Eating behavior trajectories in the first ten years of life and their relationship with BMI

1

| 2  |                                                                                                                                                               |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3  | Moritz Herle <sup>1</sup> , Bianca De Stavola <sup>1</sup> , Christopher Hübel <sup>2,3,4</sup> , Diana L Santos Ferreira <sup>5,6</sup> ,                    |
| 4  | Mohamed Abdulkadir <sup>7</sup> , Zeynep Yilmaz <sup>8</sup> , Ruth Loos <sup>9</sup> , Rachel Bryant-Waugh <sup>1,10</sup> , Cynthia M.                      |
| 5  | Bulik <sup>4,8,11</sup> & Nadia Micali <sup>1,7,12</sup>                                                                                                      |
| 6  | <sup>1</sup> Great Ormond Street Institute of Child Health, University College London, London, UK                                                             |
| 7  | <sup>2</sup> Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology &                                                         |
| 8  | Neuroscience, King's College London, UK                                                                                                                       |
| 9  | <sup>3</sup> UK National Institute for Health Research (NIHR) Biomedical Research Centre for Mental<br>Health, South London and Maudsley Hospital, London, UK |
| 10 | Health, South London and Maudsley Hospital, London, UK                                                                                                        |
| 11 | <sup>4</sup> Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm,                                                          |
| 12 | Sweden                                                                                                                                                        |
| 13 | <sup>5</sup> Medical Research Council Integrative Epidemiology, University of Bristol, Bristol, UK                                                            |
| 14 | <sup>6</sup> Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK                                                           |
| 15 | <sup>7</sup> Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland                                                         |
| 16 | <sup>8</sup> Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC,                                                          |

17 USA

1

<sup>9</sup> Icahn Mount Sinai School of Medicine, New York, NY, USA

- 19 <sup>10</sup> Great Ormond Street Hospital, London, UK
- 20 <sup>11</sup> Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC,
- 21 USA

- <sup>12</sup> Child and Adolescent Psychiatry Division, Department of Child and Adolescent Health,
- 23 Geneva University Hospital, Geneva, Switzerland
- 24 Names for PubMed Index: Herle, De Stavola, Hübel, Santos Ferreira, Abdulkadir, Yilmaz,
- 25 Loos, Bryant-Waugh, Bulik, Micali
- 26 Corresponding author:
- 27 Dr Nadia Micali MD, MRCPsych, PhD, FAED
- 28 Senior Lecturer and Honorary Consultant Psychiatrist
- 29 Child and Adolescent Mental Health, Palliative Care and Paediatrics Section
- 30 Population, Policy and Practice Research Theme
- 31 UCL Institute of Child Health
- 32 30 Guilford Street
- 33 London WC1N 1EH
- 34 Tel: 020 7905 2163
- 35 Fax: 020 7831 7050
- 36 e-mail: n.micali@ucl.ac.uk
- 37 Running title: Patterns of child eating behaviors and later BMI
- 38 Sources of support: This work was specifically funded by the UK Medical Research Council
- and the Medical Research Foundation (ref: MR/R004803/1).
- 40 Financial Disclosure: Bulik reports: Shire (grant recipient, Scientific Advisory Board
- 41 member) and Pearson and Walker (author, royalty recipient).
- 42 Abbreviations: Eating behaviors: EB, Body Mass Index: BMI, Avon Longitudinal Study of
- 43 Parents and Children: ALSPAC, Latent Class Growth Trajectories: LCGA,
- 44 Avoidant/restrictive food intake disorder: ARFID

- 46
- 47
- 48

# 49 Abstract

| 50 | Background: Child eating behaviors (EBs) are highly heterogeneous and their longitudinal                   |
|----|------------------------------------------------------------------------------------------------------------|
| 51 | impact on childhood weight is unclear. The objective of this study was to characterize EBs                 |
| 52 | during the first ten years of life and evaluate associations with BMI at age 11 years.                     |
| 53 | Method: Data were parental reports of EBs from birth to age 10 years and standardized body                 |
| 54 | mass index (zBMI) at age 11 years (n=12,048) from the Avon Longitudinal Study of Parents                   |
| 55 | and Children. Latent class growth analysis was used to derive latent classes of over-, under-,             |
| 56 | and fussy eating. Linear regression models for zBMI at 11 years on each set of classes were                |
| 57 | fitted to assess associations with EBs trajectories.                                                       |
| 58 | <b>Results</b> : We identified four classes of overeating; low stable (70%), low transient (15%), late     |
| 59 | increasing (11%), and early increasing (6%). The early increasing class was associated with                |
| 60 | higher zBMI (boys: $\beta$ =0.83, 95%CI:0.65, 1.02; girls: $\beta$ =1.1; 0.92, 1.28) compared to low       |
| 61 | stable. Six classes were found for undereating; low stable (25%), low transient (37%), low                 |
| 62 | decreasing (21%), high transient (11%), high decreasing (4%), and high stable (2%). The                    |
| 63 | latter was associated with lower zBMI (boys: $\beta$ =-0.79; -1.15, -0.42; girls: $\beta$ =-0.76; -1.06, - |
| 64 | 0.45). Six classes were found for fussy eating; low stable (23%), low transient (15%), low                 |
| 65 | increasing (28%), high decreasing (14%), low increasing (13%), high stable (8%). The high                  |
| 66 | stable class was associated with lower zBMI (boys: $\beta$ =-0.49; -0.68 -0.30; girls: $\beta$ =-0.35; -   |
| 67 | 0.52, -0.18).                                                                                              |
| 68 | Conclusions: Early increasing overeating during childhood is associated with higher zBMI at                |
| 69 | age 11. High persistent levels of undereating and fussy eating are associated with lower                   |
| 70 | zBMI. Longitudinal trajectories of EBs may help identify children potentially at risk of                   |
| 71 | adverse weight outcomes.                                                                                   |
|    |                                                                                                            |

4

# 73 Introduction

| 74 | Child EBs have received attention, especially due to their potential association with weight.    |
|----|--------------------------------------------------------------------------------------------------|
| 75 | However, previous cross-sectional and a limited number of longitudinal studies produced          |
| 76 | inconsistent findings. Previous research has suggested that some EBs are stable across           |
| 77 | childhood, as indicated by moderate correlations between EBs at age 4 and 10.(1) However,        |
| 78 | some EBs, such as fussy eating, which is the tendency to eat only certain foods and to refuse    |
| 79 | to try new foods, are common and potentially more transient(2). One third of children show       |
| 80 | some fussiness during the first four years of life, but many tend to remit by age six with about |
| 81 | 4% being persistently fussy.(3)                                                                  |
|    |                                                                                                  |
| 82 | Cross-sectional studies (4-6) have primarily suggested that EBs, such as responsiveness to       |
| 83 | external food cues or emotional overeating are associated with higher child weight. Other        |
| 84 | EBs, such as fussy eating and responsiveness to internal satiety cues are associated with        |
| 85 | lower weight (7-9). However, other cross-sectional studies have not replicated these findings    |
| 86 | (10, 11). Longitudinally, EBs measured at 5-6 years are weakly associated with body mass         |
| 87 | index (BMI) at about 6-8 years (12). In earlier ages, between 3 months and 9-15 months, a        |
| 88 | bidirectional association between child eating and weight has been reported.(13) More            |
| 89 | recently, the bidirectional association between child eating and later BMI was replicated in a   |
| 90 | sample of Norwegian children, aged 4 to 8 years(14). Furthermore, children who display           |
| 91 | fussy eating appear to be at higher risk for developing underweight in childhood, but may be     |
| 92 | at increased risk for later overweight(15, 16). However, some studies report no or only weak     |
| 93 | longitudinal relationships(17-19).                                                               |
| 94 | Overall, childhood EBs and childhood weight outcomes and the longitudinal development of         |
| -  | ,                                                                                                |
| 95 | child EBs remains poorly understood. Longitudinal studies often focus on overall mean            |
|    |                                                                                                  |

scores, ignoring heterogeneity and transience of child EBs. We, therefore, aimed to

5

|     | 5                                                                                                      |
|-----|--------------------------------------------------------------------------------------------------------|
| 97  | investigate repeatedly measured EBs in a large population-based birth cohort using latent              |
| 98  | class modeling to identify longitudinal trajectories during the first ten years of life.               |
| 99  | Furthermore, we examined their relationship with age- and sex-standardized zBMI at age 11.             |
| 100 | This age was selected as the outcome measures, due to the proximity to the derived                     |
| 101 | trajectories and to ensure the largest and most representative sample of prepubertal children.         |
| 102 | Our hypothesis was that persistent EB patterns in childhood would be more strongly                     |
| 103 | associated with child zBMI than transient ones.                                                        |
| 104 | Methods                                                                                                |
| 105 | Participants                                                                                           |
| 106 | Data from the Avon Longitudinal Study of Parents and Children (ALSPAC), a population                   |
| 107 | based, longitudinal cohort of mothers and their children born in the southwest of England (20,         |
| 108 | 21) were analyzed. All pregnant women expected to have children between the 1 <sup>st</sup> April 1991 |
| 109 | and 31 <sup>st</sup> December 1992 were invited to enroll in the study, providing informed written     |
| 110 | consent. From all pregnancies ( $n = 14,676$ ), 14,451 mothers opted to take part; by one year         |

111 13,988 children were alive. When the oldest children were approximately 7 years of age, an

112 attempt was made to bolster the initial sample with eligible cases who had failed to join the

- study originally (referred to as Phase 2), however these participants were not included in 113
- 114 these analyses. The phases of enrolment are described in more detail in the cohort profile
- 115 papers (20, 21). One sibling per set of multiple births, was randomly excluded from these
- 116 analyses to guarantee independence of participants.

117 *Eating behaviors* 

118 Repeated measures of parent-reported child EBs were available at a maximum of eight time 119 points around the age of 15, 24, 38, 54, 62, 81, 105, and 116 months. Parents were asked if 120 they were worried about their child overeating ("How worried are you because your child is

| 121 | overeating"), and undereating ("How worried are you because your child is undereating").      |
|-----|-----------------------------------------------------------------------------------------------|
| 122 | The remaining questions probed the child's tendency to be fussy ("How worried are you         |
| 123 | because your child is choosy", "How worried are you because your child has feeding            |
| 124 | difficulties", "How worried are you because your child is refusing food"). Parents were given |
| 125 | the following response options: "no/did not happen", "not worried", "a bit worried" and       |
| 126 | "greatly worry". The two top categories ("a bit worried" and "greatly worry") were combined   |
| 127 | to avoid very low frequencies.                                                                |
| 128 | Anthropometric data                                                                           |
| 129 | Weight and height were measured during clinic visits when the children $(n = 4,885)$ were 11  |
| 130 | years old (mean=128.6 months, SD=1.64). Height was measured to the nearest millimeter         |
| 131 | with the use of a Harpenden Stadiometer (Holtain Ltd.). Weight was measured with a Tanita     |
| 132 | Body Fat Analyzer (Tanita TBF UK Ltd.) to the nearest 50g. BMI was calculated by dividing     |
| 133 | weight (in kg) by height squared (in m). Age- and sex-standardized BMI z-scores (zBMI)        |
| 134 | were calculated according to UK reference data, indicating the degree to which a child is     |
| 135 | heavier (>0) or lighter (<0) than expected according to his/her age and sex(22).              |
| 136 | Covariates                                                                                    |
| 137 | The following indicators of socioeconomic status of the family were used: Maternal age at     |
| 138 | birth (years) and maternal education status (A-Levels or higher, lower than A-Levels) and     |
| 139 | parental occupational status (manual, non-manual labor of the highest earner in the family).  |
| 140 | Further birthweight (grams) and gestational age at birth (weeks) of the children were also    |
| 141 | used. In addition analysis of pre-pregnancy maternal BMI was also considered. The             |
| 142 | indicators of socioeconomic status were treated as potential confounders for the analyses of  |
| 143 | zBMI and as predictors of missing data for parent-reported EB data. Details of all data are   |

144 available through a fully searchable data dictionary at

145 www.bristol.ac.uk/alspac/researchers/our-data.

#### 146 **Statistical analyses**

147 Analyses were conducted from October 2017 to May 2018 and included two stages in line

148 with the classify-analyze framework (23).

149 First, Latent Class Growth Analysis (LCGA) was used to identify subgroups ("latent

150 classes") of children who share the same trajectories of EBs (24). In comparison to Growth

151 Mixture Modelling, an alternative approach to identifying these latent classes, LCGA

152 constrains the variation within each class to zero, reducing the number of parameters and

simplifying model estimation (24). LCGA was conducted using Full Information Maximum

Likelihood (FIML) (25), incorporating indicators of social class (maternal age, maternal

education, and manual or non-manual labor of the highest earner in the family) as auxiliary

variables to account for the missingness (including attrition) affecting the longitudinal data,

as previously described in ALSPAC (20). FIML assumes data are missing at random (MAR),

158 once these auxiliary variables are accounted for and therefore children with at least one

159 measure of eating behavior at any time point. Analyses were stratified by sex to examine

160 possible effect modification. Stratified results were compared against unstratified using

161 combined data using Likelihood Ratio Tests. As the number of classes is not directly

162 estimated, alternative specifications with increasing number of assumed classes were

163 compared using the following model fit indicators: Akaike Information Criterion (AIC),

164 Bayesian Information Criterion (BIC), adjusted Bayesian information Criterion (adj BIC),

selecting the lowest values, and entropy, aiming for the highest. In addition to these model fit

166 indicators, the class size and interpretability of the classes were taken into account as

8

| 167 | recommended by Muthén | (25). After selection | of the best number of classes, | estimations |
|-----|-----------------------|-----------------------|--------------------------------|-------------|
|-----|-----------------------|-----------------------|--------------------------------|-------------|

- were repeated using 1000 random starts to avoid local maxima.
- 169 In the second stage, participants were allocated to their most likely classes according to their
- 170 posterior probabilities using the maximum-probability assignment rule (26). These predicted
- 171 classes were then included as explanatory variables in regression analyses of zBMI scores at
- age 11, which also controlled for the following a priori confounders: maternal age,
- 173 gestational age, birthweight, and maternal education at birth. Results are reported in terms of
- adjusted regression coefficients ( $\beta$ ) for each class in comparison to the first (reference) class.
- 175 Since not all children with EB data had data on zBMI, because of attrition affecting later
- ages, the characteristics of study participants with/without zBMI were compared in order to
- assess their representativeness of the original study membership. LCGA was conducted in
- 178 MPlus Version 8 (27). Regression analyses were conducted in Stata 15 (28).

# 179 Ethical approval

- 180 Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee
- and the Local Research Ethics Committees. All procedures were performed in accordance
- 182 with the ethical standards laid down in the 1964 Declaration of Helsinki and its later
- amendments.
- 184
- 185
- 186
- 187
- 188

9

#### 190 **Results**

| 191 | Summary statistics of the study population at baseline are listed in Table 1. Prevalence of the |
|-----|-------------------------------------------------------------------------------------------------|
| 192 | different EBs varied at the different time points (Figure 1). Overeating was uncommon, with     |
| 193 | the majority of parents reporting that their children never engaged in this behavior (77-85%    |
| 194 | across the 8 time points). Being choosy about food was the most common child behavior,          |
| 195 | especially at 54 months, when a fifth of the children were described as choosy to a worrying    |
| 196 | extent.                                                                                         |
| 197 | TABLE 1 here                                                                                    |
| 198 | FIGURE 1 here                                                                                   |
| 199 | Eating behavior classes                                                                         |

200 Comparisons of alternative number of classes for the three LGCA models identified four

201 classes for the overeating longitudinal data, and six classes for both undereating and fussy

202 eating according to our pre-specified criteria (eTable 1a-c). Overall, separate models for boys

and girls fit the data better than when analyzed jointly (eTable 2).

204 Most children were assigned to the "low stable" class of overeating, marked by the absence

of high levels of overeating across time points (Figure 2). Undereating was more

206 heterogeneous; the most common class was "low transient", characterized by low levels of

undereating, which attenuated completely by age 10. Similarly, the most common class for

fussy eating was the "low transient" group, with increasing numbers of parents reporting

209 fussy eating beginning at around 3 years. Figure 3a-c illustrates the class trajectories for

210 overeating, undereating, and fussy eating.

211 When comparing maternal and gestational age at birth, birthweight, and maternal education

across classes we found that, for overeating, boys and girls in the "early increasing" class had

10

| 213 | a higher mean birthweight than those in the "low stable" class; eTable 3). Children in the |
|-----|--------------------------------------------------------------------------------------------|
|     |                                                                                            |

- 214 "high stable" class of undereating and fussy eating had a lower mean birthweight than their
- 215 respective "low stable" classes. In addition, the percentage of mothers with A-Levels or
- university degree was lower in the "low stable" class of fussy eating compared to the "high
- stable". Child zBMI scores per eating behavior class ranged widely within all classes
- 218 (eFigure 1a-b).

. . .

- 219 FIGURE 2 HERE
- 220 FIGURES 3A -3C HERE
- 221 *Sensitivity analyses*
- Not all children included in LCGA had zBMI data at 11 years. Class frequencies derived
- from all participants were compared to the frequencies among the children who had complete
- BMI data at 11 years. Class sizes and distributions were similar (eTable 5).

## Association between EBs and zBMI at age 11

#### 226 Overeating

- 227 In comparison to children who were reported to never overeat ("low stable"), all other classes
- 228 were positively associated with greater zBMI at the later age of 11 years: "low transient"
- 229 (boys: coefficient  $\beta$ =0.26, 95%CI:0.13, 0.39; girls:  $\beta$ =0.32, 95%CI: 0.19, 0.44), "late
- 230 increasing" (boys:  $\beta = 0.94$ , 95% CI: 0.8, 1.09; girls:  $\beta = 0.94$ , 95% CI: 0.82, 1.07) and "early
- 231 increasing" (boys:  $\beta$ =0.83, 95%CI: 0.65, 1.02; girls:  $\beta$ =1.1, 95%CI: 0.92, 1.28; Table 2).
- 232 Undereating
- 233 In contrast, undereating classes were associated with lower zBMI, in comparison to the "low
- stable" class. The magnitude of associations in the "high transient" (boys:  $\beta$ =-0.25, 95% CI:-
- 235 0.41, -0.08; girls:  $\beta$ =-0.24, 95%CI:-0.38, -0.09) and "high decreasing" (boys:  $\beta$ =-0.27,

11

| 236 | 95%CI:-0.5, | -0.05; girls: | $\beta = -0.21, 9$ | 5%CI:-0.45, | 0.03) classes | were similar. | "Stable high" |
|-----|-------------|---------------|--------------------|-------------|---------------|---------------|---------------|
|     |             |               |                    |             |               |               |               |

- undereating was most strongly associated with lower zBMI (boys:  $\beta$ =-0.79, 95%CI:-1.15, -
- 238 0.42; girls:  $\beta$ =-0.76, -1.06, -0.45; Table 2).
- 239 Fussy Eating
- 240 Similarly, fussy eating was associated with lower zBMI, for both boys and girls. "Stable
- high" fussy eating was most strongly and negatively associated with zBMI (boys:  $\beta$ =-0.49,
- 242 95%CI: -0.68, -0.30; girls:  $\beta$ =-0.35, -0.52, -0.18; Table 2). In contrast to boys, amongst girls
- 243 "low transient" and "low increasing" fussy eating were not associated with zBMI at 11 years.
- 244 Interactions between class and sex in their effects on zBMI at 11 were not supported for any
- of the EBs. Results from unadjusted regression models are available in eTable 6a-c.
- 246 <u>TABLE 2 HERE</u>
- 247
- 248
- 249
- 250
- 251

- 252
- 253
- 254

255

12

#### 257 Discussion

In this study, differential developmental patterns in EBs across childhood were identified and found to be associated with later child zBMI. This is the first study to address this question, by establishing longitudinal trajectories of EBs during the first ten years of childhood and investigating their association with childhood zBMI at age 11. Results suggested four different trajectories of overeating and six trajectories each for undereating and fussy eating, respectively.

264 The majority of children were not described as overeaters by their parents. However, two 265 trajectories (16% of children) were marked by gradual increases in overeating and showed 266 similar positive associations with child zBMI at age 11. The tendency to overeat is likely to 267 result in larger portion sizes, which have been suggested to have enduring effects on child 268 weight (29, 30). Recent longitudinal analyses of dietary data in a UK child cohort highlighted 269 that eating larger portions a few times per week accelerates early childhood growth (31). 270 In contrast to overeating, undereating was more common and more heterogeneous. By 15 271 months, parents reported that children engaged in various levels of undereating, with about 272 10% of boys and girls reported to undereat at a worrying level. However, undereating 273 behavior of most children attenuated with time, indicating that parent-perceived undereating 274 in children under the age of two years may represent a normal pattern of development. Only 275 2-3% of children engaged in persistent high levels of undereating. This persistent pattern of 276 undereating was negatively associated with child zBMI at age 11. Parental reports of 277 undereating might be an indication of satiety sensitivity (32). Previous research has suggested 278 that children who were attuned to their internal satiety cues ate smaller portions (33), and 279 grew at a slower rate than their less satiety-responsive siblings (34).

| 280 | Similarly to undereating, fussy eating behavior was highly heterogeneous in early life. Using              |
|-----|------------------------------------------------------------------------------------------------------------|
| 281 | LCGA, we identified, a small but substantial group of children (8%) who were persistently                  |
| 282 | fussy throughout the first ten years of life. These results add to previous studies suggesting             |
| 283 | that some fussiness around food is common during childhood, with one third of children                     |
| 284 | reported to be fussy at some point, but only a small percentage of children remaining highly               |
| 285 | fussy eaters across development (3). More persistent fussy eating trajectories were negatively             |
| 286 | associated with child zBMI at age 11.                                                                      |
| 287 | The relationship between food fussiness and weight is complex as fussy children might                      |
| 288 | undereat certain food groups (e.g., fruits and vegetables) but overeat others (e.g.,                       |
| 289 | carbohydrates and fats). Previous cross-sectional studies proposed that fussy children ate                 |
| 290 | fewer vegetables and less fish, but consumed more savory and sweet snack foods at 14                       |
| 291 | months <sup>(35)</sup> . However, a longitudinal study indicated that persistent fussy eating in childhood |
| 292 | was associated with higher prevalence of underweight in children aged six years (16).                      |
| 293 | This study supports the prospective association between EBs and weight in children.                        |
| 294 | Individual differences in weight have consistently been shown to be influenced by genetic                  |
| 295 | factors (36). The behavioral susceptibility to obesity theory (37) suggests that EBs might act             |
| 296 | as a mediator between genetic risk for obesity and exposure to the current obesogenic                      |
| 297 | environment. Previous studies proposed that increased genetic risk for obesity is associated               |
| 298 | with decreased responsiveness to satiety cues, as well as greater responsiveness to external               |
| 299 | food cues in ten year old twins (38). Subsequent research has replicated these findings in                 |
| 300 | Finnish (39), UK (40) and Canadian adults (41). However, previous studies only included                    |
| 301 | single measures of EBs and it remains unknown how genetic risk for obesity influences                      |
| 302 | longitudinal trajectories of EBs across development.                                                       |

14

| 303 | Apart from weight, EBs have been implicated in diet quality and as potential risk factor for    |
|-----|-------------------------------------------------------------------------------------------------|
| 304 | eating disorders. Especially, food fussiness has been associated with poor diet quality,(42)    |
| 305 | such as low consumption of vegetables (43). Food fussiness has received attention in the        |
| 306 | context of avoidant/restrictive food intake disorder (ARFID) (44). ARFID is a recently          |
| 307 | defined diagnosis and little is known about its onset, development, and effect on health and is |
| 308 | characterized by extreme food fussiness affecting growth, weight, and physical health (45)      |
| 309 | and that a large proportion of adolescents diagnosed with ARFID were persistent fussy eaters    |
| 310 | during childhood (46). More research examining the impact of early food fussiness and           |
| 311 | undereating on feeding and eating disorders risk is needed. It is possible that the persistent  |
| 312 | fussy and undereating associated with low zBMI in this study may be ARFID presentations,        |
| 313 | or risk factors for other eating disorders marked by restrictive eating, such as anorexia       |
| 314 | nervosa. Further, child food fussiness has been found to be moderately heritable (47) and       |
| 315 | future research is needed to uncover its genetic basis, as well as the role of fussy eating in  |
| 316 | neurodevelopmental disorders such as autism spectrum disorder.                                  |

317 Strengths and Limitations

318 To our knowledge, this is the most comprehensive longitudinal study of child EBs in a large 319 sample. Data were from a population-based cohort and person-centered statistical analyses 320 allowed us to clarify the heterogeneity of EBs. Height and weight were objectively measured 321 during clinic visits. However, measures of EBs were parent reported and subject to reporting 322 bias. For example parents might be influenced by their own eating behaviors, their prior 323 experiences with other children and might be observing their children more closely in early 324 life. As children grow up and enter school, they will have an increasing numbers of meals 325 outside the family home. Therefore parents might be less aware of their children's EBs. 326 However, relying on parental report remains the most commonly used measure of child EBs, 327 given that young children are not able to report their own behavior reliably, and standardized

15

| 328 | direct observational measures are costly and time-consuming, and would be infeasible for       |
|-----|------------------------------------------------------------------------------------------------|
| 329 | large cohorts such as ALSPAC. Additional support for the use parental reports comes from       |
| 330 | research validating parent reported child eating against behavioral measures of eating such as |
| 331 | eating rate, energy intake at meal, eating without hunger and caloric compensation (32).       |
| 332 | Additionally, analyzing the effect of estimated class membership on an outcome includes        |
| 333 | some degree of uncertainty. Classes derived from LCGA are unobserved and hence class           |
| 334 | membership is inferred. We used maximum-probability assignment, which allocates each           |
| 335 | participant to the class they are most likely to belong to, carrying this class membership     |
| 336 | forward to further analyses. This method has been suggested to attenuate the effect of class   |
| 337 | on distal outcomes, due to uncertainty in class assignment (48). Hence, effect sizes estimated |
| 338 | from the regression analyses may be conservative.                                              |
| 339 | Conclusions                                                                                    |
| 340 | We identified four trajectories of overeating and six trajectories each of fussy and           |

- undereating in the ALSPAC sample, providing a thorough examination of child EBs. EB
- trajectories were differentially associated with child zBMI, with persistent behaviors having a
- 343 stronger effect on BMI. Characterizing the heterogeneity of early life EBs is an important
- 344 component to understanding behavioral risk factors for common conditions, such as obesity.

#### 345 Acknowledgements:

- We are extremely grateful to all the families who took part in this study, the midwives for
- their help in recruiting them, and the whole ALSPAC team, which includes interviewers,
- 348 computer and laboratory technicians, clerical workers, research scientists, volunteers,
- 349 managers, receptionists and nurses.
- 350 **Funder**:

16

- 351 This work was supported by the UK Medical Research Council and the Medical Research
- 352 Foundation (ref: MR/R004803/1).
- 353 The UK Medical Research Council and Wellcome (Grant ref: 102215/2/13/2) and the
- 354 University of Bristol provide core support for ALSPAC. A comprehensive list of grants
- funding is available on the ALSPAC website
- 356 (http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf).
- 357 Prof Bulik acknowledges funding from the Swedish Research Council (VR Dnr: 538-2013-
- 358 8864).
- 359 The funders were not involved in the design or conduct of the study; collection, management,
- analysis, or interpretation of the data; or preparation, review, or approval of the manuscript.
- 361 **Potential conflict of interest:** Bulik reports: Shire (grant recipient, Scientific Advisory
- 362 Board member) and Pearson and Walker (author, royalty recipient). All other authors have
- indicated they have no conflicts of interest to disclose.

#### **364** Author Contributions:

- 365 MH, BDS, CB, RBW and NM designed the research; MH and BDS performed statistical
- analyses; all authors wrote and revised the manuscript for important intellectual content; NM
- had primary responsibility for final content. All authors read and approved the final
- 368 manuscript.
- 369
- 370
- 371

17 373 374 375 References 376 377 1. Ashcroft J, Semmler C, Carnell S, van Jaarsveld CHM, Wardle J. Continuity and stability of 378 eating behaviour traits in children. Eur J Clin Nutr. 2008;62(8):985-90. Emmett PM, Hays NP, Taylor CM. Factors Associated with Maternal Worry about Her Young 379 2. 380 Child Exhibiting Choosy Feeding Behaviour. Int J Env Res Pub He. 2018;15(6). 381 Cardona Cano S, Tiemeier H, Van Hoeken D, Tharner A, Jaddoe VW, Hofman A, et al. 3. 382 Trajectories of picky eating during childhood: A general population study. The International journal 383 of eating disorders. 2015;48(6):570-9. 384 Braet C, Claus L, Goossens L, Moens E, Van Vlierberghe L, Soetens B. Differences in eating 4. 385 style between overweight and normal-weight youngsters. J Health Psychol. 2008;13(6):733-43. 386 Domoff SE, Miller AL, Kaciroti N, Lumeng JC. Validation of the Children's Eating Behaviour 5. 387 Questionnaire in a low-income preschool-aged sample in the United States. Appetite. 2015;95:415-388 20. 389 6. Hajna S, LeBlanc PJ, Faught BE, Merchant AT, Cairney J, Hay J, et al. Associations between 390 family eating behaviours and body composition measures in peri-adolescents: Results from a 391 community-based study of school-aged children. Can J Public Health. 2014;105(1):E15-E21. 392 7. Jansen PW, Roza SJ, Jaddoe VW, Mackenbach JD, Raat H, Hofman A, et al. Children's eating 393 behavior, feeding practices of parents and weight problems in early childhood: results from the 394 population-based Generation R Study. The international journal of behavioral nutrition and physical 395 activity. 2012;9:130. 396 Webber L, Hill C, Saxton J, Van Jaarsveld CH, Wardle J. Eating behaviour and weight in 8. 397 children. International journal of obesity. 2009;33(1):21-8. 398 Sanchez U, Weisstaub G, Santos JL, Corvalan C, Uauy R. GOCS cohort: children's eating 9. 399 behavior scores and BMI. Eur J Clin Nutr. 2016. 400 10. Svensson V, Lundborg L, Cao Y, Nowicka P, Marcus C, Sobko T. Obesity related eating 401 behaviour patterns in Swedish preschool children and association with age, gender, relative weight 402 and parental weight--factorial validation of the Children's Eating Behaviour Questionnaire. The 403 international journal of behavioral nutrition and physical activity. 2011;8:134. 404 Cao YT, Svensson V, Marcus C, Zhang J, Zhang JD, Sobko T. Eating behaviour patterns in 11. 405 Chinese children aged 12-18 months and association with relative weight--factorial validation of the 406 Children's Eating Behaviour Questionnaire. The international journal of behavioral nutrition and 407 physical activity. 2012;9:5. 408 Parkinson KN, Drewett RF, Le Couteur AS, Adamson AJ, T GMSC. Do maternal ratings of 12. 409 appetite in infants predict later Child Eating Behaviour Questionnaire scores and body mass index? 410 Appetite. 2010;54(1):186-90. 411 van Jaarsveld CHM, Llewellyn CH, Johnson L, Wardle J. Prospective associations between 13. 412 appetitive traits and weight gain in infancy. Am J Clin Nutr. 2011;94(6):1562-7. 413 14. Steinsbekk S, Wichstrom L. Predictors of Change in BMI From the Age of 4 to 8. Journal of 414 pediatric psychology. 2015. 415 15. Antoniou EE, Roefs A, Kremers SP, Jansen A, Gubbels JS, Sleddens EF, et al. Picky eating and 416 child weight status development: a longitudinal study. J Hum Nutr Diet. 2016;29(3):298-307. 417 de Barse LM, Tiemeier H, Leermakers ET, Voortman T, Jaddoe VW, Edelson LR, et al. 16. 418 Longitudinal association between preschool fussy eating and body composition at 6 years of age:

18

419 The Generation R Study. The international journal of behavioral nutrition and physical activity. 420 2015;12:153. 421 17. Mallan KM, Fildes A, Magarey AM, Daniels LA. The Relationship between Number of Fruits, 422 Vegetables, and Noncore Foods Tried at Age 14 Months and Food Preferences, Dietary Intake 423 Patterns, Fussy Eating Behavior, and Weight Status at Age 3.7 Years. J Acad Nutr Diet. 424 2016;116(4):630-7. 425 Carruth BR, Skinner JD. Revisiting the picky eater phenomenon: neophobic behaviors of 18. 426 young children. J Am Coll Nutr. 2000;19(6):771-80. 427 Taylor CM, Steer CD, Hays NP, Emmett PM. Growth and body composition in children who 19. 428 are picky eaters: a longitudinal view. Eur J Clin Nutr. 2018. 429 20. Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort Profile: the 430 'children of the 90s'--the index offspring of the Avon Longitudinal Study of Parents and Children. Int J 431 Epidemiol. 2013;42(1):111-27. 432 21. Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Smith GD, et al. Cohort Profile: The Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. International Journal of 433 434 Epidemiology. 2013;42(1):97-110. 435 Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child 22. 436 overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):1240-3. 437 Clogg C. Latent class models: Recent developments and prospects for the future. In: 23. 438 Arminger G, Clogg C, Sobel M, editors. Handbook of statistical modeling for the social and behavioral 439 sciences. New York, NY: Plenum Press;; 1995. p. 311 - 59. 440 24. Berlin KS, Parra GR, Williams NA. An Introduction to Latent Variable Mixture Modeling (Part 441 2): Longitudinal Latent Class Growth Analysis and Growth Mixture Models. Journal of pediatric 442 psychology. 2014;39(2):188-203. 443 25. Asparouhov T, Muthen B. Auxiliary Variables in Mixture Modeling: Three-Step Approaches 444 Using Mplus. Struct Equ Modeling. 2014;21(3):329-41. 445 26. Goodman LA. On the Assignment of Individuals to Latent Classes. Sociol Methodol. 446 2007;37:1-22. 447 27. Muthen LK, Muthen B. Mplus User's Guide. Eighth Edition. Los Angeles, CA Muthén & 448 Muthén; 1997-2017 449 28. StataCorp. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC 2017. 450 29. Huang TT, Howarth NC, Lin BH, Roberts SB, McCrory MA. Energy intake and meal portions: 451 associations with BMI percentile in U.S. children. Obes Res. 2004;12(11):1875-85. 452 McConahy KL, Smiciklas-Wright H, Birch LL, Mitchell DC, Picciano MF. Food portions are 30. 453 positively related to energy intake and body weight in early childhood. J Pediatr-Us. 454 2002;140(3):340-7. 455 31. Syrad H, Llewellyn CH, Johnson L, Boniface D, Jebb SA, van Jaarsveld CHM, et al. Meal size is a critical driver of weight gain in early childhood. Sci Rep-Uk. 2016;6. 456 457 32. Carnell S, Wardle J. Measuring behavioural susceptibility to obesity: validation of the child 458 eating behaviour questionnaire. Appetite. 2007;48(1):104-13. 459 33. Syrad H, Johnson L, Wardle J, Llewellyn CH. Appetitive traits and food intake patterns in early 460 life. Am J Clin Nutr. 2016;103(1):231-5. van Jaarsveld CHM, Boniface D, Llewellyn CH, Wardle J. Appetite and Growth A Longitudinal 461 34. 462 Sibling Analysis. Jama Pediatr. 2014;168(4):345-50. 463 35. Tharner A, Jansen PW, Kiefte-de Jong JC, Moll HA, van der Ende J, Jaddoe VW, et al. Toward 464 an operative diagnosis of fussy/picky eating: a latent profile approach in a population-based cohort. 465 The international journal of behavioral nutrition and physical activity. 2014;11:14. 466 36. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Felix R, et al. Genetic studies of body mass 467 index yield new insights for obesity biology. Nature. 2015;518(7538):197-U401. 468 37. Llewellyn C, Wardle J. Behavioral susceptibility to obesity: Gene-environment interplay in 469 the development of weight. Physiology & behavior. 2015;152(Pt B):494-501.

| 470<br>471 | 38. Llewellyn CH, Trzaskowski M, van Jaarsveld CHM, Plomin R, Wardle J. Satiety mechanisms in genetic risk of obesity. Jama Pediatr. 2014;168(4):338-44.                                        |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 472        | 39. Konttinen H, Llewellyn C, Wardle J, Silventoinen K, Joensuu A, Mannisto S, et al. Appetitive                                                                                                |
| 473        | traits as behavioural pathways in genetic susceptibility to obesity: a population-based cross-sectional                                                                                         |
| 474        | study. Sci Rep-Uk. 2015;5.                                                                                                                                                                      |
| 475        | 40. de Lauzon-Guillain B, Clifton EA, Day FR, Clement K, Brage S, Forouhi NG, et al. Mediation                                                                                                  |
| 476        | and modification of genetic susceptibility to obesity by eating behaviors. Am J Clin Nutr.                                                                                                      |
| 477        | 2017;106(4):996-1004.                                                                                                                                                                           |
| 478<br>479 | 41. Jacob R, Drapeau V, Tremblay A, Provencher V, Bouchard C, Perusse L. The role of eating behavior traits in mediating genetic susceptibility to obesity. Am J Clin Nutr. 2018;108(3):445-52. |
| 480        | 42. Vilela S, Hetherington MM, Oliveira A, Lopes C. Tracking diet variety in childhood and its                                                                                                  |
| 481        | association with eating behaviours related to appetite: The generation XXI birth cohort. Appetite.                                                                                              |
| 482        | 2018;123:241-8.                                                                                                                                                                                 |
| 483        | 43. de Barse LM, Tiemeier H, Leermakers ETM, Voortman T, Jaddoe VWV, Edelson LR, et al.                                                                                                         |
| 484        | Longitudinal association between preschool fussy eating and body composition at 6 years of age:                                                                                                 |
| 485        | The Generation R Study. The international journal of behavioral nutrition and physical activity.                                                                                                |
| 486        | 2015;12(153):8.                                                                                                                                                                                 |
| 487        | 44. APA APA. Diagnostic and Statistical Manual of Mental Disorders (DSM-V). Arlington, VA: APA                                                                                                  |
| 488        | Press; 2013.                                                                                                                                                                                    |
| 489        | 45. Bryant-Waugh R. Avoidant restrictive food intake disorder: An illustrative case example. New                                                                                                |
| 490<br>491 | York, N.Y: Wiley; 2013. 1 online resource p.<br>46.         Fisher MM, Rosen DS, Ornstein RM, Mammel KA, Katzman DK, Rome ES, et al.                                                            |
| 492        | Characteristics of avoidant/restrictive food intake disorder in children and adolescents: a "new                                                                                                |
| 493        | disorder" in DSM-5. J Adolesc Health. 2014;55(1):49-52.                                                                                                                                         |
| 494        | 47. Smith AD, Herle M, Fildes A, Cooke L, Steinsbekk S, Llewellyn CH. Food fussiness and food                                                                                                   |
| 495        | neophobia share a common etiology in early childhood. J Child Psychol Psyc. 2017;58(2):189-96.                                                                                                  |
| 496        | 48. Bray BC, Lanza ST, Tan X. Eliminating Bias in Classify-Analyze Approaches for Latent Class                                                                                                  |
| 497        | Analysis. Struct Equ Modeling. 2015;22(1):1-11.                                                                                                                                                 |
| 498        |                                                                                                                                                                                                 |
|            |                                                                                                                                                                                                 |
| 499        |                                                                                                                                                                                                 |
| 500        |                                                                                                                                                                                                 |
| 501        |                                                                                                                                                                                                 |
| 502        |                                                                                                                                                                                                 |
| 503        |                                                                                                                                                                                                 |
| 504        |                                                                                                                                                                                                 |
| 505        |                                                                                                                                                                                                 |
| 506        |                                                                                                                                                                                                 |
| 507        |                                                                                                                                                                                                 |
| 508        |                                                                                                                                                                                                 |
| 509        |                                                                                                                                                                                                 |
| 510        |                                                                                                                                                                                                 |
| 511        |                                                                                                                                                                                                 |
|            |                                                                                                                                                                                                 |

## 512 Tables

#### 513

Table 1: Summary statistics of the baseline characteristics of the study population;

# **ALSPAC Study**

| N available         Mean (SD) or N (%)           Sex         12048         Boys: 6208 (52)           Gestational age at birth (weeks)         12048         39.45 (1.86)           Birthweight (grams)         11902         345 (546)           Maternal age (years)         12048         28.31 (4.86)           Maternal A-Levels or higher         11375         4158 (37)           Parental non-manual labor         9366         7558 (81)           profession         28MI <sup>a</sup> of children at age 11         4885           (kg/m <sup>2</sup> )         0.60 (1.14)         149           514         11000         11000         11000           515         11000         11000         11000           516         11000         11000         11000           517         11000         11000         11000           518         11000         11000         11000           519         11000         11000         11000           520         11000         11000         11000           521         11000         11000         11000           522         11000         11000         11000           523         11000         11000         11000 <th></th> <th><b>Baseline characteristics</b></th> <th></th> <th></th> |     | <b>Baseline characteristics</b>         |             |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------|-------------|--------------------|
| Gestational age at birth (weeks)       12048       39.45 (1.86)         Birthweight (grams)       11902       345 (546)         Maternal age (years)       12048       28.31 (4.86)         Maternal A-Levels or higher       11375       4158 (37)         Parental non-manual labor       9366       7558 (81)         profession       28MI <sup>a</sup> of children at age 11       0.60 (1.14)         (kg/m <sup>2</sup> )       4885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                                         | N available | Mean (SD) or N (%) |
| Birthweight (grams)11902345 (546)Maternal age (years)1204828.31 (4.86)Maternal A-Levels or higher113754158 (37)Parental non-manual labor<br>profession93667558 (81)grofession20000.600 (1.14)(kg/m²)48850.600 (1.14)516517518519519514519514520521521521521522523523522523524524523524525524525525526526527527528528529529520521531522531533533534534535535536537538539539530531532533534535535536537538539539531532533534535535536537538539539530531532533534535535536537538539539539530531532 </td <td></td> <td>Sex</td> <td>12048</td> <td>Boys: 6208 (52)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | Sex                                     | 12048       | Boys: 6208 (52)    |
| Maternal age (years)       12048       28.31 (4.86)         Maternal A-Levels or higher       11375       4158 (37)         Parental non-manual labor       9366       7558 (81)         profession       2366       0.60 (1.14)         (kg/m²)       4885       0.60 (1.14)         (kg/m²)       4885       519         516       517       518         519       520       521         521       522       523         522       523       524         523       524       525         526       527       526         527       528       529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | Gestational age at birth (weeks)        | 12048       | 39.45 (1.86)       |
| Maternal A-Levels or higher       11375       4158 (37)         Parental non-manual labor       9366       7558 (81)         profession       2BMI <sup>a</sup> of children at age 11       4885       0.60 (1.14)         (kg/m <sup>3</sup> )       4885       0.60 (1.14)       11375         514       514       515       516       517         515       516       517       518       519         516       517       518       519       514         518       519       514       515       515         519       514       515       516       517         519       514       518       519       519         519       513       519       510       510         520       521       521       521       521         522       523       524       525       526         524       525       526       526       526         525       526       527       528       528         526       527       528       528       528                                                                                                                                                                                                                                                                                                                  |     | Birthweight (grams)                     | 11902       | 345 (546)          |
| Parental non-manual labor       9366       7558 (81)         profession       9366       0.60 (1.14)         zBMI <sup>a</sup> of children at age 11       4885       0.60 (1.14)         (kg/m <sup>2</sup> )       4885       1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | Maternal age (years)                    | 12048       | 28.31 (4.86)       |
| profession         9366           zBMI <sup>a</sup> of children at age 11<br>(kg/m <sup>2</sup> )         0.60 (1.14)           (kg/m <sup>2</sup> )         4885           514         -           515         -           516         -           517         -           518         -           519         -           520         -           521         -           522         -           523         -           524         -           525         -           526         -           527         -           528         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | Maternal A-Levels or higher             | 11375       | 4158 (37)          |
| Image: Image Min and Section 2019         0.60 (1.14)           (kg/m²)         0.60 (1.14)           514         -           515         -           516         -           517         -           518         -           519         -           519         -           519         -           519         -           519         -           520         -           521         -           522         -           523         -           524         -           525         -           526         -           527         -           528         -           529         -           521         -           522         -           523         -           524         -           525         -           526         -           527         -           528         -                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                                         | 9366        | 7558 (81)          |
| 515         516         517         518         519         520         521         522         523         524         525         526         527         528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | zBMI <sup>a</sup> of children at age 11 | 4885        | 0.60 (1.14)        |
| 516         517         518         519         520         521         522         523         524         525         526         527         528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 514 |                                         |             |                    |
| 517         518         519         520         521         522         523         524         525         526         527         528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 515 |                                         |             |                    |
| 518         519         520         521         522         523         524         525         526         527         528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 516 |                                         |             |                    |
| 519         520         521         522         523         524         525         526         527         528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 517 |                                         |             |                    |
| <ul> <li>520</li> <li>521</li> <li>522</li> <li>523</li> <li>524</li> <li>525</li> <li>526</li> <li>527</li> <li>528</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 518 |                                         |             |                    |
| <ul> <li>521</li> <li>522</li> <li>523</li> <li>524</li> <li>525</li> <li>526</li> <li>527</li> <li>528</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 519 |                                         |             |                    |
| <ul> <li>522</li> <li>523</li> <li>524</li> <li>525</li> <li>526</li> <li>527</li> <li>528</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 520 |                                         |             |                    |
| <ul> <li>523</li> <li>524</li> <li>525</li> <li>526</li> <li>527</li> <li>528</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 521 |                                         |             |                    |
| 524<br>525<br>526<br>527<br>528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 522 |                                         |             |                    |
| 525<br>526<br>527<br>528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 523 |                                         |             |                    |
| 526<br>527<br>528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 524 |                                         |             |                    |
| 526<br>527<br>528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 525 |                                         |             |                    |
| 527<br>528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                         |             |                    |
| 528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |                                         |             |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                                         |             |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 529 |                                         |             |                    |

#### 530

# Table 2: Estimated regression coefficients $(\beta)$ for assigned eating behavior class on

## standardized BMI at age 11, separately for boys and girls

| Overeating                            |                              |            |                           |                |                    |       |
|---------------------------------------|------------------------------|------------|---------------------------|----------------|--------------------|-------|
| Outcome: age and sex                  | adjusted                     | BMI age    | d 11 <sup>1</sup> , adjus | sted for covar | iates <sup>2</sup> |       |
|                                       | Boys                         |            |                           | Girls          |                    |       |
| Ν                                     | 2286                         |            | _                         | 2596           |                    |       |
| Class                                 | β                            | 95% C      | $\mathbf{I}^{3}$          | β              | 95% C              | I     |
| 1 low stable                          | base                         |            |                           | Base           |                    |       |
| 2 low transient                       | 0.26                         | 0.13       | 0.39                      | 0.32           | 0.19               | 0.44  |
| 3 late increasing                     | 0.94                         | 0.8        | 1.09                      | 0.94           | 0.82               | 1.07  |
| 4 early increasing                    | 0.83                         | 0.65       | 1.02                      | 1.1            | 0.92               | 1.28  |
| Test for (Sex * Class)<br>interaction | F (3, -                      | 4869) = 1. | .10, <i>p</i> =0.35       |                |                    |       |
| Undereating                           |                              |            |                           |                |                    |       |
| Outcome: age and sex                  | adjusted                     | BMI age    | d 11, adjus               | ted for covari | ates <sup>2</sup>  |       |
|                                       | Boys                         | Boys       |                           | Girls          |                    |       |
| N                                     | 2285                         |            |                           | 2595           |                    |       |
| Class                                 | β                            | 95% C      | I                         | β              | 95% C              | I     |
| 1 low stable                          | base                         |            |                           | base           |                    |       |
| 2 low transient                       | -0.11                        | -0.24      | 0.01                      | -0.13          | -0.24              | -0.01 |
| 3 low decreasing                      | -0.17                        | -0.31      | -0.03                     | -0.19          | -0.32              | -0.07 |
| 4 high transient                      | -0.25                        | -0.41      | -0.08                     | -0.24          | -0.38              | -0.09 |
| 5 high decreasing                     | -0.27                        | -0.5       | -0.05                     | -0.21          | -0.45              | 0.03  |
| 6 high stable                         | -0.79                        | -1.15      | -0.42                     | -0.76          | -1.06              | -0.45 |
| Test for (Sex * Class)<br>interaction |                              |            | 3                         |                |                    |       |
| Fussy Eating                          |                              |            |                           |                |                    |       |
| Outcome: age and sex                  | adjusted                     | BMI age    | d 11, adjust              |                | ates <sup>2</sup>  |       |
|                                       | Boys                         | Boys       |                           | Girls          |                    |       |
| Ν                                     | 2287                         |            |                           | 2597           |                    |       |
| Class                                 | β                            | 95% C      | I                         | β              | 95% C              | Ι     |
| 1 low stable                          | base                         |            |                           | base           |                    |       |
| 2 low transient                       | -0.21                        | -0.36      | -0.05                     | 0.01           | -0.13              | 0.15  |
| 3 low increasing                      | -0.25                        | -0.39      | -0.11                     | -0.01          | -0.13              | 0.11  |
| 4 high decreasing                     | -0.31                        | -0.48      | -0.15                     | -0.31          | -0.45              | -0.17 |
| 5 low increasing                      | -0.34                        | -0.50      | -0.17                     | -0.26          | -0.41              | -0.11 |
| 6 high stable                         | -0.49                        | -0.68      | -0.30                     | -0.35          | -0.52              | -0.18 |
| Test for (Sex * Class)<br>interaction | F (5, 4867) = 2.01, p = 0.07 |            |                           |                |                    |       |

22

<sup>1</sup>Age and sex standardized score in reference to the UK population (22)

<sup>2</sup> Estimates adjusted for: maternal age at birth, gestational age, birthweight and maternal

education <sup>3</sup> CI: Confidence Intervals

531

#### Figure 1: Prevalence of eating behaviours across the eight assessment waves

a bit/great worry

not worried

didn't happen 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% choosy choosy choosy choosy choosy choosy feeding difficulties refusing food overeating not eating enough feeding difficulties overeating not eating enough feeding difficulties refusing food overeating not eating enough feeding difficulties refusing food over-eating not eating enough feeding difficulties refusing food overeating not eating enough feeding difficulties refusing food over-eating not eating enough feeding difficulties refusing food overeating not eating enough feeding difficulties refusing food overeating not eating enough choosy refusing food choosy Wave 1: 15 months, Wave 2: 24 months, Wave 3: 39 months, Wave 4: 54 months, Wave 5: 62 months, Wave 6: 82 months, Wave 7: 105 Wave 8: 116 N=10584 (52%) N=10081 (52%) N=9700 (52% bovs)N=9187 (52% bovs) N=8540 (52% bovs) N=8087 (51% bovs) months, N=7577 months, N=7436 boys) boys) (51% boys) (51% boys)

# Figure 2: Assigned classes of overeating, undereating and fussy eating using posterior probabilities



medRxiv preprint doi: https://doi.org/10.1101/19003665; this version posted August 2, 2019. The copyright holder for this preprint (which was

# not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license Figure 3a: Trajectories of parental reports of overeating behaviors from 15 to 116 months for boys and girls (6186 boys, 5817 girls)

Caption: The y-axis shows the probability of scoring in the highest category of overeating ("great worry") at each of the eight time points. Trajectories for boys are in dashed lines. Trajectories for girls are in solid lines. The legend shows the name of the class for boys (Bs) and girls (Gs), followed by their percentages in brackets.



# medRxiv preprint doi: https://doi.org/10.1101/19003665; this version posted August 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. Figures 3b: Trajectories of parental reports of undereating behaviors from 15 to 116 months for boys and girls (6189 boys, 5817 girls)

Caption: The y-axis shows the probability of scoring in the highest category of undereating ("a bit worried") at each of the eight time points. Trajectories for boys are in dashed lines. Trajectories for girls are in solid lines. The legend shows the name of the class for boys (Bs) and girls (Gs), followed by their percentages in brackets.



medRxiv preprint doi: https://doi.org/10.1101/19003665; this version posted August 2, 2019. The copyright holder for this preprint (which was

# not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. Figures 3c: Trajectories of parental reports of fussy eating behaviors from 15 to 116 months for boys and girls (6208 boys, 5840 girls)

Caption: The y-axis shows the probability of scoring in the highest category of the fussy eating items ("a bit worried"") at each of the eight time points. Trajectories for boys are in dashed lines. Trajectories for girls are in solid lines. The legend shows the name of the class for boys (Bs) and girls (Gs), followed by their percentages in brackets.

