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Abstract 

The ability to accurately predict in-hospital mortality for patients at the time of admission could 

improve clinical and operational decision-making and outcomes. Few machine learning models have been 

developed to predict in-hospital death that are both broadly applicable to all adult patients across a health 

system and readily implementable, and, to the best of our knowledge, none have been implemented, 

evaluated prospectively, or externally validated.  

The primary objective of this study was to prospectively and externally validate a machine 

learning model that predicts in-hospital mortality for all adult patients at the time of hospital admission. 

Model performance was quantified using the area under the receiver operating characteristic curve 

(AUROC) and area under the precision recall curve (AUPRC). Secondary objectives were to design the 

model using commonly available EHR data and accessible computational methods. 

A total of 75,247 hospital admissions (median [IQR] age 59.5 [29.0] years; male [45.9%]) were 

included in the study. The in-hospital mortality rates for the training validation, retrospective validations 

at Hospitals A, B, and C, and prospective validation cohorts, respectively, were 3.0%, 2.7%, 1.8%, 2.1%, 

and 1.6%. The area under the receiver operating characteristic curves (AUROCs), respectively, were 0.87 

(0.83-0.89), 0.85 (0.83-0.87), 0.89 (0.86 – 0.92), 0.84 (0.80-0.89), and 0.86 (0.83-0.90). The area under 

the precision recall curves (AUPRCs), respectively, were 0.29 (0.25-0.37), 0.17 (0.13-0.22), 0.22 (0.14-

0.31), 0.13 (0.08-0.21), and 0.14 (0.09-0.21). 

The results demonstrated accurate prediction of in-hospital mortality for adult patients at the time 

of admission. The data elements, methods, and patient selection make the model implementable at a 

system-level. 
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Introduction 

An average of 2% of patients admitted to US hospitals die during the inpatient admission1. Efforts 

to reduce preventable in-hospital mortality have focused on improving treatments and care delivery2, and 

efforts to reduce non-preventable mortality have focused on supporting patient preferences to die at home3-

5 and attempting to reduce health care costs in the inpatient setting. Early identification of patients at high 

risk of in-hospital mortality may improve clinical and operational decision-making and improve outcomes 

for patients6.  

Previously developed machine learning models that predict in-hospital mortality have not been 

implemented or evaluated prospectively7-10, and most have not been externally validated7-9. Prospectively 

evaluating the performance of machine learning models run on real-world, operational data is a crucial 

step towards integrating these models into the clinical setting and evaluating the impact on patient care. 

External validation on patient data from distinct geographic sites is needed to understand how models 

developed at one site can be safely and effectively implemented at other sites11.  

Unfortunately, formidable barriers prevent prospective and external evaluation of machine 

learning models and their integration into clinical care. First, after developing a model on retrospective 

data significant investment is needed to integrate the model into a production electronic health record 

(EHR) system. Second, most in-hospital mortality models are disease or department-specific and only 

evaluated on local data, limiting the ability to scale the benefit that can be realized from a single model12-17. 

Third, many efforts to date use either proprietary data sets, or advanced, computationally intensive 

modelling methods7, which limit adoption due to the technical capabilities required for successful 

integration.    

The primary aim of this study was to prospectively and externally validate a machine learning 

model that predicts in-hospital mortality at the time of hospital admission for adult patients. The model 

uses readily available EHR data and accessible computational methods, can be applied to all adult 

patients, and was designed to be integrated into clinical care to support workflows that address the needs 
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of patients at high risk of mortality. We evaluate the model on retrospective data from three hospitals and 

prospectively on a technology platform integrated with the production EHR system. 

 

Methods 

Setting 

This study was performed at Duke University Health System (DUHS), a quaternary, academic, three-site 

hospital system with 1,512 beds that had approximately 69,000 inpatient admissions in fiscal year 2018. It 

adopted an Epic Systems EHR system in 2013. This study was approved by the Duke University Health 

System Institutional Review Board, which waived the need for informed consent for the use of 

identifiable data. 

 

Model training and development  

We trained the model using EHR data from a total of 43,180 hospitalizations representing 31,003 

unique adult patients admitted to a quaternary academic hospital (Hospital A) from October 1, 2014 to 

December 31, 2015. The outcome label of in-hospital mortality was defined as a discharge disposition of 

“expired”. 195 model features were built using 57 EHR data elements, which included patient 

demographics (5), as well as labs (33), vitals (9), and medication administrations (10) that occurred 

between presentation to the hospital and the time of inpatient admission. Time of inpatient admission was 

defined as time of order placement to admit a patient. The labs and vitals were aggregated by taking the 

minimum, maximum, mean, and variance of the recorded values and the medications were aggregated by 

the count of each medication type. Missing values for a given variable were assigned a default value that 

allowed us to include observations with missing data and enabled the algorithm to gain signal from 

missingness itself18. The data elements and model features are provided in the supplementary materials 

(eFigure 1). 

We randomly selected 75% of encounters for model training, and held out 25% for testing. Initial 

tests demonstrated superior performance of gradient boosting models compared to random forest and 
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regression models, so we selected a Gradient Boosting model using Python (with the XGBoost package18-19) 

as our base model with parameters chosen using cross validation. We used the CalibratedClassifierCV20 in 

Scikit-learn21 with 10 cross validation folds to calibrate the output so the predictions would better 

correspond to observed probabilities.  

For each iteration of the cross validation, the model fit the 9 training folds with the XGBoost 

model. This fitted model was then used to generate predictions for the holdout fold. These predictions 

were then calibrated using Isotonic Regression. From this procedure, we trained 10 models, each 

consisting of an XGBoost prediction step and an Isotonic Regression step. To generate a prediction on 

new patient, we took the arithmetic mean of the output of these 10 models. 

 

Performance Metrics 

To assess model discrimination, the receiver operating characteristic (ROC) and the precision 

recall (PR) curves were plotted and the respective areas under the curves (AUROC and AUPRC) were 

obtained. The AUPRC was included because it is particularly informative when evaluating binary 

classifiers on imbalanced data sets, where the number of negative outcomes significantly outweigh the 

number of positive outcomes22,23. Model calibration was assessed by comparing the predicted and empirical 

probability curves. 95% confidence intervals for the AUROC and AUPRC were obtained by 

bootstrapping the observations of the test data. Model output was plotted against observed mortality rates 

to assess calibration. Additionally, to assess performance in a manner that is meaningful to operational 

stakeholders, sensitivity, specificity, positive predictive value (PPV), and number of true and false alarms 

per day were generated for various risk thresholds. Lastly, model performance was evaluated on different 

patient subpopulations, segmented by information missingness, age, race, gender, admission types, and 

admission sources. Sensitivity, specificity, and PPV were obtained for each subpopulation using a set 

risk-threshold that resulted in a PPV of 20% across the entire population. 

 

Retrospective validations 
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A separate cohort of 16,122 hospitalizations representing 13,094 unique adult patients admitted to 

this same quaternary academic hospital (Hospital A) from March 1, 2018 to August 31, 2018 was used to 

assess temporal generalizability. Two separate cohorts from different community-based hospitals 

(Hospital B and Hospital C) were used to assess external generalizability. Hospital B had a cohort of 

6,586 hospitalizations representing 5,613 unique adult patients and Hospital C had a cohort of 4,086 

hospitalizations representing 3,428 unique adult patients. Both external cohorts consisted of admissions 

between March 1, 2018 and August 31, 2018. The AUROC and AUPRC for these three validations are 

reported. 

 

Prospective validation 

The model was integrated into the production EHR system and prospectively validated at 

Hospital A, the quaternary academic hospital that the model was initially trained on. The prospective 

cohort consisted of 5,273 hospitalizations representing 4,525 unique adult patients admitted between 

February 14, 2019 and April 15, 2019. The model was run daily on a pipeline that automatically curates 

EHR data24 and the patient encounter identifier and risk scores were stored in a database over a 2-month 

period. Model output was not exposed to clinicians and was not used in clinical care during this silent 

period. At the end of the silent period, in-hospital mortality outcomes were obtained for each patient 

encounter. Model performance was assessed using methods identical to the retrospective validations. The 

AUROC and AUPRC for this prospective cohort was reported. 

 

Implementation 

During the course of this study, we partnered with clinical and operational leaders to better 

understand how this model should be used in the hospital setting. As part of this work, we iteratively 

developed a simple user interface (eFigure 3 in the Supplement) showing model output using Apache 

Superset25, in addition to a workflow decision framework (eFigure 4 in the Supplement). Lastly, we 
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developed a model facts sheet, similar to an over-the-counter drug label, that clearly communicates 

important information about the model to clinician end users (Figure 2). 

 

Results 

We included a total of 75,258 hospitalizations in the training, retrospective validation, and 

prospective validation of the model. The overall percent of hospitalizations with in-hospital mortality was 

2.7% (n = 2021). The hospital and encounter characteristics are summarized by training and testing 

cohorts in Table 1. 

Table 2 summarizes the prediction accuracy by evaluation method, site, and time period. For the 

retrospective validations, the AUROC was 0.87 for the 25% held-out test portion of the original training 

data set (retrospective evaluation, Hospital A, 2014-2015), 0.84 for a temporal validation cohort 

(retrospective evaluation, Hospital A, 2018), 0.89 for an external temporal and geographic validation 

cohort (retrospective evaluation, Hospital B, 2018), and 0.84 for an additional external temporal and 

geographic validation cohort (retrospective evaluation, Hospital C, 2018). For the prospective validation, 

the AUROC was 0.86 (prospective validation, Hospital A, 2019). The AUPRC, which compares 

sensitivity (recall) and positive predictive value (precision) and is more dependent on prevalence of the 

outcome, was lower across the 2018 retrospective and 2019 prospective validations compared to the 

earlier 2014-2015 retrospective validation. The prevalence of the outcome decreased from 3.0% in the 

2014-2015 training data set compared to 1.6% in the prospective validation cohort. 

In Figure 1, the ROC and PR curves for the training test set demonstrate that the model performs 

well across risk threshold values, and the calibration plot demonstrates that mortality risk predicted by the 

model approximates observed mortality rates. The ROC and PR curves for the other evaluations are 

shown in the supplementary materials (eFigure 2). 

Table 3 shows metrics that are most relevant to operational stakeholders in the 2014-2015 test set 

and assumes a theoretical admission volume of 100 patients per day. At this volume, alerts triggered at or 

above a threshold of 0.04 would be 61% sensitive, 91% specific, and result in 11.9 alerts per day. Of all 
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fired alerts, 1.5 would be true alerts and 10.4 would be false alerts. At this risk threshold, the work-up-to-

detection ratio is 7.9. As shown in Table 3, these metrics change significantly with different risk 

thresholds. 

eTable 1 shows model performance across patient subpopulations in the 2014-2015 test set. The 

risk threshold was selected to achieve a positive predictive value (PPV) of 20% across the entire 2014-

2015 retrospective test set. The threshold of 0.075 results in an operationally manageable level of 6 total 

alerts per day (n=100 admissions per day), with 5 false alerts and 1 true alert. Model sensitivity, 

specificity, and positive predictive value (PPV) varied across patient subpopulations segmented by 

information missingness, age, race, gender, admission types, and admission sources. 

eFigure 3 in the supplementary materials shows an Apache Superset dashboard that was 

developed to display patient risk scores to clinicians to support the development of workflows utilizing 

model output. The patient list can be filtered by time range to include patients admitted in the last day, 

last week, last month, and last year, and also includes an option for searching for a specific patient MRN. 

The dashboard is built off a curated database that automatically updates daily from the EHR reporting 

database. eFigure 4 in the supplementary materials shows the framework used to develop clinical 

workflows to be supported by model output. Figure 2 shows a model facts sheet, which summarizes 

important model information in a style similar to an over-the-counter drug label. The fact sheet is 

intended to guide use of the model by clinical end users who may not be familiar with the inner workings 

of the machine learning model. 

 

Discussion 

We developed a machine learning model to predict in-hospital mortality at the time of admission 

for all adult patients using data that is readily accessible in the EHR. We retrospectively evaluated the 

model to assess temporal and external geographic generalizability and we prospectively evaluated model 

performance using a data pipeline that is integrated with our operational EHR. The model uses off-the-
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shelf software packages18-20 and was successfully integrated into a production EHR and can be similarly 

integrated at other sites. 

To make the model implementable at a system-level, the model was trained on all adult patients 

using data elements commonly available across sites. The model only uses information from the current 

encounter without pre-hospital information, meaning that model outputs are accurate for patients who 

present for the first time to a health care setting. There are previously published models that predict 

inpatient mortality at the time of admission7-10. Rajkomar et al use deep learning in combination with 

tokenized data processing built on FHIR to train site specific mortality models. The model ingests all data 

available for a patient up until the time of prediction and achieves an AUROC of 0.90. The model does 

not require manual curation of features, which we have shown can cost more than $200,000 per 

application26. However, implementing this type of model requires potentially more substantial investment, 

including mapping all EHR data to FHIR resources and over 200,000 hours of graphical processing unit 

training time27. To our knowledge, the model has not yet been integrated into an operational EHR and 

evaluated prospectively. Tabak et al use logistic regression and conversion to an integer-based score 

(ALaRMS) to achieve an AUROC of 0.87. The model ingests demographic data and initial lab results 

across 23 numeric labs to predict inpatient mortality at the time of admission. The model was developed 

using data from 70 hospitals in the United States and has been externally validated by an independent 

team in Switzerland10. In addition to externally validating ALaRMS, Nakas et al developed decision tree 

and neural network models that ingested the same demographic and lab result inputs and both models 

achieved an AUROCs of 0.91. Finally, Schwartz et all use penalized logistic regression to develop a 

model that ingests demographics, initial lab results during a hospital encounter in addition to pre-hospital 

comorbidities to predict inpatient mortality9. The model achieves an AUROC of 0.857 and has not been 

externally or prospectively validated. To our knowledge, our model is the first to be integrated into an 

operational EHR and prospectively validated. 

Prospective validation on operational data is an important first step in assessing the real-world 

performance of machine learning models. Ensuring that a model continues to perform well during a silent 
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period sets the stage for integration into clinical workflows and evaluation of clinical and operational 

impact. Unfortunately, few machine learning models have been evaluated prospectively using real-world 

EHR data28, although there have been several recent validations of medical imaging models in the real 

world29-31. Our successful prospective validation is the first described in the literature for inpatient mortality 

prediction using a production EHR. The results in Table 2 show that model performance prospectively 

(AUROC = 0.86) almost exactly matched model performance retrospectively across the original test set 

(AUROC = 0.87) and the 2018 cohort (AUROC = 0.85). The AUPRC in the prospective cohort (0.14) 

was lower the retrospective AUPRC at the same hospital in 2014-2015 (0.29), which in part may have 

been due to the 47% reduction in prevalence of in-hospital mortality in the prospective cohort compared 

to the retrospective cohort (1.6% vs 3.0%). Overall, these results demonstrate that model performance 

remained stable when evaluated prospectively on operational data.  

External validation results suggest stability in model performance when run on data from non-

training sites and outside of the training time period. The AUROC in hospitals B and C in 2018 ( 0.89, 

0.84) are consistent with the AUROC for training hospital A in 2014-2015 and 2018 (0.87, 0.84). Model 

stability over time and across settings suggest the model may not need to be re-trained, updated, or 

replaced as frequently. Furthermore, the possibility that models trained on data from one academic 

hospital in a health system can perform well at community hospitals in the same system may enable 

health systems to scale the clinical benefit realized from a single model without needing to rebuild site-

specific the models. 

In addition to performing well prospectively and on external sites, for machine learning models to 

improve patient care, they must also change behavior32. This requires improving decisions, which in the 

hospital, are usually made by physicians. During our efforts to develop workflows for this model with our 

clinical partners, we utilized a framework of identifying important decisions, specifying the decision-

maker, understanding the time point at which the decision is made, verifying that there is an opportunity 

to improve, and confirming that the improvement can be measured (eFigure 4 in the Supplement). The 

dashboard (eFigure 3 in the Supplement), which shows a list of patient risk scores generated on a daily 
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basis, coupled with the model facts sheet (Figure 2) helped clinicians understand the types of decisions 

that the model should and should not be used to support. Ultimately, this aided the process of identifying 

use-cases that can be tested and measured. 

There is growing consensus that machine learning model reporting needs to be more standardized 

for a clinical audience33 as well as more transparent to end users34. The model fact sheet displayed in Figure 

2 is the first formal effort in health care to distill important facts about how a model is developed and how 

a model should be used into 1 page. The fact sheet has undergone several iterations incorporating 

feedback from internal stakeholders. The need for such an artifact emerged after conversations with end 

users about the various ways the model output could inform clinical decision making. One especially 

troubling use of the model is called out in the model fact sheet. The model should not be used to prioritize 

patients for admission to the intensive care unit (ICU) or to limit care delivery. The model is built to 

predict risk of mortality at any point in time during the encounter and patients may receive life-saving 

therapies during an encounter that decrease risk of inpatient mortality. A study from 2015 describes how 

asthma was identified by a machine learning model as protective against death for patients admitted to a 

hospital with pneumonia35. The reason was that patients with asthma were admitted directly to an ICU and 

received appropriate care that was protective against inpatient mortality. If the model were prospectively 

implemented and incorporated into clinical decision making at the time of admission, it is not hard to 

imagine patients with asthma being de-prioritized for ICU admission. The downstream consequences are 

significant. The model should only be used to identify high risk patients for consideration for services that 

they would have received later or not received at all in the absence of information provided by the model. 

The first use-case that we plan to evaluate is identification of patients for palliative care consultation. The 

model fact sheet includes sections that are currently empty that we hope to populate as the evidence base 

for the current model grows. 

 

Challenges and Limitations 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. certified by peer review)

(which was notThe copyright holder for this preprint this version posted June 26, 2019. ; https://doi.org/10.1101/19000133doi: medRxiv preprint 

https://doi.org/10.1101/19000133
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 -	12	-	

Many challenges were encountered in prospectively evaluating the model. First and foremost, the 

technology infrastructure required to run models in real-time had to be built. Fortunately, at our 

institution, such an infrastructure to automatically curate EHR data was already in place, utilizing native 

functionality in addition to custom developed technologies24. Second, there were many differences in data 

element names between the retrospective training data and prospective, live EHR data. This was due to 

changes in the EHR data structure over time that are not necessarily visible to the clinical end-user. 

Because of this, extensive mapping of variable names from the old retrospective data to the new 

prospective data was required. Third, differences in software versions between the computational research 

environment in which the model was trained and the production environment where the model was run 

had to be reconciled.  

Our study has several potential limitations. First, we excluded patient less than eighteen years of 

age, and therefore our model will not be able to be used on pediatric patients. Second, it is rare for 

institutions to possess the technology infrastructure required to deploy models in a clinical setting on live 

EHR data and the scalability of this technical challenge is not addressed by our methods. The approach is 

scalable and effort and investment would likely be required by sites interested in adopting a similar 

approach. Third, the prospective validation was a silent period and did not include any interventions. 

While we demonstrate that the model prediction accuracy is maintained prospectively, it is unknown 

whether these predictions will actually improve clinical or operational outcomes. Future work will 

evaluate the implementation of a clinical workflow. Fourth, although we demonstrate external 

generalizability to community hospitals 4 and 30 miles from a flagship academic hospital, additional 

research is required to assess generalizability to more distant regions. Fifth, based on related work by 

others predicting inpatient mortality5 as well as prior internal experience predicting sepsis36, further 

performance gains may be achievable using deep learning. Lastly, further research is needed to 

understand how the model output should be interpreted and used in the clinical setting. For example, this 

study does not elucidate to what extent the model has learned treatment effects, and without careful 

instruction for how to interpret model output, clinicians may underestimate in-hospital mortality risk for 
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patients with dangerous conditions that would usually receive intensive treatment. The goal of our model 

facts sheet is to highlight the recommended use cases as well as warn against use cases that may limit 

access to needed therapies in the inpatient setting. We hope the model fact sheet serves as a template for 

other teams conducting related work. 

 

Conclusion 

Taken together, the findings in this study provide encouraging support that machine learning 

models to predict in-hospital mortality can be implemented on live EHR data with prospective 

performance matching performance seen in retrospective evaluations of highly-curated research data sets. 

This silent period validation sets the stage for integration into clinical workflows. The benefit to cost ratio 

of developing and deploying models in clinical settings will continue to increase as commonly available 

EHR data elements are more effectively utilized, and opportunities to scale models externally are 

identified. Further research is required to understand how to best integrate these models into the clinical 

workflow, identify opportunities to scale, and quantify the impact on clinical and operational outcomes. 
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Table 1. Characteristics of hospitalizations in training and test data sets 

 Training data Retrospective Retrospective Retrospective Prospective  
 Hospital A Hospital A Hospital B Hospital C Hospital A 
 2014-2015 2018 2018 2018 2019 

Admissions      
  Hospitalizations, no. 43180 16122 6586 4086 5273 

  Length of stay, median (days) 3.82 3.81 3.0 3.1 3.52 

Demographics      

  Age in years, median (IQR) 58.6 (29.0) 60.1 (29.1) 59.0 (32.3) 66.0 (21.0) 59.7 (31.0) 

  Male sex, no. (%) 20359 (47.1%) 7375 (45.7%) 2574 (39.1%) 1906 (46.6%) 2347 (44.5%) 

Discharge disposition      

  Home, no. (%) 35645 (82.5%) 13231 (82.1%) 5215 (79.2%) 3144 (76.9%) 4537 (86.0%) 

  Skilled nursing facility, no. (%) 3937 (9.1%) 1576 (9.8%) 736 (11.2%) 541 (13.2%) 487 (9.23%) 

  Another healthcare facility, no. (%) 589 (1.4%) 201 (1.2%) 279 (4.2%) 105 (2.6%) 49 (0.89%) 

  Rehabilitation, no. (%) 564 (1.3%) 204 (1.3%) 90 (1.4%) 87 (2.1%) 22 (.042%) 

  Other, no. (%) 159 (0.4%) 112 (0.7%) 58 (0.9%) 34 (0.8%) 16 (0.30%) 

  Expired, no. (%) 1298 (3.0%) 435 (2.7%) 119 (1.8%) 84 (2.1%) 84 (1.6%) 

Primary outcome      

  In-hospital deaths, no. (%) 1298 (3.0%) 435 (2.7%) 119 (1.8%) 84 (2.1%) 84 (1.6%) 
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Table 2. Prediction accuracy by evaluation method, location, and time-period 

Evaluation method Location Time-period AUROC AUPRC 

Retrospective Hospital A 2014-2015 0.87 (0.83–0.89) 0.29 (0.25–0.37) 

Retrospective Hospital A 2018 0.85 (0.83–0.87) 0.17 (0.13–0.22) 

Retrospective Hospital B 2018 0.89 (0.86–0.92) 0.22 (0.14–0.31) 

Retrospective Hospital C 2018 0.84 (0.80–0.89) 0.13 (0.08–0.21) 

Prospective Hospital A 2019 0.86 (0.83–0.90) 0.14 (0.09–0.21) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. certified by peer review)

(which was notThe copyright holder for this preprint this version posted June 26, 2019. ; https://doi.org/10.1101/19000133doi: medRxiv preprint 

https://doi.org/10.1101/19000133
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 -	20	-	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Observed mortality rates

Pr
ed

ic
te

d 
m

or
ta

lity
 ra

te
s

Calibration	plot	

Predicted	mortality	rates	

O
bs
er
ve
d	
m
or
ta
lit
y	
ra
te
s	

Figure 1. Receiver operating characteristic curve, precision recall curve, and calibration plot 
for 2014-2015 test set 
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Table 3. Operational performance metrics for various model thresholds for the entire 2014-2015 test set, assuming a 
theoretical admission volume of 100 patients per day 

Threshold Sensitivity Specificity PPV Total Alerts/Day False Alerts/Day True Alerts/Day 

0.01 0.88 0.66 0.05 39.9 37.8 2.1 

0.02 0.76 0.81 0.08 23.3 21.5 1.8 

0.03 0.68 0.88 0.11 15.3 13.6 1.7 

0.04 0.61 0.91 0.12 11.9 10.4 1.5 

0.05 0.57 0.93 0.15 9.1 7.7 1.4 

0.06 0.54 0.95 0.18 7.4 6.1 1.3 

0.07 0.52 0.95 0.19 6.5 5.3 1.3 

0.08 0.50 0.96 0.21 5.8 4.5 1.2 

0.09 0.48 0.96 0.22 5.2 4.1 1.2 

0.10 0.44 0.97 0.22 4.8 3.7 1.1 

0.11 0.43 0.97 0.24 4.4 3.4 1.0 

0.12 0.41 0.97 0.24 4.1 3.1 1.0 

0.13 0.39 0.98 0.26 3.7 2.7 1.0 

0.14 0.39 0.98 0.27 3.5 2.6 0.9 

0.15 0.36 0.98 0.27 3.2 2.3 0.9 

0.16 0.35 0.98 0.28 3.1 2.2 0.9 

0.17 0.34 0.98 0.30 2.8 2.0 0.8 

0.18 0.33 0.98 0.32 2.6 1.7 0.8 

0.19 0.31 0.99 0.32 2.4 1.6 0.8 

0.20 0.29 0.99 0.33 2.2 1.5 0.7 

0.21 0.28 0.99 0.33 2.0 1.4 0.7 

0.22 0.28 0.99 0.35 1.9 1.3 0.7 

0.23 0.27 0.99 0.36 1.8 1.2 0.7 

0.24 0.26 0.99 0.38 1.7 1.1 0.6 

0.25 0.26 0.99 0.41 1.5 0.9 0.6 
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Figure 2. Model facts sheet to communicate important model information to clinical partners 
 

 

 

 

 

 

 

 

 

 

 

 

	

Model	Facts	
Model	name:	In-hospital	death	risk	prediction	model	
Summary	
This	model	uses	EHR	input	data	collected	between	a	patient’s	time	of	presentation	to	the	hospital	and	
admission	to	the	hospital	to	estimate	the	probability	that	the	patient	will	die	during	the	hospital	stay.	It	was	
developed	in	2018-2019	by	the	Duke	Institute	for	Health	Innovation.	

Mechanism	
§ Outcome	….……………………………………………………………………………………………..……………….in-hospital	death	
§ Output	….……………….……………0%	-	100%	probability	of	death	occurring	during	the	hospital	admission	
§ Patient	population	….……………………………..………..……..all	adults	>18	years	old	admitted	to	the	hospital	
§ Time	of	prediction	…..………….………………………………..………………at	the	time	of	admission	to	the	hospital	
§ Input	data	type	……………….………………………………………………….………………electronic	health	record	(EHR)	
§ Input	data	source	…………………..………………..…...demographics,	labs,	vitals,	medication	administrations	
§ Training	data	location	and	time-period	…….………………..…………………………………..Hospital	A,	2014-2015	
§ Model	type……………….……………………………………………………………………………………………………………XGBoost	

Validation	and	performance	
• Retrospective:	tested	in	2018	at	three	hospitals	(A,	B,	&	C).	AUROCs	0.84-0.89,	AUPRCs	0.13-0.29.	
• Prospective:	tested	in	2019	at	one	hospital	(A).	AUROC	0.86	and	AUPRC	0.14.	
• Operational:	at	hospital	A,	with	threshold	set	to	achieve	20%	PPV,	51%	sensitivity,	and	96%	

specificity,	for	100	admissions	per	day,	there	will	be	~6	total	alerts,	~5	false	alerts,	and	~1	true	alert.	

Uses	and	directions	
§ General	use:	this	model	is	intended	to	be	used	as	an	additional	source	of	information	for	clinicians	

making	operational	and	clinical	decisions	while	caring	for	a	newly	admitted	hospital	patient.	
Specifically,	this	model	is	intended	to	be	used	to	identify	patients	at	high	risk	of	in-hospital	death.	

§ Tested	use	case(s):	
§ Examples	of	appropriate	decisions	to	support:	identification	of	high	risk	patients	for	consideration	

for	services	that	they	would	have	received	later	or	not	received	in	the	absence	of	information	
provided	by	the	model.		

§ Before	using	this	model:	test	the	model	prospectively	on	the	local	data	and	confirm	the	ability	to	
monitor	model	performance	over	time.	

Warnings	
§ General	warnings:	this	model	may	take	expected	treatment	effects	into	account.	The	degree	to	

which	the	model	anticipates	treatment	has	not	been	studied	and	is	unknown.	An	example	of	this	
occurring	would	be	a	young	patient	with	a	life-threatening,	traumatic	wound	being	categorized	as	
low-risk,	since	with	standard	treatment,	the	patient	would	have	a	low	risk	of	dying	in	the	hospital.	
Therefore,	the	model	should	not	be	used	to	triage	patients	for	the	ICU.	

§ Examples	of	inappropriate	decisions	to	support:	de-prioritization	of	low	risk	patients	for	services	
that	they	would	have	otherwise	received	with	standard,	usual	care,	in	the	absence	of	information	
provided	by	the	model.	

§ Discontinue	use	if:	clinical	staff	raise	concerns	about	how	the	model	is	being	used	or	model	
performance	deteriorates	due	to	data	shifts	or	population	changes.	

Other	information:	
§ Publications:	--	
§ Related	models:	--	
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