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Abstract 

Objective. To characterize changes in the plasma metabolic profile in newly 

diagnosed rheumatoid arthritis (RA) patients upon commencement of 

conventional disease modifying anti-rheumatic drug (cDMARD) therapy. 

Methods. Plasma samples collected in an early RA randomized strategy study  

(NCT00920478) that compared clinical (DAS) disease activity assessment with 

musculoskeletal ultrasound assessment (MSUS) to drive treatment decisions 

were subjected to untargeted metabolomic analysis. Metabolic profiles were 

collected at pre- and 3 months post commencement of non-biologic cDMARD. 

Metabolites that changed in association with changes in the DAS44 score were 

identified at the 3 month timepoint. 

Results. A total of ten metabolites exhibited a clear correlation with reduction in 

DAS44 score following cDMARD commencement, particularly itaconate, its 

derived anhydride and a derivative of itaconate coA.  Increasing itaconate 

correlated with improved DAS44 score and decreasing levels of CRP.  

Conclusion. cDMARD treatment effects invoke consistent changes in plasma 

detectable metabolites, that in turn implicate clinical disease activity with  

macrophages. Such changes inform RA pathogenesis and reveal for the first 

time a link between itaconate production and resolution of an inflammatory 

disease in humans. Quantitative metabolic biomarker based tests of clinical 

change in state are feasible and should be developed around the itaconate 

pathway.  
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Key Messages 

What is already known about this subject? 

Rheumatoid arthritis is associated with perturbations in metabolic activity, 

which have also been associated with response to certain treatments. In vitro 

work on immunometabolism has recently revealed itaconate as a key 

metabolite controlling macrophage activation. 

 

What does this study add? 

In newly diagnosed RA, commencement of csDMARD therapy is associated 

with changes in the levels of ten metabolites (especially itaconate and its 

derivatives) that correlate to a corresponding fall in disease activity 

Pathway analyses suggest these metabolites are associated with 

macrophage activation. 

 

How might this impact on clinical practice? 

Changes in metabolite levels in response to treatment provide additional new 

insights into RA pathogenesis that suggest a focus on macrophage activation 

state. The association of increased itaconate with decreased inflammation 

point to possible routes of intervention in RA.  
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Rheumatoid arthritis (RA) is a chronic, destructive, immune mediated 

inflammatory condition that predominantly affects synovial joints. In genetically 

susceptible individuals, mucosal exposure to external stimuli (e.g.  cigarette 

smoke) triggers persistent systemic autoimmunity, and subsequent 

inflammatory cell articular recruitment, leading to tissue damage (1). 

Constitutional features, such as weight loss, malaise or fever are prevalent in 

RA patients and RA patients exhibit an increased resting metabolic rate (2), 

which may in part be related to increased immune cell activation and turnover. 

Many data now suggest that circulating leukocyte subsets exhibit altered 

phenotypic and functional properties in the context of RA (3). Chronic synovitis 

is associated with angiogenesis and consequent increased mediator release 

e.g. prostanoids and chemokines that may be detected in the circulation. 

Cardiometabolic disease is a common co-morbidity, reflected particularly in 

dysregulation of lipid metabolism (4) and has been attributed to an interaction 

between conventional risk factor pathways and systemic pro-inflammatory 

cytokines (1). Thus, it is possible that changes in disease activity state may be 

reflected in measurable changes in biochemical activity that is demonstrated 

through detailed characterization of metabolite profiles. 

Metabolomic technologies provide a detailed description of the relative 

abundance of individual metabolites within a single tissue or biological system 

(5,6). At an individual level, these metabolomic ‘signatures’ are the final 

expression of a complex process of gene-environmental interactions, gene and 

inflammatory cell activation and protein synthesis (5). Analysing metabolomic 

profiles across a group of individuals can offer insights into disease 

pathogenesis when common associations with clinical phenotype emerge. The 
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increased ability to measure quantities of a wide range of different metabolites 

has permitted detailed description of metabolic profiles across a range of 

complex, polygenic disorders (7). NMR and LC-MS based metabolomics are 

being increasingly employed to understand the biochemical changes 

associated with rheumatoid arthritis (RA) (5,8–15). For example, plasma 

metabolic profiles, obtained using 1H NMR, differentiated patients with different 

RA disease activity and showed treatment with TNF-alpha inhibitors modified 

the baseline metabolic profiles associated with active RA to resemble those of 

patients in remission (16). Further, Serum metabolite profiles obtained using 

1H NMR at baseline and at 24 weeks after treatment also distinguished 

responders from non-responders to methotrexate treatment (17). 

Herein we used an LC-MS platform to characterise changes in the plasma 

metabolomic profile in newly diagnosed RA patients commencing first line non-

biologic conventional disease modifying anti-rheumatic (cDMARD) therapy. 

Through an untargeted approach we aimed to determine whether the levels of 

individual metabolites correlated to disease activity following initiation of 

treatment and whether changes in disease activity were also reflected in 

changes in the level of certain metabolites. 
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Patients and Methods 

Study Population 

This study was conducted using clinical data and samples from 79 patients 

recruited to the Targeting Synovitis in Early Rheumatoid Arthritis (TaSER) 

study, a randomised clinical trial that compared the effectiveness of using either 

clinical (DAS28) or musculoskeletal ultrasound (MSUS) assessment of disease 

activity to drive an intensive early treatment strategy (18,19). Briefly, at 

recruitment, all patients had active RA (DAS44>2.4) and both groups followed 

the same step-up sequence of DMARD escalation. In the DAS28 group, 

treatment was escalated until low disease activity was attained (DAS28<3.2) 

and in the MSUS group treatment was escalated until 1 or no joints of a limited 

14 MSUS joint set exhibited any power Doppler (PD) signal. At the start of 

treatment patients were treated with methotrexate, or sulphasalazine if 

methotrexate was contraindicated, and combinations of intra-articular and intra-

muscular corticosteroids. Disease activity assessments, using the 44-joint 

disease activity score (DAS44), were conducted at baseline and every 3 

months by a metrologist (AS) who was blinded to group allocation and 

treatment. The earliest that study group allocation could influence ongoing 

treatment was after 3 months of follow-up. The study protocol was approved by 

the West of Scotland Research Ethics Service and was registered with 

ClinicalTrials.Gov (NCT00920478). All patients provided written consent to 

participate and for their disease activity results and tissue samples to be used 

for research purposes. All study activities were conducted in accordance with 

the Declaration of Helsinki. 
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Sample Collection and Preparation 

All patients donated additional blood samples for research purposes at baseline 

(group A), 3 months (group B) and 18 months of follow-up (group F) using a 

standard operating procedure for sample harvest and processing. Blood was 

collected into lithium heparin vacutainers and stored on ice. Samples were 

centrifuged at 4oC (1100g, fixed angle rotor) within 4 hours of venipuncture and 

500ul aliquots of plasma were stored at -80oC until required for analysis. 

 

Metabolomics 

Samples were analysed by hydrophilic interaction liquid chromatography 

(HILIC) -mass spectrometry (LC–MS) (UltiMate 3000 RSLC (Thermo Fisher, 

San Jose, California, USA) using a 150 x 4.6 mm ZIC-pHILIC column (Merck 

SeQuant, Umea, Sweden) running at 300 ll/min and Orbitrap Exactive (Thermo 

Fisher) detection. Mass spectrometer parameters were: 50,000 resolving 

power in positive/negative switching mode. Electrospray ionisation (ESI) 

voltage was 4.5 kV in positive and 3 kV in negative modes. Buffers consisted 

of A: 20 mM ammonium carbonate in H2O and B: Merck SeQuant: acetonitrile. 

The gradient ran from 20 % A: 80 % B to 80 % A: 20 % B in 900 seconds, 

followed by a wash at 95 % A: 5 % B for 180 seconds, and equilibration at 20 

% A: 80 % B for 300 seconds. 

The LC-MS data was processed using a combination of open source tools run 

though R. Vendor-specific raw LC-MS files were converted into the mzXML 

open format using MSConvert from the proteowizard pipeline (20). During 

conversion the m/z data was centroided. Chromatographic peaks were 
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extracted from the mzXML files using the centwave detection algorithm from 

XCMS and converted to PeakML files. Subsequently, PeakML files 

representing replicates were aligned and combined using mzMatch.R (21) after 

filtering out all peaks that were not reproducibly detected within groups. The 

combined PeakML files were subjected to additional intensity filtering, noise 

filtering and gap-filling to produce a set of reproducible peaks. These peaks 

were then corrected for instrument drift over time using an in-house Gaussian 

process regression algorithm modelled on the pooled samples. Peaks were 

manually checked for consistency and integrated using QuanBrowser (Thermo 

Fisher) where appropriate. Identifications were based on the Metabolomics 

Standards Initiative proposed minimum reporting standards. 

 

Statistical Analysis 

Demographic and disease activity outcome data was collected from the TaSER 

study records. Tests of significant differences between peak levels were 

calculated using t-tests, and controlled for by correcting the p-values for 

multiple testing by calculating q-values. Relationships between disease activity 

and metabolite levels were modelled using linear regressions and tests of 

significance were controlled by calculating q-values. Correlation coefficients 

were calculated using Pearson’s product-moment method. Full metabolome 

correlation analysis was performed using partial least-squares analysis of the 

full set of features on DAS44. Statistically highlighted features were manually 

assessed for peak shape to determine if they correspond to genuine metabolite 

related signals. Metabolite identification was carried out by first calculating an 
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accurate molecular formula for the m/z value within 3ppm. This formula was 

then compared to a list of authentic standards and assigned as a match if the 

retention time and peak shape were comparable. The list of authenticated 

standards is included as supplementary material (Supplementary File 1). If 

not found in the authentic standards a putative assignment was made based 

on the retention time of the feature and the chemistry of the LC column using a 

curated list of 41,623 metabolites contained within the IDEOM database 

(http://mzmatch.sourceforge.net/ideom.html), as detailed by Creek et. al. (22). 

The study dataset has been uploaded to the online Metabolights repository 

(www.ebi.ac.uk/metabolights) 
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Results 

Study Population 

Table 1 summarises the baseline characteristics of the patients included in this 

study. At baseline, 75 patients commenced methotrexate and 4 commenced 

sulphasalazine  After 3 months follow-up we detected a significant improvement 

in disease activity, with a mean reduction in DAS44 from baseline of 2.1 (SD 

1.4). Thirty-five patients were exposed to corticosteroid treatment (1 oral, 9 

intra-articular only, 19 intra-muscular only, 6 intra-articular and intra-muscular) 

prior to donating research blood samples. 
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Table 1 Baseline Characteristics of Study Cohort 

 Metabolomics Cohort  

(n = 79) 

Female Sex – n (%) 54 (68%) 

Age (years) 56±13 

Disease Duration (months) 5.3±3.1 

Rheumatoid Factor Positive – 

n (%) 

51 (65%) 

Anti-CCP Positive – n (%) 43 (53%) 

DAS44 4.5±1.2 

HAQ 1.5±0.8 

ESR 36±26 

CRP  42±55 

Plain Xray Erosions – n (%) 26 (33%) 

Unless stated, values are mean±SD 
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Metabolomic analysis 

Plasma from patients was subjected to untargeted metabolomics analysis using 

LC-MS (23). A PCA plot (Supplementary File 2) reveals no appreciable global 

separation from baseline to 3 months. Nevertheless some individual peak 

changes were evident and those relating to the biggest differentiators in the 

PCA loadings were checked against lists of common contaminants (24) and 

assessed chromatographically as a safeguard against the observed separation 

being due to a sample handling/processing factor.  

 

Metabolite Comparisons 

Comparisons were performed between individual peaks at baseline and 3 

months, to see if there were any significant differences. These comparisons 

used a basic t-test to calculate a p-value and log fold-change difference. The 

p-values were used to control the false discovery rate, by calculating q-values. 

Those differences with a value of q < 0.05 were reported as significant. Out of 

3042 peaks in the dataset, 464 were reported as different between baseline 

and 3 months. These values can be seen in the accompanying spreadsheet 

(Supplementary File 3).  

 

Relationship between changes in metabolite levels and changes in DAS44 

To determine whether changes in disease activity were matched by changes in 

metabolomic profile, differences in DAS44 and metabolite levels between time 

points were calculated, for all patients. A linear regression was then performed, 
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regressing DAS44 change on change in peak levels, for the baseline to 3 

months. Each set of regressions admitted an effect size and p-value. These p-

values were used to control the false discovery rate by calculating q-values.  

Between baseline and 3 months, 9 significant effects were found for values of 

q < 0.05. A volcano plot of all the peaks is shown in Figure 1, with information 

on the significant peaks in Table 2. Indicative plots of these data and models 

are shown in Figure 2. E.g. looking at the model for Peak.n.724, the slope of 

the line is -0.5, which indicates that a doubling/halving of the concentration after 

treatment, is associated with an extra change in DAS44 downwards/upwards 

of approximately 0.5. This extra change is on top of the average DAS44 change 

in the whole population. Once identified as significant effects, these signals 

were manually assessed to determine peak quality and identity (where 

possible). 
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Figure 1 

Volcano plot between baseline and three months. Blue points are significant peaks. 

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●
●

●●

●●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●●●●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●● ●

●

● ●

●

●
●●

●

●

●

●

●

● ●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

● ●
● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●
●

●

●

●●

●

●

●
●

●
●● ●

●

● ●
●

●

●

●

● ●
●

● ●
●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●
●●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●●

●●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●●

●

● ●●●

●

●

●
●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

0.0

0.5

1.0

1.5

2.0

−2 0 2
log2 fold change per unit change DAS44

−l
og

10
 q
−v

al
ue

Itaconate

Possible Itaconyl CoA
Possible Itaconic Anhydride

All rights reserved. No reuse allowed without permission. 
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which wasthis version posted July 8, 2019. ; https://doi.org/10.1101/19001594doi: medRxiv preprint 

https://doi.org/10.1101/19001594


16 
 

 

Figure 2 
Scatter plots demonstrating change in DAS44 between baseline and 3 months vs change 
in log2 peak intensity of 8 putative metabolites. The Itaconate peak has been identified. 
Peak 1072 and 302 have been given putative identities of Itaconate anhydride and 
Itaconyl-CoA respectively.  
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Table 2 Annotated LC-MS peaks that have been differentially expressed across 

changing DAS44 scores. 

Peak ID Peak 

Change 

qvalue 

Mass RT 

(s) 

Comments 

Peak.n.724 0.0141 134.0579 477 Peak check passed. No ID 

Peak.n.1157 0.0364 281.7499 204 Peak check passed. No ID 

Peak.n.572 0.0364 466.3118 208 Peak check passed. Putative ID: 

cholesterol sulfate 

Peak.n.302 0.0364 130.0267 435 Peak check passed. Putative ID: 

Itaconyl-CoA fragment, based on not 

matching standards for itaconic acid or 

isomers, 

Peak.n.1072 0.0364 112.0161 429 Peak check passed. Putative ID: 

ITACONIC-ANHYDRIDE 

Peak.n.255 0.0234 130.0266 658 Peak check passed. Multiple peaks. 

Putative ID: Itaconate, Metabolomics 

Standards Initiative level 1, based on 

retention time and monisotopic mass. 

Peak.n.1082 0.0364 467.3151 208 Peak check passed. Isotope of 572 
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Peak.p.133 0.0444 263.1115 616 Peak check passed. PEPTIDE_856,  

PEPTIDE_1100 

Peak.p.209 0.004 481.3169 279 Peak check passed. Putative ID: 

lysoPC(15:0) 

 

Foremost among those metabolites associated with the decline in DAS44 

score were itaconate (mz = 130.0267), a predicted itaconate anhydride 

(112.016) and a fragment predicted as originating from itaconyl coA 

(130.0266) (Figure 3). Among the other metabolites were cholesterol, several 

peptides and a range of fatty acids. 

 

Figure 3 

Metabolic pathway showing the production and itaconate via the TCA cycle and 

metabolism to pyruvate via itaconyl-CoA and citramalyl-CoA. Cis-aconitate is 

produced from citrate and iso-citrate by aconitase (AC). This is converted to itaconate 

pyruvate itaconate

cis.aconitate
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by cis-aconitate decarboxylase (cADC) which is then converted to itaconyl-CoA via 

succinate thiokinase (STK). Itaconyl-CoA is converted to citramalyl-CoA  by  

methylglutaconyl-CoA hydratase (MGTK) which is then converted to pyruvate and 

acetyl CoA (34) . 

In order to verify the feature-by-feature analysis, a partial least-squares (PLS) 

analysis was performed on the peak change of the full set of features against 

change in DAS44. This analysis indicated one component and zero 

orthogonal components. The Q2Y metric was given as 0.125, with a p-value 

of 0.01 after 1000 permutations of the samples. The top 9 features from this 

analysis corresponded exactly to the 9 features given by the feature-by-

feature analysis. 

These results were then checked against those peaks that had a significant 

difference between baseline and 3 months, to find those peaks where there 

was both a significant difference between peak levels in the population, and 

also where there was a correlation between the change in DAS44 and the 

difference in peak levels. There were three peaks with this property, Peak.p.133 

(annotated as ser-ser-ala or gly-ser-thr), Peak.p.209 (annotated as LPC(15:0)) 

and Peak.n.1157 (mass of 281.7500, retention of 203 s). n.1157 was not 

matched to any known metabolite, it presents as a doubly charged [M-2H-]2- 

peak with a predicted formula of C30H61N9O.  

 

Itaconate and CRP level have similar predictive power for response. 

Blood CRP levels are measures of the acute phase response that have rapid 

change properties that can map with response to treatments. Accordingly it is 

included as an indirect surrogate of immune cell activation and has been 
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included in a number of composite disease activity measures such as 

DASCRP-28 and SDAI.  In this study, change in CRP levels correlated 

positively with change in DAS44 score (r=0.41, p=9.4x10-4), diminishing as 

disease activity reduced. Conversely, change in itaconate correlated negatively 

with change in DAS44 (r=-0.49, p=9.6x10-5). Besides being correlated with 

DAS44, CRP and itaconate are also negatively correlated (r=-0.44, p=4.9x10-

4). These associations are shown in Figure 4. 
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Figure 4 

Scatter plots showing correlation between A) change in CRP between baseline and 3 

months vs change in DAS44 between baseline and 3 months (r = 0.41); B) change in 

itaconate between baseline and 3 months vs change in DAS44 between baseline and 3 

months (r = -0.49); C) change in itaconate level between baseline and 3 months vs 

change in CRP between baseline and 3 months (r = -0.44) 
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Discussion 

Metabolomics is emerging as a tool to identify biomarkers for disease, response 

to treatment and also indicators of pathogenesis that may offer routes for novel 

interventions. In the past few years a number of studies using both NMR and 

mass spectrometry based approaches have been applied to study RA (5–

17,25–27). The use of an untargeted LC-MS platform has several benefits over 

the use of other platforms, such as NMR. Whilst the reproducibility and 

quantitation provided by NMR allows standardization across laboratories, the 

technique is hampered by poor sensitivity and the inevitable overlap of strong 

signals (such as water) with weak ones (including many metabolites of interest). 

Mass spectrometry is capable of detecting, and identifying, a much broader 

range of metabolites and combining it with a suitable LC set up optimised for 

small, polar metabolites will provide a much more complete picture of the 

metabolome (23). Mass spectrometry also allows for better identification of 

unknown metabolites; signals that do not match a known metabolite in any of 

the databases (28).  We therefore adopted this approach to seek novel 

biomarkers of state and response in patients with new onset RA. 

Our results demonstrate a clear association between short term changes in 

DAS44 scores and levels of a panel of 9 metabolites.  Principal amongst these 

is itaconate, its derived anhydride and a putative itaconate coA derivative. 

Further, the correlation between DAS44 score and itaconate is slightly more 

robust than that between DAS44 score and CRP, indicating the itaconate might 

be as good a marker of improved patient status as CRP (both, however, 

remaining less good than DAS44 score alone).   
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Itaconate has recently emerged as a primary moiety of interest in the 

pathogenesis of inflammatory disease and macrophage activation to an M1 / 

inflammatory phenotype. Initially an ability to inhibit succinate oxidation by 

succinate dehydrogenase was proposed as the key driver on its 

immunomodulatory effect (29). Recently however, it has been shown that 

itaconate impacts directly on the anti-inflammatory transcription factors Nrf2 

(30, 31) to underpin its immunomodulatory activity.  Itaconate is also the most 

pronounced marker of inflammatory arthritis in a murine model (32).   A recent 

study in the Tg197 murine model of inflammatory arthritis described itaconate 

to be a key marker of the disease, and elevated levels were found in afflicted 

mice that reversed upon TNF blockade with infliximab (32). In other studies, 

itaconate appears to be involved in regulation of inflammation, its elevation 

leading, ultimately, to suppression of the inflammatory response (33) and 

although functional roles in human inflammatory disease have yet to be 

reported, our studies indicate levels are elevated as inflammation is diminished.  

Our data reveals increasing itaconate associated with decreasing DAS score 

after cDMARD (primarily methotrexate) treatment, which is consistent with its 

anti-inflammatory role.  However, the analysis in Tg197 mice indicated that 

elevated levels of itaconate were found during disease manifestation and these 

declined upon anti-inflammatory treatment with the anti-TNFa monoclonal 

antibody infliximab. This observation appears to be contradictory to ours.  

However, a number of differences between the studies need to be considered.  

Our work used human plasma while hind limb tissue extracts and synovial 

fibroblast extracts were found to be the optimal material to find metabolite 

changes the transgenic mouse model.  Our first comparison point to baseline 
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came at three months while the mouse comparator point was at six weeks and 

our study did not include a cohort of healthy controls to compare itaconate 

levels at the start of the experiment.  Comparing cDMARD based therapy and 

biological-based therapy may be another confounding factor since different 

therapies work via different mechanisms to diminish inflammation and therefore 

may have differing influences on itaconate levels.  Notwithstanding, having 

demonstrated a clear link between itaconate levels and response to treatment 

in RA, future studies using a wider range of variables will ultimately reconcile 

our understanding of the role of this pathway in inflammatory disease.  

This study cannot distinguish whether itaconate production is a result of 

improved condition due to treatment or is in itself responsible for that improved 

condition. Nor can it determine what impact exposure to specific treatments has 

on itaconate expression. The initial observation requires validation in an 

independent RA cohort and within cohorts of patients with other inflammatory 

diseases.  However, as the first indication that there is a clinically evident 

association between itaconate levels and disease activity levels, the need for 

additional work to understand if stimulating itaconate production 

pharmacologically offers a route to intervention in RA is of major importance. 

The findings suggest that further study of the itaconate pathway and 

macrophage activity may reveal additional important insights into immune 

function regulation and RA pathogenesis and may also reveal new, clinically 

relevant, markers of disease activity and treatment response. Finally, this study 

provides proof of concept that additional insights to disease pathogenesis can 

be identified through analysis techniques that combine highly detailed 

descriptions of metabolite expression with clinical data. 
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