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Abstract  
 
Background. Rheumatic heart disease (RHD) remains an important cause of morbidity and mortality 
globally. Several reports have linked the disease to the human leukocyte antigen (HLA) locus but with 
negligible consistency. 
Methods. We undertook a genome-wide association study (GWAS) of susceptibility to RHD in 1163 
South Asians (672 cases; 491 controls) recruited in India and Fiji. We analysed directly obtained and 
imputed genotypes, and followed-up associated loci in 1459 Europeans (150 cases; 1309 controls) 
from the UK Biobank study. For fine-mapping, we used HLA imputation to define classical alleles and 
amino acid polymorphisms. 
Results. A single signal situated in the HLA class III region reached genome-wide significance in the 
South Asians, and replicated in the Europeans (rs201026476; combined odds ratio 1.81, 95% 
confidence intervals 1.51-2.18, P=3.48x10-10). While the signal fine-mapped to specific amino acid 
polymorphisms within HLA-DQB1 and HLA-B, with conditioning, the lead class III variant remained 
associated with susceptibility (P=3.34x10-4), suggesting an independent effect.  
Conclusions. A complex HLA signal, likely comprising at least two underlying causal variants, strongly 
associates with susceptibility to RHD in South Asians and Europeans. Crucially, the involvement of the 
class III region may partly explain the previous inconsistency, while offering important new insight into 
pathogenesis. 
Key words. GWAS, HLA, rheumatic heart disease, rheumatic fever, mitral stenosis, Streptococcus 
pyogenes, group A streptococcus.  
 
 

Background 
 
Rheumatic heart disease (RHD) is the leading cause of cardiovascular death and disability in children 
and young adults globally [1]. The disease is caused by an aberrant immunological response to 
Streptococcus pyogenes (also termed group A streptococcus), a process that causes scarring and 
thickening of the heart valves [2]. Beginning in childhood, RHD gradually causes the heart to fail, 
leading to complications including arrhythmias, stroke and early death [2]. A recent analysis by the 
Global Burden of Disease Consortium estimated 319,400 deaths and 10.5 million disability-adjusted 
life-years (DALYs) each year globally due to RHD [3], a substantial disease burden, especially in 
comparison to other diseases with infectious aetiology [4, 5]. In 2015, the highest age-standardised 
mortality due to RHD outside Oceania was observed in South Asia, with a total of 119,110 deaths in 
India alone [3].  
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Rheumatic heart disease has long been thought to be heritable [6], although until recently, relatively 
little progress had been made in delineating susceptibility [7]. To date, two genome-wide association 
studies (GWAS) have been published: the first set in diverse populations in Oceania [8], and the second 
in Aboriginal Australians [9]. Consistent with several studies predating the GWAS era, which linked the 
disease to the human leukocyte antigen (HLA) locus on chromosome 6 [10], the Australian study found 
a signal that peaked in the class II region of HLA just below genome-wide significance, which was fine-
mapped to a single nucleotide polymorphism (SNP) located within intron 1 of HLA-DQA1 [9]. The pre-
GWAS results should be interpreted with considerable caution, given the variable genotyping 
approaches, small sample size, limited quality control and confounding due to genetic ancestry [10]. 
Nonetheless, it is striking that the specific classical alleles that best explained the Australian signal 
scarcely feature in the earlier reports, while across the pre-GWAS reports there are no clear examples 
of the same HLA allele being associated with susceptibility in two or more studies [7, 10]. 
 
In contrast to the Australian study, however, our Oceanian study found negligible signal in the HLA 
locus [8], a surprising finding given the putative role for HLA in the disease’s pathogenesis [11]. While 
we cannot be certain, it is possible this result represents a false negative, although it is notable the 
study was adequately powered to detect the large effect sizes that have been reported previously 
[10]. We speculate that the negative result might be attributable to the substantial genetic 
heterogeneity within the study population, which could have diluted out a HLA signal, in which the 
underlying causal variants occurred on distinct background haplotypes in each of the ancestral groups. 
On balance, while we consider it highly likely that HLA variants contribute to RHD susceptibility, there 
is a clear need to clarify the causal variants of these association signals.   
 
Accordingly, we undertook a GWAS of susceptibility to RHD limited to the South Asian population, 
motivated by the need to refine the HLA and other signals and the substantial burden of RHD within 
this region. We then did a follow-up analysis in individuals of European ancestry in UK Biobank on the 
basis that robust HLA reference data are available for this very large sample set. 
 
 

Methods 
 
Sample collections 
For the South Asian analysis, genetic material was obtained with informed consent from cases and 
controls recruited to two distinct studies. Specifically, we expanded an existing collection in Northern 
India [12-16], and we used samples from our existing collection of Pacific Islanders [8], specifically the 
Fijians of Indian descent. Cases of RHD were defined on the basis of: a history of valve surgery for RHD, 
a definite RHD diagnosis by echocardiography, or borderline RHD diagnosis by echocardiography with 
prior acute rheumatic fever [17]. 
 
In India, adults with incident or prevalent RHD were recruited as cases from a single large referral 
hospital, the Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh; 
recruitment was limited to patients with an echocardiographic diagnosis of RHD [17]. Controls were 
recruited based on normal echocardiograms and the absence of prior family history of rheumatic fever 
[12-16]. In total, DNA samples were obtained from 543 cases and 397 controls. Ethical approval was 
granted by the Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), as well as the 
Oxford University Tropical Research Ethics Committee.  
 
In Fiji, children and adults with incident or prevalent RHD were recruited as cases from either the 
Colonial War Memorial Hospital in Suva, or the Lautoka General Hospital in Lautoka, while members 
of the general population were recruited as controls, following the approach of the Wellcome Trust 
Case Control Consortium [18]. Accounting for approximately one third of the population, Fijians of 
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Indian descent are a South Asian population who first came to Fiji from India in the 1870s under the 
British indentured labour scheme [19]. In total, DNA samples were obtained from 598 cases and 913 
controls [8]; of these, 170 cases and 158 controls were of Fijian Indian ancestry. Ethical approval was 
granted by the Fiji National Health Research Committee and the Fiji National Research Ethics Review 
Committee, as well as the Oxford University Tropical Research Ethics Committee.  
 
Array genotyping and quality control 
We obtained genetic material by sampling peripheral blood in both Fiji and India. Blood samples 
collected in India were stored in EDTA and frozen at -20°C until transport to the laboratory facilities at 
Babasaheb Bhimrao Ambedkar University, Lucknow. Upon arrival, samples were stored at -80°C until 
extraction using standard salting out procedures. Extracted DNA was prepared for analysis at the 
Wellcome Centre for Human Genetics (UK), where quantification was performed by PicoGreen (Life 
Technologies, USA). The handling of blood samples collected in Fiji has previously been described, 
although it is noteworthy that a proportion of these samples underwent genome-wide amplification 
due to low DNA concentration [8]. From both collections, 1,268 DNA samples were genotyped at the 
Oxford Genomics Centre at ~300,000 variants using the HumanCore-24 BeadChip (Illumina Inc., USA). 
The resulting data were aligned to the forward strand of the Genome Reference Consortium Human 
Build 37.  
 
After identifying and removing duplicated variants, the South Asian data was divided into two 
populations: Fijian Indian (n=328) and Northern Indian (n=940). We employed standard approaches 
to quality control (QC) the genotyping data [20], with most steps performed using PLINK version 1.9 
[21]. Starting with ‘per individual QC’ (Supplementary Figure 1), we measured missingness in each 
sample and examined its relationship with autosomal heterozygosity. Based on this relationship, we 
removed individuals if they had a missing data rate ≥3% and if heterozygosity deviated plus or minus 
three standard deviations from the mean. Due to genotyping batch effects, additional missing data 
filters were applied to the Northern Indian data: ≥0.3% for batch one, ≥1.1% for batch two and ≥1.6% 
for batch three (Supplementary Figure 2). In addition, we removed duplicated samples with identity 
by descent ≥0.9. Finally, by merging the data with the HapMap3 data [22], we identified and removed 
samples of divergent ancestry.  
 
We then performed ‘per variant QC’. We removed all variants with minor allele frequency (MAF) 
≤1.25% because such variants are usually less reliably genotyped [20]. We kept variants with MAF 1.25 
to 5% but applied stricter missingness thresholds (Supplementary Figure 1). Finally, we removed 
variants with deviation from Hardy-Weinberg equilibrium (HWE) P <1.0x10-8.  
 
Genome-wide imputation, association testing and meta-analysis 
Imputation of genotypes not present on the array or missing was performed using the 1000 Genomes 
Project phase 3 reference panel [23]. We prephased the variants that had passed QC using SHAPEIT 
version 2 (r644) [24] before performing genome-wide imputation using IMPUTE2 software [25], 
excluding imputed SNPs with an information metric ≤0.4, and a MAF ≤5%. 
 
Genome-wide association analysis for the RHD phenotype was performed using a linear mixed model, 
as implemented in GCTA 1.24.4, which minimises confounding due to population structure, admixture 
and cryptic relatedness [26]. Additionally, genotypic sex was coded as a covariate for each population, 
as was sample type (non-amplified or whole genome amplified) for the Fijian Indians and genotyping 
batch for the Northern Indians. We assessed confounding using quantile-quantile plots and the test 
statistic inflation factor (λ), and used the accepted threshold for genome-wide significance (P<5x10-8) 
[27]. Having estimated effect sizes by transformation [28], we combined the resulting association 
statistics by genome-wide meta-analysis using inverse-variance-weighted fixed effects, as 
implemented in METASOFT [29]. Regional association plots, based on those drawn by the widely used 
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LocusZoom software [30], were generated for the data. We collated available data from published 
GWAS, including the Australian study [9] and a study containing over 200,000 23&Me research 
participants of European ancestry, of which 1,115 were cases of self-reported rheumatic fever [31].   
 
HLA imputation analysis 
HLA imputation was performed using SNP2HLA [32], a software package that imputes classical HLA 
alleles and amino acid polymorphisms at class I (HLA-A, -B and -C) and class II (-DPA1, -DPB1, -DQA1, -
DQB1 and -DRB1) loci from SNP data using the Type 1 Diabetes Genetics Consortium (T1DGC) 
reference panel. The T1DGC reference panel contains 5,868 SNPs and 4-digit classical HLA types for 
the eight loci listed above for 5,225 unrelated individuals of European ancestry. For comparison, HLA 
imputation was also performed with the Pan-Asian reference panel (n=530) [33]; this comprises 
several underlying datasets with ancestry including: Singapore Chinese [34]; Chinese, Indian and 
Malaysian [34]; and Japanese and Han Chinese from the Phase II HapMap [35]. Association analyses 
mirrored those for the genotyping data using the imputed dosage data, rather than best-guess 
genotypes, but excluded alleles or amino acids with imputation accuracy R2 ≤0.3.  
 
Conditional analysis  
To identify secondary association signals, conditional association analyses in the SNP-based GWAS and 
the HLA region were performed with linear mixed models, as implemented in GCTA 1.24.4, using the 
same covariates as previously mentioned. Within the genome-wide dataset, we first identified the 
most strongly associated SNP following meta-analysis and performed stepwise iterative conditional 
regression, adding the dose of the associated SNP as a covariate to the model, to identify other 
independent signals. We also identified the most strongly associated HLA class I and class II SNPs 
within this same dataset and performed iterative conditional regression, adding the dose of each 
associated SNP as a covariate to the model, to identify additional independent signals. Conditional 
analyses in the HLA region were also performed by adding the dose of each of the previously 
mentioned SNPs as covariates to the model to see if there were additional signals attributable to HLA 
alleles or amino acids at each HLA locus.  
 
Replication analysis 
The replication analysis was based on the UK Biobank study, which contains genetic and phenotypic 
data collected on approximately 500,000 individuals from across the United Kingdom [36]. For the 
purpose of replication, we used mitral stenosis as a surrogate for RHD. Broadly, with the UK’s low 
prevalence of RHD, most diagnostic codes indicating RHD will represent other forms of valvular heart 
disease [37]. In contrast, codes indicating mitral stenosis, which is now a rare finding in the UK 
population [38], are substantially more likely to indicate underlying RHD [37], as the majority of mitral 
stenosis cases have underlying rheumatic aetiology [17, 39-42]. Cases were therefore defined by self-
report of mitral stenosis at enrolment or an International Statistical Classification of Diseases and 
Health Related Problems 10th Revision (ICD-10) code for rheumatic mitral stenosis (I05.0, rheumatic 
mitral stenosis; I05.2, rheumatic mitral stenosis with insufficiency) as a primary or other diagnosis in 
the hospital episode statistics or on a death certificate. Controls were selected from the remainder of 
the cohort, matched by age, ethnicity, deprivation index, birth outside the UK and recruitment centre, 
at a ratio of 1:10, beyond which the performance of linear mixed models deteriorates [43]. In total, 
we identified 196 cases and 1919 controls, of which 150 cases and 1309 controls were defined as 
Caucasian (i.e. European) by UK Biobank investigators (Supplementary Table 1). These individuals had 
previously been genotyped at ~800,000 variants using the UK Biobank Axiom Array (Affymetrix, USA). 
These data were quality controlled by removal of individuals with missing rate >2% and variants with 
missing rate >1%, MAF <5% or HWE P <1.0x10-9. The remaining preparation of the data, including 
genome-wide and HLA imputation, and the association analyses, mirrored the process used in the 
South Asian samples.  
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Results 
 
Genome-wide analysis 
In total, 854 Northern Indians (510 cases; 344 controls) and 309 Fijian Indians (162 cases; 147 controls) 
passed QC and were included (Supplementary Figure 1). A single signal situated in the major 
histocompatibility complex (MHC) class III region reached genome-wide significance (Supplementary 
Figure 3A; Supplementary Figure 4A) with minimal evidence of residual confounding (λ=0.9967; 
Supplementary Figure 3B). The top variant (rs201026476) in this region, with an imputation 
information metric score of 0.86 for the Fijian Indians and 0.87 for the Northern Indians, had a MAF 
of 0.15, and each copy of the minor allele was associated with a two-fold increased risk of disease 
(odds ratio, OR, 1.99, 95% confidence intervals, CI, 1.58-2.51, P=7.45x10-9). The second and third 
strongest signals were found in the class I (HLA-B, rs3819306, P=1.91x10-7) and class II (HLA-DQB1, 
rs28724238, P=7.77x10-7) regions, respectively.  
 
To further define this signal, we performed stepwise conditional analyses by adding the dose of each 
associated allele as a covariate to the model (Supplementary Figure 4). After conditioning on the class 
III signal, the strongest signal (rs3819306) was located in HLA-B (OR 1.39, 95% CI 1.20-1.61, P=1.83x10-

5; Supplementary Figure 4B). However, conditioning on the lead SNPs in HLA-B and HLA-DQB1, the 
lead SNP in class III remained associated with susceptibility (P=2.59x10-4) suggesting an independent 
effect (Supplementary Figure 4C). The previously reported rs9272622 [9] was not associated with 
susceptibility (PLMM=0.28).  
 
To validate our findings, we examined the HLA locus in the European UK Biobank dataset (150 cases 
of mitral stenosis; 1309 controls), combining the resulting association statistics with those from our 
South Asian analyses (Figure 1). The peak SNP in class III was associated with susceptibility in the UK 
Biobank data in the same direction (rs201026476, PLMM=0.0057), with a combined effect size that was 
consistent with the discovery analysis (OR 1.81, 95% CI 1.51-2.18, P=3.48x10-10; Figure 1A). The variant 
located in intron 4 of HLA-DQB1 (rs28724238, OR 1.75, 95% CI 1.42-2.15, P=1.73x10-7) also replicated 
(PLMM=0.017), as did the HLA-B signal, although in the combined analysis, the signal peaked at a SNP 
(rs9405084) located 1,286 base pairs upstream of HLA-B (OR 1.36, 95% CI 1.19-1.55, P=3.39x10-6).  
 
The conditional analyses followed a similar pattern, although after conditioning on the top class III 
SNP, the strongest signal (rs432375, P=6.40x10-5) was located 2,290 base pairs upstream of HLA-DOA, 
a HLA class II alpha chain paralogue, rather than at HLA-B (Figure 1B). However, the class I signal 
remained apparent, with the lead SNP a coding variant within exon 1 of HLA-B (rs1050462, P=2.69x10-

4). After conditioning on both rs9405084 (class I) and rs28724238 (class II), the class III signal was again 
maintained (rs201026476, P=3.34x10-4; Figure 1C).  
 
HLA imputation analysis 
To further understand the potential functional variants across the HLA region, we imputed classical 
HLA alleles and amino acid polymorphisms at class I and class II loci. Using the T1DGC reference panel, 
a reasonably high proportion of variants were accurately imputed based on the R2 metric (proportion 
variants with R2 >0.80: Fijian Indian, 91.74%; Northern Indian, 91.52%; European UK Biobank, 96.16%). 
For comparison, when using the Pan-Asian reference panel, imputation accuracy was significantly 
lower (proportion variants with R2 >0.80: Fijian Indian, 73.10%; Northern Indian, 71.10%).  
 
The strongest allelic signal in the class II region in the South Asian analysis mapped to the HLA-
DQB1*03:03 allele (OR 1.90, 95% CI 1.41-2.55, P=2.59x10-5; Supplementary Figure 4A; Supplementary 
Figure 5A), an allele imputed with high accuracy (Supplementary Table 2). While this signal was 
maintained in the combined European and South Asian analysis (OR 1.78, 95% CI 1.38-2.29, P=1.00x10-

5; Figure 2A; Supplementary Figure 6A), it was weaker than that at the coding change at position 185 
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(Thr185Ile; rs1130399) of HLA-DQB1 (Figure 3A) which was associated with a 1.5-fold increased risk 
of disease (OR 1.56, 95% CI 1.31-1.85, P=3.95x10-7; Figure 3B). There was also a signal at HLA-B*40:06 
(P=4.82x10-4; Figure 2A), although again the signal was slightly stronger at the coding change at 
position -16 (Val-16Leu; rs1050462) of HLA-B (P=5.67x10-5; Figure 3A; Supplementary Figure 6C).  
 
Overall, there was limited signal at the classical alleles and amino acids linked to susceptibility in the 
Australian study mentioned above, although we did observe an effect at the coding change at position 
38 of HLA-DQB1 in the same direction (OR 0.87, 95% CI 0.76-0.99, P=0.031; Supplementary Table 3). 
Interestingly, however, HLA-DQB1*03:03 was the classical allele, with MAF >0.5%, most associated 
with a self-reported history of rheumatic fever risk in a study by 23&Me (OR 1.28, 95% CI 1.05-1.55, 
P=0.017) [31], with an effect consistent in size and direction (combined OR 1.45, 95% CI 1.24-1.69, 
P=4.05x10-6; Supplementary Figure 6B).  
 
Finally, as in the SNP-based GWAS, the signal in class II was linked to the class III signal, while the class 
I signal was independent. After conditioning on the class III SNP, the strongest signal was HLA-B*40:06 
(P=0.0021; Figure 2B). Conditioning on both the class I and class II SNPs, only a marginal signal 
remained at HLA-A*02:11 (P=0.0096; Figure 2C).  
 
 

Discussion 
 
In the first genome-wide association study of RHD to be reported outside of the Australia-Pacific 
region, we have resolved a complex HLA signal into its component parts. We have shown that a single 
HLA signal overlapping the class III region most likely comprises at least two independent coding or 
regulatory effects across the class I, II and III loci. While most studies to date have focused on the 
relationship between classical HLA alleles and susceptibility, our data suggest these signals are in fact 
more complex and cannot be attributed to the classical alleles alone. Indeed, based on annotations in 
Ensembl [44], the effect of Thr185Ile in HLA-DQB1, as an example, is much more likely to be regulatory 
than coding, not least because it shows a strong negative association with expression of HLA-DQB1 
itself [44]. Similarly, the independent lead class III variant (rs201026476), situated in the 3 prime UTR 
of the PBX2 (Pre-B-cell leukaemia transcription factor 2) gene has regulatory annotations and thus 
could impact expression of one or more of the numerous immunologic genes in the class III region.  
 
While the role of HLA polymorphism has long been suspected, there remains some doubt about the 
roles that individual alleles play in disease susceptibility across populations. Importantly, our analysis 
represents the first time HLA signals for RHD have been demonstrated with consistent direction and 
effect size in more than one ancestral group. Moreover, the signal at HLA-DQB1*03:03 in the 23&Me 
study, although based on self-reported rheumatic fever [31], adds further weight to our findings. That 
our results differ from those reported in the Australian study [9] is unsurprising, given there are likely 
to be substantial differences between the HLA loci of South Asians and Aboriginal Australians. Added 
to this, there were also a number of methodological differences, including the software employed for 
HLA imputation and linear mixed model analysis, which may exacerbate any disparity. Nonetheless, it 
is reassuring that both studies observed a signal at the coding change at position 38 of HLA-DQB1, 
raising the possibility that the two studies are tagging the same underlying causal variants. As noted 
above, we observed negligible HLA signal in our study set in Oceania including, beyond the Fijian Indian 
subgroup, the specific variants that associate with susceptibility in this South Asian analysis. Indeed, 
it may be difficult to fully unravel the contribution of HLA to RHD susceptibility in individuals of 
Oceanian ancestry until further HLA data are generated from these populations, enabling HLA 
imputation with a population-specific reference panel. Accordingly, we have begun efforts to develop 
such a panel by HLA typing a subset of our samples from individuals with Oceanian ancestry. Relating 
our findings to the HLA signals reported before the GWAS era is more difficult, not least because of 
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the marked inconsistencies and the limitations of the studies themselves in addition to true 
geographical and ancestral differences. Interestingly, the presence of a signal in the class III region, 
which could have been differentially tagged in earlier studies, goes some way to explaining the 
inconsistencies of previously reported HLA associations.   
 
This study has a few limitations. First, in comparison to some contemporary GWAS, our total sample 
size is relatively modest, and hence it is likely many variants with smaller effects will go undetected 
until larger collections are assembled. Nonetheless, our study was well powered to detect the vast 
majority of large effect variants reported in the candidate gene era [10]. Second, within Fiji, members 
of the general population were recruited as controls; these individuals did not undergo 
echocardiograms and therefore it is possible to have included a small number of undiagnosed cases 
of RHD. However, the prevalence of definite RHD among Fijians of Indian descent has been estimated 
at 3.6-4.4 cases per 1,000 [45, 46] such that the impact of misclassification should be minimal. There 
may also be shortcomings associated with using the UK Biobank study, for there were no 
echocardiographic diagnoses available. However, specificity is likely to be regained by limiting the 
analysis to the mitral stenosis subgroup, an approach that is somewhat validated by the consistent 
replication of the South Asian signals. 
 
Third, the genotyping array, containing ~230,000 variants following QC, was not very dense and 
contained, in comparison to other genotyping arrays, a limited number of variants within the HLA 
region. Despite this, overall HLA imputation accuracy was high when using the T1DGC reference panel. 
Imputation accuracy is highly dependent upon the reference panel used and as such, we have so far 
deliberately limited these analyses to the South Asians and Europeans for whom there are reasonable 
reference panels available. Fourth, this report is focused on the HLA locus because it was the only 
region of the genome that reached genome-wide significance in the South Asian analysis. Efforts are 
underway to combine these and other datasets in a genome-wide meta-analysis, facilitating follow-
up of other regions, such as the immunoglobulin heavy chain locus [8]. Finally, at this stage, we cannot 
resolve the genetic determinants of sub-phenotypes, such as specific valve lesions, disease 
progression or complications, these are issues which larger-scale collaborative datasets should begin 
to tackle. 
 
In summary, we report a major susceptibility locus for RHD in the HLA region, likely comprising at least 
two underlying causal variants which strongly associate with susceptibility to RHD in South Asians and 
Europeans. These findings add substantially to the knowledge of the role of HLA polymorphism in 
susceptibility to this devastating and neglected disease. This not only has important ramifications for 
understanding the immunogenetic basis of the disease process, but also offers important new insight 
into pathogenesis.   
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Data availability 
Genotype and phenotype data underlying the manuscript have been deposited in the European 
Genome-phenome Archive under accession numbers EGAS00001001881 (Fijian Indian data) and 
EGAS00001003565 (Northern Indian data). Some restrictions on access and usage apply and use is 
restricted to research focused on RHD.  
 

Supplementary data 
Supplementary materials are available at XXXX. 
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Figure 1 | Meta-analysis of the South Asian and UK Biobank data following conditional analyses. A, 
Unconditioned analysis. B, Conditioned on the top SNP (rs201026476). C, Conditioned on the top class 
I and class II SNPs (rs9405084 and rs28724238, respectively). For the HLA region, genomic position is 
plotted against the negative common logarithm of the P value from meta-analysis. The top class I (B) 
or class III SNP (A, C) following meta-analysis is shown by a purple triangle. Variants are coloured by 
linkage disequilibrium (LD), with the most associated variant averaged across the entire dataset 
(estimated r2: dark blue, 0-0.2; light blue, 0.2-0.4; green, 0.4-0.6; orange, 0.6-0.8; red, 0.8-1.0). The 
location of HLA-B, HLA-DQB1 and AGER are indicated by red rectangles below the x axis. The 
recombination rate is shown as a line plotted on the right-hand y-axis. These plots are based on those 
drawn by the widely used LocusZoom software.  
 
  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted July 26, 2019. ; https://doi.org/10.1101/19003160doi: medRxiv preprint 

https://doi.org/10.1101/19003160
http://creativecommons.org/licenses/by/4.0/


 
Figure 2 | Classical HLA alleles associated with susceptibility to RHD within the South Asian and UK 
Biobank data following conditional analyses. A, Unconditioned analysis. B, Conditioned on the top 
SNP (rs201026476). C, Conditioned on the top class I and class II SNPs (rs9405084 and rs28724238, 
respectively). For each locus, the negative common logarithm of the P value from LMM analysis is 
plotted with two-digit alleles to the left and four-digit alleles to the right defined by HLA imputation 
using SNP2HLA software with the T1DGC reference panel. 
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Figure 3 | Amino acid variants following HLA imputation. A, For each locus, the negative common 
logarithm of the P value from LMM analysis is plotted for each amino acid polymorphism defined by 
HLA imputation. For HLA-DQB1 Thr185Ile and HLA-B Val-16Leu, the effect is shown in a single direction 
only. B, Forest plot for the presence of isoleucine at position 185 in HLA-DQB1. For each population, 
the black squares centre on the odds ratio estimate from LMM on a logarithmic scale; the size of the 
square is proportional to the weight of the analysis. The horizontal line through each square 
corresponds to the confidence intervals. The black diamond centres on the combined effect estimate 
by fixed effects meta-analysis and stretches to the confidence intervals; the dashed line indicates no 
effect. 
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