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Abstract

This paper presents a procedure for the patient-specific prediction of epileptic seizures. To this end, a
combination of nonnegative matrix factorization (NMF) and smooth basis functions with robust
regression is applied to power spectra of intracranial electroencephalographic (iEEG) signals. The
resulting time and frequency components capture the dominant information from power spectra, while
removing outliers and noise. This makes it possible to detect structure in preictal states, which is used
for classification. Linear support vector machines (SVM) with L1 regularization are used to select and
weigh the contributions from different number of not equally informative channels among patients. Due
to class imbalance in data, synthetic minority over-sampling technique (SMOTE) is applied. The
resulting method yields a computationally and conceptually simple, interpretable model of EEG signals
of preictal and interictal states, which shows a good performance for the task of seizure prediction.

Introduction 1

The ability to predict epileptic seizures provides an opportunity to intervene in order to attenuate their 2

effects, or if possible prevent them. In this study we focus on EEG manifestations of seizures, which are 3

characterized by sudden hypersynchronization of neurons and last from seconds to minutes. [1] Recently 4

published studies on seizure prediction use a wide variety of approaches, from time series analysis (e.g. 5

phase synchronization [2]) and spectral features of EEG signals [3] to physiological models of neural 6

activity (e.g. neural mass models [4]). We focus on spectral measures of EEG signals since they have 7

been successfully used as features for seizure prediction, and are easily interpretable. [3, 5, 6] 8

In the field of seizure prediction there are certain conceptional, computational and data-related 9

challenges. First, using a large number of features for prediction makes it difficult to interpret their 10

individual contribution. [6] Secondly, the algorithms for seizure prediction in a clinical setting need to be 11

computationally efficient. Due to hardware constraints, this applies to closed-loop EEG devices for 12

seizure prediction and intervention in particular, which have been a recent focus in the field. [5–7] 13

Finally, data encountered in the field of seizure prediction can be high dimensional and heterogeneous 14

(e.g. recorded using many different channels and types of measurements in addition to EEG, like ECG, 15

EOG etc), yet suffer from class imbalance (patients spend more time in interictal than in preictal states) 16

and limited in the number of labeled samples. This is particularly challenging for the design of a 17

patient-specific model. 18

In this study we address these issues by developing an easy-to-use, computationally efficient method 19

for patient-specific seizure prediction. In order to achieve that, we extract a small set of interpretable 20

features from power spectra that distinguish a baseline (interictal) EEG activity from a state leading up 21

to a seizure (preictal state). Interictal states are regular brain activity between seizures, which can 22

sometimes be interrupted with interictal spiking. [1, 8] Since seizures are characterized by strong 23

synchronization, they are very prominent in power spectra of EEG signals. Although preictal states are 24
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not clearly visible in raw EEG signals, multiple studies confirmed the presence of distinct preictal states 25

using spectral [3, 9, 10], as well as information measures. [11–13] For a detailed discussion, see [5] and [6]. 26

Although power spectra capture relevant changes in frequency over time, they can be very noisy and 27

contain outliers. We thus use nonnegative matrix factorization (NMF) [14,15] to decompose power 28

spectra into dominant time and frequency components, which are later used for seizure prediction. 29

To mitigate class imbalance, we employ synthetic minority over-sampling technique (SMOTE) [16], 30

together with linear SVM with L1 regularization, to assign weights for contributions from each individual 31

channel and eliminate uninformative channels. The developed method is computationally inexpensive 32

and produces good results while providing insights into the structure of preictal states. 33

Materials and Methods1
34

Data preparation 35

The data consists of heterogeneous EEG recordings of six patients (two females; median age: 33) [Tab.1] 36

and form a part of the bigger Freiburg EPILEPSIAE database. [17] Recordings were made at the 37

University Medical Center Freiburg, over the course of several days (three to nine), between 2003 and 38

2009. The sampling frequency varies between 256Hz and 1024Hz. The electrodes that are used in the 39

recordings include intracranial (depth, strip and grid) and surface electrodes, together with special 40

electrodes (e.g. ECG, EMG and EOG), whose number varies between 31 and 122, depending on the 41

diagnosis. In order to investigate preictal states thoroughly, only intracranial EEG recordings are used. 42

Since the ability to predict a seizure five minutes before its onset can be useful for patients with 43

uncontrolled epilepsy [18], we focus on five minute intervals of preictal and interictal states. In the case 44

of a preictal state, an interval of five minutes leading up to a seizure is extracted. Since preictal states 45

directly precede seizures, seizure prediction can be realized by classification between preictal and 46

interictal states. 47

In the case of an interictal state five minutes intervals are extracted, which are at least 11 minutes 48

before or after any other seizure. We refer to these intervals of extracted signals as individual 49

measurement periods. The data are filtered with the Parks-McClellan optimal equiripple finite impulse 50

response filter to remove 50Hz line noise. 51

The dataset is separated into training (70%) and validation set (30%) during a 100-fold 52

cross-validation procedure. 53

Patient’s
number

age sex
number of
channels

sampling
frequency (Hz)

number of
preictal intervals

number of
interictal intervals

1 34 male 48 256 23 88
2 37 female 26 512 7 44
3 18 male 94 1024 9 80
4 42 male 38 1024 7 110
5 15 male 91 256 17 9
6 32 female 68 1024 7 19

Table 1. Detailed information about patients the from EPILEPSIAE database. [17]

Deriving time and frequency components 54

To identify stereotypical behavior between and ahead of seizures, spectrograms of each channel [Fig.1] 55

are obtained using the multitaper method [19] with time windows of 10 seconds (which is calculated by 56

using 50% overlap of a 20 seconds window). To correct for baseline activity across frequencies in 57

1A software implementation of the presented method is available online at https://github.com/ostojanovic/seizure_
prediction.
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interictal states, relative power is calculated by dividing spectrograms of each channel by the respective 58

average interictal spectrogram. 59

Due to the clinical setting and patients’ diagnoses, the sampling frequency varies among different 60

patients. As a result, the highest frequency in the spectrograms varies between 128Hz and 513Hz. 61

However, this difference is unproblematic due to the fact that we develop patient-specific models. After 62

obtaining spectrograms of every individual measurement period for every channel, they are visually 63

inspected, and in the case of anomalies, excluded from the training data. In addition to that, if either 64

the beginning or end of an individual measurement period is corrupted by e.g. seizure leakage (an onset 65

of a seizure before a misplaced onset label due to hand-labeling of the raw iEEG signal) or electrode 66

detachment, then the corrupted data is replaced by a corresponding amount of data from the opposite 67

end of the measurement interval. In that way, the length of spectrograms is preserved. 68
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Figure 1. Example spectrograms of interictal and preictal states. Baseline corrected spectro-
grams of a preictal (A) and an interictal (B) individual measurement period of channel HR1 from patient
1. The preictal spectrogram shows an onset of a strong low frequency oscillation, while the interictal
spectrogram is similar to the baseline activity. This channel and individual measurement period will be
used throughout the paper for illustrative purposes, if not stated otherwise.

Time-frequency decomposition 69

To examine changes in power spectra, spectrograms of each channel and each individual measurement 70

period are decomposed into a time and a frequency component using nonnegative matrix factorization. 71

Originally proposed under the name ”positive matrix factorization”, it is a variant of factor analysis [14], 72

which was first used on environmental data [20] and later popularized in the application to face 73

recognition under the current name. [15] For both tasks, NMF is successful in learning interpretable 74

parts-based representation (e.g. concentrations of elements, as in [20] or parts of faces, as in [15]) and 75

shown to perform better than independent component analysis, principal component analysis or vector 76

quantization. [21–23] In the field of seizure prediction, NMF has been used to develop a method for 77

automatic localization of epileptic spikes in children with infantile spasms [24] and for automatically 78

detection and localization of interictal discharges. [25] 79

Nonnegative matrix factorization decomposes a nonnegative matrix V into two nonnegative low-rank 80

matrices W and H [15]: 81
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V ∼ Ṽn×m = Wn×r ×Hr×m

Ṽij =
r∑

a=1

WiaHaj

The outer product Ṽ = WH can be interpreted as a low rank parts-based approximation of the data 82

in V . [15] We decide on a factorization of rank r = 1 to get the most constrained model with two vectors, 83

one of which represents temporal evolution (time component H) and one of which represents distribution 84

of frequencies (frequency component W ). [Fig.2] 85
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Figure 2. Time and frequency components and its models. An example of decomposed time
(solid blue lines) and frequency components (solid red lines) and their respective models (dashed lines) of
a preictal state (A, C), as well as an interictal state (B, D). In a preictal state, the time component (A)
increases as a seizure is approaching, while the frequency component (C) has a sharp increase in low
frequencies. Both interictal components (B, D) are steady and are an order of magnitude lower than
their respective preictal components (A, C).

To lessen the influence of outliers and to remove noise in the NMF components, they are modeled 86

with smooth basis functions using robust regression. The time component is modeled by a polynomial of 87

second order, while the frequency component is modeled by nonlinearly logarithmically spaced B-splines 88

of sixth order to consider the frequency resolution which decreases in higher frequencies. [Fig.2] By 89

modeling each component with smooth basis functions, the most relevant information is preserved in 90

both domains, while noise is removed. 91

By calculating the outer product of modeled NMF components as shown in figure 3, time-frequency 92

models can be reconstructed. They capture the most important information while leaving out the noise 93

and thus provide simplified intermediate representation of the data, which can be visually compared to 94

the corresponding spectrograms (see S1 Figure in the appendix). The coefficients of the modeled time 95

and frequency components therefore convey relevant information about structure of both states. 96

Prediction and performance measures 97

To classify between preictal and interictal states, linear support vector machines [26] are used. We 98

combine the coefficients of both of the modeled NMF components across all channels into a feature 99
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Figure 3. Obtaining a time-frequency model from the respective components. The NMF
components are shown with solid red and blue lines for frequency and time, respectively, while their
models are shown with dashed lines. The time-frequency model (center) is an outer product of modeled
time and frequency components.

vector. For example, recordings of patient 1 contain 48 channels with 12 NMF parameters (9 parameters 100

for the frequency component and 3 parameters for the time component) each, leading to a dimensionality 101

of 48 · 12 = 576. To account for the risk of overfitting due to the high number of features, L1 102

regularization is used, which constrains most of the parameters to zero. 103

In the original dataset, interictal states are more frequent than the preictal ones, which leads to an 104

imbalance of classes (c.f. Tab. 1). To account for this class imbalance, the SMOTE oversampling 105

technique is used, which creates synthetic samples of the minority class based on k neighboring points 106

(in our case k = 5). [16] 107

To ensure good generalization of the algorithm, 100-fold cross-validation is used on a training set 108

(70%) and a validation set (30%). Average measures (accuracy, sensitivity, specificity, positive and 109

negative predictive values) are reported. Since the classifier should neither miss nor falsely predict a 110

seizure, we report sensitivity sensitivity and specificity, as well as positive and negative predictive 111

values. [27] 112

Results and discussion 113

Interpretability of the model 114

The modeled NMF components show clear differences in preictal and interictal states. [Fig.2] In a 115

preictal state, the modeled time component shows an increase towards the seizure onset, which is not 116

visible in an interictal state. Models of the frequency components of preictal states exhibit a peak of high 117

activity in lower frequencies, relative to baseline activity. Our study thus confirms previous findings of a 118

structure below 30Hz (gamma range), which is informative for seizure prediction. [9, 10] These structural 119

differences are also visible in recovered time-frequency models (see S2 Figure and S3 Figure in the 120

appendix). Even though there are differences between patients in both time and frequency components, 121

the average components are similar among patients, which confirms the reliable existence of structure in 122

preictal states (see S4 Figure in the appendix for a comparison). 123
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Predictive performance 124

Similar accuracy is achieved for all patients (above 90%). The lowest performance is for the patient 5 125

(92%) and the highest for the patient 4 (100%), as shown in figure 4 and table 2. Sensitivity is between 126

0.84 and 1, while specificity ranges from 0.98 to 1, as can be seen in figure 4. A combination of high 127

values of sensitivity and specificity is achieved for all patients. Similarly, positive predictive values are 128

between 0.98 and 1, while negative predictive values are between 0.87 and 1 (c.f. figure 4 and table 2). 129
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Figure 4. Evaluation of prediction performance. Performance of each patient is represented by a
circle, for accuracy (A), specificity-sensitivity plot (B) and negative and positive predictive value (C).
Identical colors are used to represent each patient across all three subplots. The hatched area represents
results attainable by a random classifier.

Patient’s
number

accuracy (%) sensitivity specificity
positive

predictive value
negative

predictive value

1 98.8 0.98 1 1 0.98
2 97.3 0.97 0.98 0.98 0.97
3 99.2 0.99 0.99 0.99 1
4 100 1 1 1 1
5 92 0.84 1 1 0.87
6 96 0.92 1 1 0.93

Table 2. Performance measures for all patients.

Conclusion 130

Since patients with uncontrolled epilepsy prefer to be advised a few minutes before a seizure onset [18], 131

we decided to use intervals of five minutes. However, this method is easily extensible to longer periods of 132

time, since the length of intervals has no effect on dimensionality of modeled time components. 133

Data from additional patients as well as more data from the same patient could, if available, lead to a 134

better generalization of the model. This however is a challenge for patient-specific models in general, 135

where data from a single patient should suffice, and a large number of labeled training examples is not 136

available. 137

Overall, this study demonstrates the use of nonnegative matrix factorization of power spectra for a 138

seizure prediction task. The proposed model is conceptually simple, interpretable and has shown high 139

accuracy on a representative dataset. A similar approach could be used for similar tasks such as 140

detection of sleep stages in EEG or the detection of irregularities in ECG. 141
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Supporting Information 142

S1 Figure 143
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Time-frequency models and corresponding spectrograms of preictal and interictal states.
An outer product of modeled time and frequency components (A, C) and corresponding spectrograms
(B, D). A preictal state is shown in the upper row (A-B) and an interictal state is shown in the bottom
row (C-D).

S2 Figure 144
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Models of preictal states. Models shown here are for different channels (A-I) from the same individual
measurement period for patient 1.
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S3 Figure 145
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Models of interictal states Models shown here are for different channels (A-I) from the same individual
measurement period for patient 1

S4 Figure 146
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Models of time and frequency components for one measurement and one electrode for
preictal and interictal states for all six patients. Models of time components are shown in the
upper row (A-I), and models of frequency components are shown in the bottom row (G-L). Preictal
states are indicated with a dashed line and interictal states are indicated with a line marked with + in
blue for models of time and red for models of frequency components, respectively.
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