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Abstract  1 

Background: The aetiology of most childhood cancers is largely unknown. Spatially varying 2 

environmental factors such as traffic-related air pollution, background radiation and agricultural 3 

pesticides might contribute to the development of childhood cancer. We investigated the spatial 4 

variation of childhood cancers in Switzerland using exact geocodes of place of residence.  5 

Methods: We included 5,947 children diagnosed with cancer during 1985-2015 at age 0-15 from the 6 

Swiss Childhood Cancer Registry. We modelled cancer risk using log-Gaussian Cox processes and 7 

indirect standardization to adjust for age and year of diagnosis. We examined whether the modelled 8 

spatial variation of risk can be explained by ambient air concentration of NO2, natural background 9 

radiation, area-based socio-economic position (SEP), linguistic region, years of existing general cancer 10 

registration in the canton or degree of urbanization.  11 

Results: For all childhood cancers combined, the posterior median relative risk (RR), compared to the 12 

national level, varied by location from 0.83 to 1.13 (min to max). Corresponding ranges were 0.96 to 13 

1.09 for leukaemia, 0.90 to 1.13 for lymphoma, and 0.82 to 1.23 for CNS tumours. The covariates 14 

considered explained 72% of the observed spatial variation for all cancers, 81% for leukaemia, 82% 15 

for lymphoma and 64% for CNS tumours. There was evidence of an association of background 16 

radiation and SEP with incidence of CNS tumours, (1.19;0.98-1.40) and (1.6;1-1.13) respectively.  17 

Conclusion: Of the investigated diagnostic groups, childhood CNS tumours show the largest spatial 18 

variation in Switzerland. The selected covariates only partially explained the observed variation of 19 

CNS tumours suggesting that other environmental factors also play a role.  20 
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Introduction  1 

The causes of childhood cancers are poorly understood. Epidemiological research on the atomic bomb 2 

survivors indicated that ionising radiation in high doses can cause childhood leukaemia and central 3 

nervous system (CNS) tumours [1, 2]. A number of environmental factors have been suggested that 4 

could partially explain cancer risks in the general population, including traffic-related air pollution [3], 5 

background radiation [2, 4] and agricultural pesticides [5]. These risk factors vary in space and it is 6 

thus natural to expect spatial variation in childhood cancer incidence. Conversely, investigating the 7 

spatial variation of childhood cancer incidence might help generate new hypotheses about 8 

environmental risk and identify areas of potential environmental contamination. 9 

Disease mapping, i.e. smoothing and visualising disease risk in space, is a common way of capturing 10 

the spatial variation of a disease. Several previous studies have investigated spatial variation in 11 

childhood cancer risk using disease mapping. Studies have focused on childhood leukaemia reported 12 

evidence of spatial variation in Ohio, Texas, Yorkshire [6-8], but not in France [9]. The study in Texas 13 

also examined childhood lymphomas and reported some evidence of spatial variation of Hodgkin 14 

lymphoma [7]. A study in Kenya reported evidence of spatial variation of Burkitt’s lymphoma with 15 

higher rates in the northern part of the country [10]. A study in Florida focusing on childhood brain 16 

tumours reported some evidence of high excess risk in several non-adjacent counties [11]. 17 

The mixed results might reflect differences between the countries or methodological limitations. Most 18 

previous studies relied on areal data (data aggregated on administrative units) [7-9, 11-13]. Results 19 

from such studies depend on spatial unit selected, which is referred to as the Modifiable Areal Unit 20 

Problem [14]. Furthermore, associations between cancer incidence and environmental factors assessed 21 

at group level may be subject ecological fallacy, i.e. they may not correctly reflect underlying 22 

associations at the individual level [15]. The use of precise geocodes can overcome the 23 

aforementioned issues. In a simulation study, we showed that spatial modelling based on exact 24 

geocodes is more sensitive in identifying areas of higher risk compared to traditional disease mapping 25 

based on count data aggregated to small administrative areas [16]. To the best of our knowledge only 26 

one study in Ohio had available precise geocodes, but the authors did not attempt to explain the 27 
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observed variation of childhood leukaemia risk by incorporating environmental exposures in the 1 

model [6]. Lastly, all the previous studies used geographical information about the place of diagnosis 2 

only. Children may be more susceptible to certain environmental exposures early in life and thus 3 

location of residence at birth may be more relevant [17].  4 

In this nationwide study, we investigated the spatial variation of childhood cancers using precise 5 

locations of residence. We performed analysis using place of birth and diagnosis. We focused on the 6 

following main diagnostic groups: all childhood cancers, childhood leukaemia, lymphoma and CNS 7 

tumours and assessed the extent to which selected covariates could explain the observed spatial 8 

variation.   9 

Methods  10 

Study population 11 

We retrieved children diagnosed with cancer in Switzerland during 1985-2015 at age 0-15 from the 12 

Swiss Childhood Cancer Registry (SCCR). SCCR is a nationwide registry with high completeness. 13 

Estimates suggest that it includes 91% of all incident cases for the period 1985-2009 and >95% for 14 

1995-2009.[18] It collects residential addresses from time of diagnosis back to birth. The addresses 15 

were geocoded according to the Swiss grid coordinate system using a combination of different sources 16 

of georeferenced building addresses including the Swiss postal system, the geoportal maintained by 17 

the Federal Office of Topography and Google Maps.  18 

Population data was available through the Swiss National Cohort (SNC) which includes geocoded 19 

residential locations of all Swiss residents at time of censuses (1990, 2000 and 2010-2015). To 20 

calculate population at risk by age group, year and spatial unit (1km grid cell or municipality), we 21 

performed linear interpolation of age, year and spatial unit specific weights, see Additional File Text 22 

S1 and Figures S1-2. We then performed indirect standardization by calculating the expected number 23 

of cases adjusted by age and year: Let 𝑞𝑞𝑖𝑖,𝑗𝑗 be the nationwide cancer incidence and   𝑃𝑃𝑖𝑖,𝑗𝑗,𝑘𝑘 the 24 

population counts with subscript referring to the 𝑖𝑖-th age group (0-4, 5-9, 10-15), 𝑗𝑗-th year (1985-25 

2015), and 𝑘𝑘-th spatial unit (grid cell, or municipality). Then the expected number of cases in the 𝑘𝑘-th 26 

spatial unit is: 27 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted July 15, 2019. ; https://doi.org/10.1101/19001545doi: medRxiv preprint 

https://doi.org/10.1101/19001545
http://creativecommons.org/licenses/by/4.0/


5 
 

𝐸𝐸𝑘𝑘 =  ��𝑞𝑞𝑖𝑖,𝑗𝑗 ∙ 𝑃𝑃𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑗𝑗𝑖𝑖

. 1 

To calculate the expected number of cases for the analysis based on the location at birth we used a 2 

similar approach (Additional File Text S1).   3 

Outcomes 4 

The SCCR classifies diagnoses according to the International Classification of Childhood Cancers 5 

Third Edition (ICCC3). We examined all childhood cancers combined (ICCC3 main groups I-XII) and 6 

then separately childhood leukaemia (ICCC3 main group I), lymphoma (ICCC3 main group II) and 7 

CNS tumours (ICCC3 main group III). We focused on the main diagnostic groups because of the 8 

larger sample size.  9 

Covariates 10 

As potential explanatory variables, we included predicted ambient air concentration of NO2, predicted 11 

total dose rate from terrestrial gamma and cosmic radiation, neighbourhood-level socio-economic 12 

position (Swiss-SEP) [19], years of general cancer registration in the canton, language region and the 13 

degree of urbanisation as covariates (Table S1 and Figures S3-8 on the Additional File). Traffic-14 

related air pollution and total background radiation were previously found to be associated with 15 

childhood cancer risks in Switzerland [20, 21]. We included SEP, linguistic region and degree of 16 

urbanisation to account for regional, socio-economic and socio-cultural differences. We included years 17 

of cantonal cancer registration to account for heterogeneous registry completeness. The SCCR records 18 

childhood cancer cases treated in one of the nine specialised paediatric oncology (SPOG) clinics and 19 

complements the registry with any additional cases recorded by the cantonal registries. Some cantons 20 

already had a cancer registry at the beginning of our study period, others established one during the 21 

study period and others after the end of the study. For cantons with more years of general registration, 22 

we thus expect the “apparent” childhood cancer incidence over the study period to be slightly higher. 23 

Statistical Analysis 24 

We used log-Gaussian Cox processes (LGCPs) to model locations of incident cancer cases. A detailed 25 

description is provided in the Supplementary Text S2 [22]. Conditional on the risk surface, the point 26 
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process assumed to generate the case locations is an inhomogeneous Poisson process. We model the 1 

continuous log-risk surface via a spatial mixed effects model, adjusting for covariate effects. The 2 

spatial variation is modelled as a random process 𝑍𝑍(𝑠𝑠), which is assumed to be a realization of a zero 3 

mean Gaussian random field with a Matérn covariance function and smoothness parameter 𝜈𝜈 fixed to 4 

1. The Gaussian field is then defined by two parameters, a variance parameter 𝜎𝜎2 and a range 5 

parameter 𝜌𝜌 (a distance at which the correlation between two points of the field is approximately 6 

0.10). We fitted the model using the stochastic partial differential equation approach to approximate 7 

the continuous Gaussian field [23], and the Integrated Nested Laplace Approximation to perform 8 

accurate and computationally feasible Bayesian analysis [24, 25].  9 

We computed maps of posterior median (unadjusted or adjusted for the covariates) of spatial relative 10 

risk (RR, i.e. exp{𝑍𝑍(𝑠𝑠)}) compared to national level on a 1 × 1𝑘𝑘𝑚𝑚2 grid. We also mapped exceedance 11 

probabilities defined as the posterior probability, in each grid cell, that RR exceeds 1. The fixed effects 12 

𝛽𝛽𝑖𝑖 (log-relative-risk per unit increase in the covariate) are reported as posterior median of RR, i.e. 13 

exp{𝛽𝛽𝑖𝑖}, and 95% credibility intervals (CI). The continuous variables NO2, ionizing radiation, SEP and 14 

years of cantonal cancer registration were scaled and thus exp{𝛽𝛽𝑖𝑖} is interpreted as the multiplicative 15 

change of the risk if at a fixed location when the covariate is increased by 1 standard deviation (SD). 16 

They were included as linear terms since there was no indication for a more complex model 17 

(Additional File Figure S9).  Henceforth, the model adjusted for the aforementioned covariates is 18 

referred to as the adjusted model, whereas the model without covariates as the unadjusted. Both 19 

adjusted and unadjusted models are standardized for population, age and year of diagnosis by 20 

including the expected number of cases as an offset in the model (Additional File Text S1-2).   21 

We also report the percentage of variance explained by the selected risk factors by evaluating median 22 

and 95% CI of the posterior of an extension of  Bayesian 𝑅𝑅2 [26]: 23 

𝑅𝑅2 =  𝑉𝑉(𝑿𝑿(𝑠𝑠)𝜷𝜷)
𝑉𝑉(𝑿𝑿(𝑠𝑠)𝜷𝜷)+𝑉𝑉(𝑍𝑍(𝑠𝑠))

,   24 

where 𝑉𝑉(∙) denotes the variance over the 𝐾𝐾 spatial units, 𝜷𝜷 is the vector of intercept and covariates and 25 

𝑿𝑿(𝑠𝑠) is the design matrix. We calculated 𝑅𝑅2 for the fully adjusted model, a model including all 26 
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selected covariates except years of cantonal cancer registration (we refer to this set of covariates as 1 

‘putative risk factors’), and the univariable model including only years of cantonal cancer registration. 2 

This allows us to distinguish spatial variation explained purely by the degree of completeness of 3 

registration from variation explained by covariates that might reflect aetiological factors (putative risk 4 

factors). For consistency with the literature, we also fitted the Besag-York-Mollié (BYM) model using 5 

disease counts per municipality, for more information see [27-29] and Text S2 of the Additional File. 6 

Sensitivity Analysis 7 

We ran a sensitivity analysis to examine the robustness of the results with respect to different scalings 8 

of the penalized complexity priors for the range parameter of the latent field [28], with median range 9 

fixed at 1, 10, 60, 120 and 240km. 10 

Results 11 

Study Population 12 

We identified 5,969 cases with childhood cancer during 1985-2015 in Switzerland. We excluded 22 13 

(0.3%) cases without available geocode of residence at diagnosis. Of the included 5,947 children, 32% 14 

(N = 1,880) had leukemia, 13% (N = 772) lymphoma and 22% (N = 1,290) a CNS tumor. For the 15 

analysis using location at birth we first excluded 1,194 cases born before 1985 and then 577 additional 16 

cases with no geocode at birth yielding 4,198 cases for the analysis (Table 1). Of the excluded cases 17 

for this analysis, 342 were born abroad, 114 were born in Switzerland but no address was recorded, 18 

while for 121 the country of birth was missing. The age and sex distribution follows similar patterns as 19 

in neighboring countries (Table 1) [30, 31]. 20 

Spatial analysis 21 

We found evidence of spatial variation for all cancers combined and CNS tumours at diagnosis, Figure 22 

1, Table 2 and Table S2. For leukaemia and lymphoma the posterior median of the variance 23 

hyperparameter of the Gaussian field (𝜎𝜎2) was shrunk to 0 or values close to 0, indicating small, if 24 

any, spatial variation (Table 2 and S2). 25 
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For all cancers grouped together, the medians of the posterior distributions of RR evaluated at the 1 

centroids of 1 × 1𝑘𝑘𝑚𝑚2 grid cells varied from 0.83 to 1.13 (min to max) throughout Switzerland, 2 

indicating at most a 13% increase in the risk in certain grid cells compared to Switzerland as a whole 3 

(Table 2 and Figure 1). The corresponding exceedance probability maps show areas, for which the 4 

posterior probability of having an RR greater than 1 is above 0.80 highlighted in light green or yellow 5 

(Figure 2). When we adjust for the selected covariates almost 72% (95% CI: 43%, 89%) of the 6 

observed variation was explained, with the median residual RR after adjustment varying from 0.86 to 7 

1.08 (min to max), Figure 1, Table 2. The putative risk factors explained 65% (35%, 86%) of the 8 

observed variation (Additional File, Table S3). In the fully adjusted model, the factors NO2 (RR 1.02; 9 

95% CI 0.99-1.06 per 1 SD increase in NO2), total background radiation (1.08; 0.99-1.18) and years of 10 

cantonal cancer registry (1.06; 1.03-1.09) were positively associated with cancer risk, whereas the 11 

association with the other covariates was weak (Figure 3 and Additional File Table S4). 12 

Childhood leukaemia risks showed smaller spatial variation with the median posterior RR per grid cell 13 

varying from 0.96 to 1.09 on the unadjusted and from 0.97 to 1.04 on the fully adjusted model, Figure 14 

1 and Table 2.  The proportion of spatial variation explained by the selected covariates was 81% (58%, 15 

94%), Table 2, whereas solely by the selected risk factor 64% (33%, 84%), Additional File, Table S3. 16 

In the fully adjusted model, the factors associated with the spatial risk of childhood leukaemia were 17 

NO2 exposure (1.05; 0.99-1.11) and years of cantonal cancer registry (1.06;1.01-1.11), Figure 3 and 18 

Additional File Table S4. 19 

A small amount of spatial variation of RR was also observed for childhood lymphoma with the median 20 

RR varying from 0.90 to 1.13 on the unadjusted model and 0.96 to 1.07 on the adjusted model (Figure 21 

1 and Table 2).  About 82% (60%, 94%) of the observed spatial variation in the risk could be 22 

explained with the selected covariates, most of it due to the putative risk factors (Additional File, 23 

Table S3). In the fully adjusted model, the factor contributing most was living in the French speaking 24 

part of Switzerland with a 1.18 (0.96,1.44) RR increase compared to living in the German speaking 25 

part, Figure 3 and Additional File Table S4. 26 
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Among the investigated diagnostic groups, the greatest spatial variation of cancer risks was observed 1 

for childhood CNS tumours. The median posterior grid-specific RR varied from 0.82 to 1.23 before 2 

adjusting, and from 0.87 to 1.25 after adjusting for the selected covariates. These covariates explained 3 

64% (31%, 84%) of the observed spatial variation, and the putative risk factors alone 62% (28%, 4 

92%), Additional File, Table S3 and Table 2. Total background radiation exposure (1.17;0.98-1.4), 5 

SEP (1.06;1-1.13) and year of existing cantonal cancer registry (1.04;0.97-1.12) were positively 6 

associated with CNS tumour incidence. The association of the other covariates was weak, Figure 3 and 7 

Additional File Table S4. 8 

We also examined the spatial variation of childhood cancers using place of birth. The spatial variation 9 

of cancer risks was generally smaller but the spatial patterns were largely consistent with the results 10 

for diagnosis (Additional File Figures S10-11 and Table S3 and S5).  11 

We also examined the spatial variation using the BYM model. The maps and variation of median 12 

posterior RR were similar to the ones obtained by LGCPs, Additional File Figures S10-15. The 13 

estimates of the fixed effects were in the same direction but tended to be somewhat weaker than in the 14 

LGCP models (Additional File, Tables S4-7).   15 

Sensitivity analysis 16 

The resulting maps and effect estimates varied only little when using different priors for the 17 

hyperparameters, Additional File Figures S16-25. 18 

Post-hoc analysis 19 

Given the larger spatial variation in the risk of CNS tumours we ran several post-hoc analyses for this 20 

diagnostic group. First, we restricted the analysis to place of diagnosis for the period of 1995-2015 (n 21 

= 968), in which the coverage is highest (>95%). The resulting spatial pattern was closely similar to 22 

the main analysis (Figure S26). Second, we wanted to identify if the observed variation of CNS 23 

tumour was specific to particular diagnostic subgroups.  We reran the analysis for place at diagnosis 24 

for astrocytoma (IIIb, n=511 cases), intracranial and intraspinal embryonal tumors (IIIc, n=266) and 25 

other CNS (IIIa, IIId-f, n=512), following the classification used in our previous analysis of spatial 26 

clustering of childhood cancers in Switzerland [16]. We found that intracranial and intraspinal 27 
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embryonal tumors showed the highest spatial variation with the median posteriors RR varying from 1 

0.74 to 1.59 (min to max) in the unadjusted and 0.74 to 1.38 in the adjusted model, Figure S27. 2 

However, the areas highlighted in Figures 1-2 stand out in all CNS subgroups Figures S27-28. Lastly, 3 

we hypothesized that differences in diagnostic practices between the nine SPOG clinics may explain 4 

the apparent spatial variation of CNS tumour risks. We thus constructed a spatial covariate reflecting 5 

the catchment areas of the different SPOG centres. Including an additional random effect to adjust for 6 

these catchment areas only slightly reduced the unexplained spatial variation. The spatial pattern of 7 

relative risk remained largely unchanged (Additional File Text S3 includes the analysis and figures). 8 

Discussion 9 

Main findings  10 

This nationwide study based on precise locations of residence sheds new light on the spatial variation 11 

of childhood cancer incidence in Switzerland and the extent to which this variation can be explained 12 

by environmental exposures and other spatial covariates. The spatial variation of cancer risk was small 13 

for childhood leukaemia and lymphoma and mostly explained by covariates. That of CNS tumours, 14 

particularly intracranial and intraspinal embryonal tumours, was larger and persisted after adjustment 15 

for covariates. Duration of general cancer registration in the canton was associated with higher 16 

observed cancer risk. Other covariates associated with cancer incidence included ambient air 17 

concentration of NO2 for all cancers, lymphoma and leukaemia and SEP and dose rates from terrestrial 18 

gamma and cosmic background radiation for CNS tumours and all cancers.  19 

Comparison of our study with other spatial analyses of childhood cancer risks 20 

Compared to other studies that have investigated the spatial distribution of childhood cancers, our 21 

study stands out in that it uses precise geocoded place of residence and attempts to explain any spatial 22 

variation with commonly discussed putative environmental risk factors and completeness of 23 

registration.  Our study is comparable with studies that performed parametric disease mapping, and in 24 

the lack of other studies that used LGCPs, with the two previous studies that investigated the spatial 25 

variation of childhood leukaemia risks using areal data and BYM models [8, 9, 11]. A study in France 26 

on acute leukaemia reported no evidence of spatial variation in the incidence of acute leukaemia at the 27 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted July 15, 2019. ; https://doi.org/10.1101/19001545doi: medRxiv preprint 

https://doi.org/10.1101/19001545
http://creativecommons.org/licenses/by/4.0/


11 
 

département level [9]. A study in Yorkshire using data aggregated on the electoral ward level reported 1 

higher childhood leukaemia risks in the less populated county of North Yorkshire [8].  We did not 2 

observe higher leukaemia risk in less populated areas. Our results are in agreement with a study in 3 

Florida that reported evidence of spatial variation of brain tumours for cases 0-19 years old [11].  4 

Other studies examining the spatial distribution of childhood cancer have focused on extra-Poisson 5 

variation and spatial clustering [32].  The general picture shows mixed results for childhood leukaemia 6 

and weak or no evidence of spatial clustering of lymphoma and CNS tumours [33-35]. In previous 7 

studies using the same data, we found no evidence of clustering of childhood cancers, leukaemia, 8 

lymphoma or CNS tumours, but weak evidence, consistent with the literature, for Hodgkin lymphoma 9 

and embryonal CNS tumours [36, 37]. We observed a cluster of intracranial and intraspinal CNS 10 

tumours in the French speaking part of Switzerland consistent with the pattern observed for CNS 11 

tumours in the present study [36]. 12 

Comparison of our study with other studies on environmental risk factors of childhood cancer 13 

The observed spatial associations between childhood cancer risks and putative risk factors are in broad 14 

agreement with other studies that have investigated these associations disregarding the spatial context.  15 

Of the included covariates in the current study, NO2 showed the strongest spatial association with 16 

childhood leukaemia risks. There is increasing evidence of a link between traffic related air pollution 17 

and childhood cancers, in particular childhood leukaemia [38]. In recent meta-analyses associations 18 

with leukaemia risks were strongest for exposure to benzene and weaker for NO2 [3]. Using partly 19 

overlapping data, we reported an increased risk of leukaemia among children living less than 100m 20 

from a highway [20]. 21 

Previous studies investigating childhood cancer risks in relation to background ionising radiation 22 

showed mixed results [21, 39-42]. While two studies reported associations between childhood 23 

leukaemia and gamma radiation [21, 39], others found no evidence of an association [40-42]. Using 24 

partly overlapping data, we previously reported evidence of associations with gamma radiation for 25 

both childhood leukaemia and CNS tumours [21]. In the current study the association was largest for 26 
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all cancers and CNS tumours. The evidence from other studies examining the effect of gamma 1 

radiation on the risks of CNS tumours in children was weak [39, 41]. 2 

Our study found evidence of an association between SEP and CNS tumours. Previous studies in 3 

Switzerland have reported weak association between socioeconomic status and childhood leukaemia 4 

incidence, but a strong effect for CNS survival [43, 44]. Our results are consistent with a large UK 5 

case-control study which reported increased risk of CNS tumours in higher social classes [45].  A 6 

recent study in Spain also reported a positive association between risk of CNS tumours and 7 

socioeconomic status [46]. In contrast, a study in North-West England [47] and a study from Norway 8 

[48] found no evidence of an association between CNS tumours and measures of socio-economic 9 

status.   10 

Strengths and Limitations 11 

To the best of our knowledge this is the first study attempting to model and explain the spatial 12 

distribution of childhood cancers using precise locations of residence. We used LGCPs, which 13 

represent the current state of the art for modelling such point data of disease incidence and, as we have 14 

recently shown, outperform traditional methods in identifying high risk areas [16]. These models 15 

allowed us to incorporate spatial covariates and quantify their contribution to explaining the observed 16 

spatial variation. We also tried to disentangle variation attributed to registration completeness from 17 

variation due to putative risk factors.  Furthermore, in contrast to previous studies, we examined both 18 

place of birth and diagnosis. Although results were closely similar, this comparison could potentially 19 

have revealed differences in time windows of susceptibility to different risk factors.  The population at 20 

risk was retrieved from national censuses and cases from a nationwide registry with high completeness 21 

[49]. We attempted to correct for potential selection bias due to regional differences in case 22 

ascertainment by including years of general cancer registration and, in post-hoc analysis, SPOG centre 23 

catchment areas. 24 

Due to data availability, we could not include all potential environmental risk factors discussed in the 25 

literature, for instance pesticide exposure. Furthermore, the spatial covariates included are subject to 26 

measurement errors and do not perfectly capture the spatial variation of residential exposures. We had 27 
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little information about the magnitude of measurement errors, making it hard to propagate it in our 1 

modelling framework. Although we partly adjusted for differences in registration coverage, there may 2 

still be differences unaccounted for by our analyses.  3 

Interpretation of findings 4 

Although the overall completeness of SCCR is larger than 95% after the mid-90s [49], we found that 5 

years of existing cancer registry can influence the apparent spatial variation of childhood cancers 6 

based on data from SCCR.  This suggests that there are regional differences in registration 7 

completeness, which should be accounted for in future aetiological studies in Switzerland.  8 

Our results are suggestive of an environmental aetiology for childhood CNS tumours and of 9 

aetiological differences between their histological subtypes. In post-hoc analyses, the observed spatial 10 

variation was not fully explained by differences in cancer registration in the early years of the SCCR 11 

as it persisted in the more recent periods. Neither did differences between SPOG centres, for instance 12 

in ascertainment practices, explain the spatial variation. Unmeasured environmental risk factors are 13 

thus a likely explanation. Possibly, spatial differences in the prevalence of genetic syndromes 14 

associated with these tumours might also partially explain the observed variation. In future research, 15 

there should be increased attention on putative environmental risk factors of CNS tumours, including 16 

SEP, background radiation and pesticide exposure (which was not accounted for in our analyses).  17 

Conclusion  18 

This study provides evidence of spatial differences in the incidence of childhood CNS tumours in 19 

Switzerland that could be partially explained by variations in socio-economic factors and natural 20 

background radiation. The spatial variation of the risks for childhood leukaemia and lymphoma was 21 

smaller and mostly explained by measured covariates. Our study provides further support for an 22 

environmental aetiology for childhood CNS tumours, highlighting the need for future studies to 23 

distinguish between histologic subtypes.    24 

 25 

 26 

 27 
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Tables 1 

Table 1. Number of cases and median age at diagnosis for the analysis based on the location at birth 2 

and diagnosis. 3 

 4 

 Birth    Diagnosis   

 Total N 

(%) 

Female N 

(%) 

Median 

Age at 

diagnosis 

Total N 

(%) 

Female N 

(%)  

Median 

Age  

at diagnosis 

All cancers 4,198 

(100) 

1,875 (45) 4.8 5,947 

(100) 

2,654 (45) 6.4 

Leukaemia 1,384 (33) 570 (41) 4.2 1,880 (32) 781 (42) 4.9 

Lymphoma 459 (11) 161 (35) 10.2 772 (13) 279 (36) 11.5 

CNS 

tumours 

902 (21) 421 (47) 6.0 1,290 (22) 590 (456) 7.1 

Abbreviations: N: number of cases, CNS: Central Nervous System 5 
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Table 2. Median posterior of the variance hyperparameter of the Gaussian field (𝜎𝜎2) for the 1 

unadjusted and adjusted model, median posterior of variation explained (𝑉𝑉(𝑍𝑍(𝑠𝑠))) and median 2 

posterior of grid specific relative risk. 3 

 4 

Abbreviations: CI, credibility intervals; RR, grid specific relative risk compared to Switzerland as a 5 

whole; LGCP, log-Gaussian Cox process; CNS Central and Nervous System 6 

a the unadjusted model refers to the models without any covariates 7 

b adjusted for NO2, background radiation, years of general cancer registration, linguistic region and 8 

degree of urbanicity 9 

LGCPs 

 All cancers Leukaemia  Lymphoma CNS tumours 

𝜎𝜎2unadjusteda 

(median, 95% CI) 

0.01 

(0, 0.02) 

0 

(0, 0.03) 

0.01 

(0, 0.04) 

0.02 

(0.01, 0.06) 

𝜎𝜎2adjustedb 

(median, 95% CI) 

0.01 

(0, 0.03) 

0 

(0, 0.01) 

0 

(0, 0.03) 

0.02 

(0, 0.06) 

Variation 

explainedc 

(median; 95% CI) 

0.72  

(0.43, 0.89) 

0.81  

(0.58, 0.94) 

0.82 

(0.60, 0.94) 

0.64  

(0.31, 0.84) 

RR unadjusteda 

(median; Ranged) 

0.99 

(0.83, 1.13) 

1 

(0.96, 1.09) 

0.99 

(0.9, 1.13) 

1.01 

(0.82, 1.23) 

RR adjustedb 

(median; Ranged) 

1.02 

(0.86, 1.08) 

1 

(0.97, 1.04) 

1 

(0.96, 1.07) 

1 

(0.87, 1.25) 
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c variation explained by the covariates from the fully adjusted model, defined as 𝑅𝑅2 =  𝑉𝑉(𝑿𝑿(𝑠𝑠)𝜷𝜷)
𝑉𝑉(𝑿𝑿(𝑠𝑠)𝜷𝜷)+𝑉𝑉(𝑍𝑍(𝑠𝑠))

 1 

where 𝑉𝑉(∙) denotes the variance over the 𝐾𝐾 spatial units, 𝜷𝜷 is the vector of intercept and covariates, 𝑿𝑿 2 

the design matrix and 𝑍𝑍(𝑠𝑠) the Gaussian field. The variation here refers to the fully adjusted model.  3 

d Range is defined as [min, max] 4 
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Figures 1 

Fig 1. Maps of the median prosterior of the spatial relative risk for different cancer types during 1985-2 

2015 in Switzerland.  3 

 4 

The adjusted models are models adjusted for NO2 total background radiation, SEP, years of cantonal 5 

registry, language region and level of urbanization.  6 
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Fig 2. Maps of posterior probabilities that the spatial relative risk risk per grid cell is larger than 1 1 

(exceedance probabilities) for different chilhdood cancers groups during 1985-2015 in Switzerland. 2 

 3 

The adjusted models are adjusted for NO2, total background radiation, SEP, years of cantonal registry, 4 

language region and level of urbanization.  5 

 6 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted July 15, 2019. ; https://doi.org/10.1101/19001545doi: medRxiv preprint 

https://doi.org/10.1101/19001545
http://creativecommons.org/licenses/by/4.0/


27 
 

Fig 3. Univariable and fully adjusted regression analysis at time of diagnosis. The fixed effects are 1 

summarized using the posterior median of the relative risk together with 95% credibility regions.  2 

 3 

Abbrevations: NO2: Nitrogen Dioxide, CNS: Central Nervous System tumours, BR: Total dose 4 

background radiation, SEP: Socio-Economic Position, YoR: years of existing cantonal registry, G: 5 

German speaking part, F: French speaking part, I: Italian speaking part, r: rural areas, s: semi-urban 6 

areas, u: urban areas 7 

  8 

NO2, total background radiation, SEP and years of cantonal registry were scaled so that the standard 9 

deviations (SD) are 1 and considered as linear effects. Their interpretation is a multiplicative increase 10 

(or decrease) in the number of observed cases compared to the number of the expected cases per 1 SD 11 

increase (or decrease) in the covariate. The sd for NO2 is 77.7 𝜇𝜇𝜇𝜇/𝑚𝑚3 × 10, for total background 12 

radiation 60.2 𝑛𝑛𝑛𝑛𝑛𝑛/ℎ, for SEP 8.7 units and for years of cantonal registry 11.6 years.  13 

 14 

The fully-adjusted models are models adjusted for NO2, total background radiation, SEP, years of 15 

cantonal registry, language region and level of urbanization.  16 

 17 
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