et al., 1994; Elberling et al., 1984) to describe the ‘quality’ of the signal 91 

through a scoring procedure, for which calibrations are needed for thresholding the 92 

signals with arbitrary boundary. Although some of these techniques have already been 93 

integrated in commercial devices, they are mainly employed for crosscheck purpose 94 

due to frequent detection errors caused by noise-related artifacts. 95 

 96 

To better understand the noise and ABR characteristics, we first recorded from mice at 97 

each sound level hundreds of sweeps and found pairwise correlation coefficients of 98 

those sweeps followed a normal distribution. Upon declined sound levels, a series of 99 

peaks with shifted center towards zero were obtained as a result of progressively 100 

overwhelmed responses in noise. This implies consistent threshold detection by 101 

thresholding quantified correlation requires comparable SNRs across recordings and 102 

frequent calibration, however neither of which is practical under daily experimental 103 

settings. In the present study, we overcame this limitation by a novel approach using 104 

adaptive averaging, in which sweeps were added iteratively for averaging in order to 105 

test how many sweeps are required for stimulus-related waveform being detected 106 

through cross correlation measurement. The hearing threshold was then objectively 107 

estimated by modeling the change in the minimal sweep numbers at peri-threshold 108 

sound levels. The autodetected thresholds were found deviated from the expert-109 

assessed ground truth consistently less than 5 dB. In addition, the minimal sweep 110 
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numbers are instructive for an efficient averaging strategy based on SNR adaptation. 111 

When implemented in commercial ABR devices, this automated approach could stop 112 

on-going averaging upon detected waveforms and save up to 69 % redundant sweeps 113 

according to our reconstructed experiments, and thereby shorten the test duration 114 

without compromising the accuracy of test results. 115 

 116 

 117 

MATERIALS AND METHODS 118 

Animals and Ethics 119 

C57BL/6 mice (wt) were purchased from Sino-British SIPPR/BK Lab.Animal Ltd 120 

(Shanghai, China). The terc-/- mouse line was kindly donated by Lin Liu (Nankai 121 

University, China) and bred in house. This study is conduct at the Ear Institute and the 122 

Hearing and Speech Center of Shanghai Ninth People’s Hospital. All procedures were 123 

reviewed and approved by the Institutional Authority for Laboratory Animal Care of 124 

the hospital (HKDL2018503). 125 

 126 

ABR recordings 127 

Mouse ABRs were recorded using a TDT RZ6/BioSigRZ system (Tuck-Davis Tech. 128 

Inc., US) in a sound-proof chamber. 7-week-old mice were anesthetized through 129 

intraperitoneal injection of hydrate chloride (500 mg/kg). Through the test, animal body 130 

temperature was maintained at around 37°C using a regulated heating pad (Harvard 131 

Apparatus, US) and rectal thermal probe. Electrical potential time courses were 132 
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registered via subdermal needle electrodes (Rochester Electro-Med. Inc., US) placed at 133 

vertex (record electrode), left infra-auricular mastoid region (reference electrode) and 134 

right shoulder region (ground electrode) of the test subjects. The acoustic stimuli of 135 

3 ms tone pips at 16 kHz were delivered via a multi-field magnetic speaker (Tuck-Davis 136 

Tech. Inc., US) positioned 10 cm from the vertex of the test subjects. The stimulus rate 137 

was 21 per second and the evoked potentials were sampled at 24 kHz. 500 sweeps were 138 

acquired at each test sound level starting from 90 dB to 0 dB with an increment of 5 dB. 139 

For one animal, we acquired signals evoked by peri-threshold sound levels (±10 dB 140 

with a 1-dB increment procedure). 141 

 142 

Human ABRs were collected from four adult volunteers aged between 21 and 29 years-143 

old without history in abnormal auditory function using a commercial device 144 

(Intelligent Hearing Systems, US) with Smart EP software. An electromagnetically 145 

shielded insert earphone (ER-3) was applied to deliver click stimulation to the left ear 146 

at a rate of 37.1 per second. The recorded potentials were amplified by a factor of 147 

100,000 and filtered with a 100 Hz (high-pass) and 3000 Hz (low-pass) filter. Averaged 148 

signals over 500, 1000, and 2000 sweeps were acquired 3 times at each test sound level 149 

starting from 60 dB to 0 dB with an increment of 5 dB.  150 

 151 

Analysis of single-sweep correlation 152 

Analysis of inter-sweep correlation was conduct in mouse recordings. All acquired 153 

single-sweep ABRs were analyzed using self-written routines in MATLAB 154 
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(MathWorks Inc., US). The artifact rejection level was set to 55 μV and a high-pass 155 

filter (smoothing splines with a smoothing parameter of 0.5, MATLAB function) was 156 

applied to the raw data. The pairwise correlation was calculated using MATLAB 157 

function from sweeps cropped with a temporal window of 1-6 ms post-stimulation 158 

onset, resulting in 61,075 correlation coefficients from 350 sweeps at each test sound 159 

levels. The histograms of the obtained coefficients were fitted with a normal 160 

distribution. 161 

 162 

Adaptive averaging method 163 

For the mouse dataset, each iteration recruited 50 sweeps into MATLAB workspace 164 

until all 350 sweeps were added. Within iterations all sweeps in the workspace were 165 

subdivided randomly into two groups for separated averaging, between which a cross 166 

correlation function was computed using MATLAB function. The existence of 167 

stimulus-related waveform was tested based on whether the obtained correlation has a 168 

maximum at a lag less than 1% of total signal length (1-6 ms post-stimulation onset). 169 

In each iteration the lag value was measured three times with regrouped sweeps to reject 170 

cases with coincidently overlapped signals at required lag value. For each sound level, 171 

it was measured at which iteration stimulus-related response was detected. The 172 

maximum number of executed iterations was set to 7, which is limited to total sweep 173 

numbers (after excessive amplitude exclusion). A sigmoid function (1) was employed 174 

to model the minimum required iteration numbers after normalization N(S) at each 175 

sound level S and a growth of 0.9 in the function corresponds to the estimated hearing 176 
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threshold T. The constant k equals 0.6, which was obtained from the best fitting. 177 

𝑁(𝑆) =
1

1+𝑒−𝑘(𝑆−𝑇)
      (1) 178 

As for the human dataset, averaged responses over 500, 1000 and 2000 sweeps were 179 

loaded in each iteration. Lag value was measured three times with a combination of 2 180 

out of 3 averaged responses of the same sweep number. The maximum executed 181 

iteration number was set to 7. For iterations requiring averages over 1500 or more than 182 

2000 sweeps, the combined average responses avg(M+N) containing M plus N sweeps 183 

were obtained from the weighted averaging of avg(M) and avg (N) using the equation 184 

(2). 185 

𝑎𝑣𝑔(𝑀 + 𝑁) =
𝑀•𝑎𝑣𝑔(𝑀)+𝑁•𝑎𝑣𝑔(𝑁)

𝑀+𝑁
     (2) 186 

 187 

The maximal lag value allowed for a true ABR waveform was 2 % of the total signal 188 

length (0-10 ms post-stimulation onset). Same as for the mouse data, hearing threshold 189 

was interpolated from a fitting with sigmoid function at a growth of 0.9.  190 

 191 

Hearing Threshold Assessment 192 

All hearing thresholds were verified by visual inspection of five independent clinicians 193 

blinded to the test subjects. For each experiment, recordings averaged either over fixed 194 

sweep counts (the conventional averaging) or according to the outcomes from the 195 

adaptive averaging. Averaged audiograms were provided in MATLAB figures which 196 

enable interactive zoom function for better waveform recognition. Results were 197 

collected and mean values were calculated using the 3/5 method with the highest and 198 
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the lowest estimation dropped. 199 

 200 

RESULTS 201 

Correlations between Single-sweep ABR Recordings 202 

As ABRs are usually embedding in high level background activities as well as system 203 

noise, smooth baseline and clear waveform, if present, are usually obtained after an 204 

averaging over hundreds of sweeps (Fig 1 A). We recorded from mouse single-sweeps 205 

upon 16 kHz tone-pips at different levels of loudness. After a small fraction had been 206 

excluded due to excessive amplitudes caused by movement artifacts, more than 350 207 

sweeps were obtained and then filtered through a high-pass filter (Nishida et al., 1993) 208 

to remove low frequency fluctuations in short latency ABR components (Suppl 1). 209 

Pairwise correlations were computed from the sweeps cropped with a temporal window 210 

of 1-6 ms post-stimulation onset. The obtained correlation coefficients (CCs) at each 211 

sound level were found following normal distributions (Fig 1 B). When sweeps were 212 

recorded upon suprathreshold sound levels, corresponding shifts of the CC distributions 213 

were observed, indicating increased degrees of positive correlation. In line with 214 

previous studies (Galbraith, 2001), this result confirmed that ABR waveforms in single 215 

sweeps are highly correlated and measurable using correlation function. Moreover, 216 

when fit with a single gaussian function, invariable peak width (0.1778 ± 0.0154) was 217 

obtained from each distribution, implying reliable auditory responses with identical 218 

waveform and an add-on effect of constant uncorrelated noises. 219 

 220 
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 221 

Objective Threshold Detection using Correlation Coefficients 222 

Next, we tested whether one can use correlation measurements to detect objectively the 223 

hearing thresholds. Recordings were performed using acoustic stimuli varying from 90 224 

dB to 0 dB in three wildtype mice (wt) of normal hearing and five telomerase-knock-225 

out mice (terc-/-) of high percentage in deafness. Representative responses of a wt and 226 

a terc-/- animal were illustrated in Fig 2 A and the medians of CCs were plotted as a 227 

function of test sound levels (Fig 2 B). Between two rising phases, a shift of about 228 

30 dB was found, consistent with the threshold elevation estimated by visual inspection. 229 

This result confirmed CCs as a promising measure to detect the hearing threshold, as 230 

derived from early theoretical work (Bershad et al., 1974). In order to obtain a critical 231 

test boundary between supra- and sub-threshold sound level, we computed from eight 232 

animal at each sound level the medians of CCs and aligned them to the visual inspected 233 

thresholds (Fig 2 C). Sweeps upon stimuli above hearing threshold were found to have 234 

stronger positive correlation with a median greater than 0.0119 ± 0.0034. Although this 235 

empirically determined value could be used to threshold detectable ABRs, the detection 236 

accuracy was limited by close values obtained at near-threshold levels as well as inter-237 

trial variability (data not shown). 238 

 239 

 240 

Adaptive Averaging Method 241 

It is impractical to keep identical recording conditions (including electrode position, 242 
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depth of anesthesia, etc.) for multiple recording sessions or perform frequent calibration 243 

before each experiment for daily use. In order to develop a more robust and applicable 244 

approach, we designed a novel procedure to adapt sweep number for averaging to the 245 

requirement for waveform detection. This means, instead of thresholding a detectable 246 

positive correlation using pre-calibrated critical test boundary, the new approach asks 247 

for how many sweeps are required to generate two average responses that are positively 248 

correlated above certain criterion (Fig 3 A). As the noise level is suppressed 249 

exponentially by averaging over increasing number of sweeps, this method adapts 250 

intrinsically to varying data quality and works in a calibration-free fashion. 251 

 252 

In detail, recorded sweeps were randomly divided into two groups and cross correlation 253 

was calculated between group averages (Fig 3 C, see Fig 3 B for results using 254 

conventional averaging). In the presence of stimulus-related waveforms, one expected 255 

a neglectable lag (e.g. less than 1 % of analyzed data points) at which maximum 256 

correlation was found (Fig 3 D). To reject false positives caused by coincident overlap 257 

of noise peaks, each lag test required consistent results from three parallel 258 

measurements on regrouped sweeps. For each failed lag test, additional sweeps were 259 

added and the random split averaging was repeated, until a response was detected or 260 

the maximum number of iterations was reached. As shown in Fig 3 E, the number of 261 

executed iterations increased rapidly starting at near-threshold sound levels and 262 

reaching its maximum at the first subthreshold sound level as expected. Although the 263 

sharp transition allows direct readout of the lowest suprathreshold sound level, we 264 
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further tested whether precise estimation beyond the increment between test sound 265 

levels could be achieved by modeling the result (Fig 3 F). From one animal, sweeps 266 

were acquired upon peri-threshold sound levels with 1-dB increment and the increase 267 

in executed iterations was fit with a sigmoid function. Similar fit parameters were 268 

obtained from test datasets of 1-dB and 5-dB increment (Fig 3 F), indicating possible 269 

interpolation of the threshold from regular 5-dB increment procedure to achieve 1-dB 270 

detection precision based on the established model. 271 

 272 

 273 

Accuracy and Efficiency of the Adaptive Averaging Method 274 

To evaluate the performance of the proposed adaptive averaging approach, we applied 275 

the procedure to ABR recordings from eight mice as well as four human test participants. 276 

Note that for human test, average responses were collected multiple times with different 277 

sweep numbers to simulate the random split averaging over sweeps (see Suppl 2 for the 278 

variant of flowchart), as the commercial devices in our hospital did not support 279 

exporting single-sweeps. When compared to the waveform assessments of five 280 

independent clinicians, the new approach yielded correct hearing threshold detection 281 

(deviated less than 5 dB from the expert-assessed ground truth) in 8/8 cases for mouse 282 

and 4/4 for human (Fig 4 A), indicating a detection accuracy of near human 283 

performance. In addition, visual inspection of the adaptive averaged responses and 284 

those averaging over a fixed sweep counts yielded similar test results (Fig 4 A), 285 

suggesting limited contribution of redundant sweeps in conventional averaging to 286 
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visual waveform recognition. When compared to the conventional averaging at all 287 

suprathreshold plus the first two subthreshold stimuli, the new method required up to 288 

69.6 ± 5.8 % and 36.2 ± 21.1 % less sweeps for a correct threshold estimation in the 289 

mouse and human ABR tests, respectively (Fig 4 B).  290 

 291 

 292 

Discussion 293 

In the last few decades, attempts were made towards automated ABR analysis. Several 294 

techniques were proposed including the usage of correlation functions to discriminate 295 

stable components (ABR waveforms) from random fluctuations (system noise and 296 

background activities). In this study we found pairwise CCs between sweeps follows a 297 

normal distribution and medians of which reflect the power of stimulus-related 298 

waveform over baseline activities. The observed broadening of the distribution is 299 

probably caused by random fluctuations which by chance weak correlate or anti-300 

correlate with the true responses. The observed constant peak widths for different test 301 

sound levels implies low variation in the ABR waveforms and comparable noise level 302 

within single recording session (Fig 1 B). This finding supports the notation that signal 303 

transmission in the auditory system is of high fidelity and SNR is the major challenge 304 

for detecting true hearing thresholds. 305 

 306 

In practice, comparable SNRs are expected within single recording session except for 307 

electrode displacement or weak anesthesia (data not shown), allowing threshold 308 
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detection from a pre-calibrated system based on correlation measurement (Fig 2 C). It 309 

is, however, unrealistic to keep the same experimental settings including the same 310 

system, electrode position, anesthesia depth, etc. for different test subjects as well as in 311 

multiple recording sessions, hampering a plug-in application of correlation-based 312 

threshold autodetection. In fact, we showed CCs aligned to the hearing thresholds vary 313 

between 0.009 and 0.0199 due to different SNRs under our experimental settings (Fig 314 

2 C). This variation is about the same magnitude to those caused by different peri-315 

threshold sound levels, which leads to limited detection accuracy. 316 

 317 

The basic idea of the adaptive averaging approach is to keep a standard waveform 318 

detection criterion but adapt the SNR by iteratively increased sweep number for 319 

averaging. In previous study of middle latency response analysis (Xu et al., 1995), it 320 

has been proposed that neglectable lag in cross correlation between two consecutively 321 

recorded average signals can serve as a good indication for suprathreshold responses, 322 

because in contrast to stimulus-related responses, random distributed noise peaks may 323 

superimpose at any time shifts. Here we adapted this idea to detect ABR waveforms in 324 

two subgroup averages of sweeps. The underlying logic is as follows: one starts with 325 

constant noise level and unknown signal power; each iteration recruits more sweeps in 326 

the averaging to suppress progressively the noise level of the updated average responses 327 

until the true ABR waveform is no longer overwhelmed in noise and becomes 328 

detectable by cross correlation function. Thereby, one expects (1) converging lags to 329 

zero requires averaging over less sweeps for recordings containing strong responses 330 
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than those with weak responses; (2) the absence of response leads to non-converging 331 

lags irrespective of sweep numbers used for averaging. These are supported by our 332 

observations that detection of responses upon suprathreshold stimuli requires minimum 333 

number of iterations (Fig 3 E), as well as three-fold measured lags show large variation 334 

at subthreshold sound levels (Fig 3 D). The steep increase in the number of executed 335 

iterations (equivalent to sweep numbers used in averaging) is characteristic for the peri-336 

threshold responses and insensitive to the absolute values of SNRs, enabling a 337 

calibration-free automatic threshold detection. Further we showed modeling of the 338 

number of executed iterations enables more precise threshold estimation beyond the 339 

increment of test sound levels through interpolation, in our case up to 1 dB (Fig 3 F). 340 

Alternatively, the adaptive averaging approach enables a test strategy with 341 

progressively reduced increment at peri-threshold sound levels to achieve required 342 

precision. 343 

 344 

For both mouse and human recordings, the automated approach is extreme reliable in 345 

detecting hearing thresholds within a maximum error of ± 5 dB from the expert-346 

assessed ground truths provided by five independent clinicians (Fig 4 A). Besides, the 347 

observation variation is comparable between the visual inspected groups either using 348 

conventional or adaptive averaging, as well as between visual inspection and automatic 349 

detection (Fig 4 A). Based on these results we conclude that the automated approach 350 

achieves accurate and robust threshold estimation of near human performance. When 351 

to stop averaging is an important decision to make during the ABR data collection, it 352 
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not only makes the hearing test more efficient by avoiding prolonged acquisition and 353 

redundant data, but also specifies the confidence level of waveform interpretation (Don 354 

et al., 1996). Since the underlying principle of the new approach is to average just 355 

enough sweeps for the SNR above detection limit, intrinsically it returns instruction to 356 

stop averaging when a response is detected. Meanwhile, it is temporally efficient to 357 

terminate test when previous iterations with higher sound levels fail to detect a response, 358 

because in this case acquired sweeps at lower sound level is supposed to contain pure 359 

noise. The reconstructed experiments to compare required sweep number by the 360 

adaptive averaging and the fixed sweep counts in the conventional averaging show a 361 

reduction up to 69 % and 36 % for mouse and human ABR test, respectively (Fig 4 B). 362 

Since the maximum sweep count used here to rule out undetectable ABRs was chosen 363 

more than necessary, further improvement can be made by introducing single-point F 364 

ratio (Elberling et al., 1984) or residual noise analysis (Don et al., 1994) to terminate 365 

averaging. In fact, the acquisition speed of modern ABR devices is usually not a 366 

limiting factor (more than 2000 sweep per minute), maybe more importantly the 367 

adaptive averaging approach sets the minimum requirement for the data quality that 368 

ensures unambiguous waveform recognition by both human and machine. 369 

 370 

The present work has demonstrated a robust and efficient approach to automate hearing 371 

threshold detection from recorded ABRs. In contrast to other existing techniques, the 372 

basic idea of our approach is not to quantify how likely the recording contains a 373 

response, but for the first time to model how many sweeps are required for an averaged 374 
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response to counteract the background noise and become detectable by cross correlation 375 

function. By doing so, we bypassed the long-lasting challenges caused by varying SNR 376 

of ABR recordings and in addition obtained a strategy to stop averaging in an 377 

unsupervised fashion. Hence, the proposed method has a remarkable potential of being 378 

implemented in commercial ABR devices to make hearing test more reliable and cost-379 

effective. 380 

 381 

 382 
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 460 

Figure Legends 461 

Figure 1. Pairwise correlation coefficients of single-sweep ABR recordings. (A) 462 

sweeps were recorded at 4 different sound levels (grey lines) and characteristic ABR 463 

waveforms, if exist, were obtained via averaging (colored lines). (B) Histograms of 464 

pairwise correlation coefficients that were computed from the recorded sweeps in A 465 

(black lines). A normal distribution (colored lines) was used to fit each histogram. The 466 

mean value of the resulted full width at haft maximum was 0.1778 ± 0.0154 (mean ± 467 

s.d.). 468 

 469 
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Figure 2. Threshold estimation using correlation coefficients. (A) Representative 470 

audiograms averaged over 350 sweeps were recorded from mice of normal (black lines) 471 

or impaired hearing (red lines). Waveforms with different peak amplitudes were 472 

observed for recordings at suprathreshold stimuli (above 25 dB for animal of normal 473 

hearing and 55 dB for animal of impaired hearing). (B) The same sweeps as for A were 474 

used to compute pairwise correlation coefficients at each sound level, respectively. The 475 

median correlation coefficients were plotted against corresponding test sound levels 476 

and fitted with a sigmoid function. Delayed raising of the medians upon increasing 477 

sound levels was observed in animal with impaired hearing, which is in line with the 478 

threshold elevation illustrated in A. (C) Median correlation coefficients at peri-479 

threshold sound levels were measured from eight mice. Each curve was aligned to 480 

visual inspected thresholds at zero. Mean value of the median correlation coefficients 481 

at hearing threshold was 0.0119 ± 0.0034 (mean ± s.d.) varying between 0.0090 and 482 

0.0199.  483 

 484 

Figure 3. Threshold detection using adaptive averaging method (A) Flowchart of the 485 

adaptive averaging method. (B) Representative mouse audiogram averaged over 350 486 

sweeps. The visual inspected threshold was between 25 dB and 30 dB. (C) Subgroup 487 

averages at each sound level (black versus grey lines) were obtained by averaging 488 

randomly split two groups of sweeps. The intermediate averages were updated by 489 

iterations for measuring the cross correlation. (D) The absolute lags in data point of the 490 

maximum cross correlation were three-fold measured at each test sound level. For 491 
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recordings upon suprathreshold stimuli (dots) a consistent small absolute lag values (no 492 

more than 1 data point) were obtained, while non-zero values with large variations 493 

(31.11 ± 16.12) were observed for cases of subthreshold stimuli (cycles). (E) In each 494 

iteration 50 new sweeps were added into the data pool for random split averaging, until 495 

the updated lag value was no more than k data point (in this case k = 1). Minimum 496 

required iterations were plotted for tests upon suprathreshold (dots) and subthreshold 497 

sound levels (cycles) with an upper limit at 7 to avoid infinite iterations. It is 498 

recommended to stop a test, when the hearing threshold is confirmed by two 499 

consecutive runs without detectable waveforms (black cycles), so that iterations at 500 

lower test sound levels are saved (red cycles). (F) The stepwise increase in required 501 

iterations was fitted by a sigmoid function after normalization, allowing threshold 502 

interpolation beyond the increment of test sound levels. As calibrated with peri-503 

threshold test with 1-dB increment, the most accurate threshold estimation corresponds 504 

to a growth of 0.9 in the best fitted function. 505 

 506 

Figure 4. Performance of the adaptive averaging method in detecting hearing threshold. 507 

(A) ABR recordings from mice (n=8) and human participants (n=4) were evaluated by 508 

5 independent clinicians or the automated approach. As ground truth, the mean 509 

thresholds were used which were based on human inspection of conventional averaged 510 

responses with the highest and the lowest value excluded. The thresholds reported by 511 

clinicians based on the mouse ABR audiograms using conventional averaging (fixed 512 

sweep counts, black dots) and the adaptive averaged responses (varying sweep numbers, 513 
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red dots) deviated from the expert-assessed ground truth by -0.250  2.719 dB and 514 

1.875  3.487 dB, respectively, while it was 0.000  3.590 dB for the automatic detected 515 

threshold (red cycles). Similar results were obtained from human ABR audiograms with 516 

estimation deviations of -0.083  1.200 dB for the conventional averaging (black dots) 517 

and 0.083  1.200 dB for the adaptive averaging (red dots) through visual inspection, 518 

compared to 0.1671.258 dB for the automated approach (red cycles). (B) Total sweep 519 

numbers required for the adaptive averaging (black boxes) were compared to those used 520 

in the conventional averaging (red boxes). Within each experiment, sweep numbers at 521 

all suprathreshold levels and the first two subthreshold levels were counted and 522 

normalized to the default setting for averaging (350 sweeps for mouse ABR and 3000 523 

sweeps for human ABR). The adaptive averaging required 30.4 ± 5.8 % sweeps in 524 

mouse ABR tests (left) and 63.8 ± 21.1% in human ABR tests (right) to perform 525 

successful threshold detection. Error bar represents standard deviation. 526 
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