
Title: Predicting cognitive function three months after surgery in patients with a glioma  

Running title: Predicting cognitive function after treatment 

Authors: Sander Martijn Boelders
1,2

, Bruno Nicenboim
2
, Elke Butterbrod

1
. Wouter de Baene

3
, Eric 

Postma
2
, Geert-Jan Rutten

1
, Lee-Ling Ong

2
, Karin Gehring

1,3
 

Affiliations:  

1
Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands 

2
Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands 

3
Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands 

Corresponding author: Karin Gehring, PhD, Department of Neurosurgery, Elisabeth-Tweesteden 

Hospital/Cognitive Neuropsychology, Tilburg University, P.O. Box 90153, Warandelaan 2, Tilburg, The 

Netherlands, 5000 LE, (k.gehring@tilburguniversity.edu). 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.08.24315076doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.10.08.24315076
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction: Patients with a glioma often suffer from cognitive impairments both before and after anti-

tumor treatment. Ideally, clinicians can rely on predictions of post-operative cognitive functioning for 

individual patients based on information obtainable before surgery. Such predictions would facilitate 

selecting the optimal treatment considering patients’ onco-functional balance.  

Method: Cognitive functioning three months after surgery was predicted for 317 patients with a glioma 

across eight cognitive tests. Nine multivariate Bayesian regression models were used following a 

machine-learning approach while employing pre-operative neuropsychological test scores and a 

comprehensive set of clinical predictors obtainable before surgery.  Model performances were compared 

using the Expected Log Pointwise Predictive Density (ELPD), and pointwise predictions were assessed 

using the Coefficient of Determination (R²) and Mean Absolute Error.  Models were compared against 

models employing only pre-operative cognitive functioning and the best-performing model was 

interpreted. Moreover, an example prediction including uncertainty for clinical use was provided. 

Results: The best-performing model obtained a median R² of 34.20%. Individual predictions, however, 

were uncertain. Pre-operative cognitive functioning was the most influential predictor. Models including 

clinical predictors performed similarly to those using only pre-operative functioning (ΔELPD 14.4±10.0, 

ΔR² -0.53%.).  

Conclusion: Post-operative cognitive functioning cannot yet reliably be predicted from pre-operative 

cognitive functioning and the included clinical predictors. Moreover, predictions relied strongly on pre-

operative cognitive functioning. Consequently, clinicians should not rely on the included predictors to 

infer patients' cognitive functioning after treatment. Moreover, it stresses the need to collect larger 

cross-center multimodal datasets to obtain more certain predictions for individual patients.  
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Importance of the study: Patients with a glioma often suffer from cognitive impairments both before 

and after anti-tumor treatment. Ideally, clinicians would be able to rely on predictions of cognitive 

functioning after treatment for individual patients based on information that is obtainable before 

surgery. Such predictions would facilitate selecting the optimal treatment considering patients’ onco-

functional balance and could improve patient counseling. First, our study shows that cognitive 

functioning three months after surgery cannot be reliably predicted from pre-operative cognitive 

functioning and the included clinical predictors, with pre-operative cognitive functioning being the most 

important predictor. Consequently, clinicians should not rely on the included predictors to infer 

individual patients' cognitive functioning after surgery.  Second, results demonstrate how individual 

predictions resulting from Bayesian models, including their uncertainty estimates, may ultimately be 

used in clinical practice. Third, our results show the importance of collecting additional predictors and 

stress the need to collect larger cross-center multimodal datasets.  

Key points:  

- Cognitive functioning after treatment cannot yet reliably be predicted 

- Pre-operative cognitive functioning was the most important predictor 

- Additional predictors and larger cross-center datasets are needed 
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Introduction 
Patients with a glioma often suffer from cognitive impairments, both before and after anti-tumor 

treatment1,2, which may contribute to a decreased quality of life3–5. Cognitive impairments after anti-

tumor treatment are likely caused by the damage inflicted by the tumor before surgery6,7, the surgical 

resection8, and adjuvant therapies9,10. Moreover, cognitive functioning after anti-tumor treatment has 

been related to numerous patient characteristics, such as age, education, and medicine use11, and 

cognitive functioning before surgery appears to be one of the strongest indicators of post-operative 

functioning12,13. Unfortunately, the exact mechanisms by which glioma affect cognitive functioning after 

treatment remain poorly understood. 

The consideration of cognitive functioning is becoming increasingly important in determining the 

optimal treatment in view of patients' onco-functional balance. This onco-functional balance refers to 

weighing the oncological benefit of treatment against its adverse side effects on the functional status 

and quality of life of the patient14. Ideally, clinicians would be able to use predictions of cognitive 

functioning after treatment to facilitate selecting the optimal treatment13,15–17.  

Unfortunately, achieving accurate predictions of cognitive functioning at the individual level is 

challenging due to two sources of uncertainty: aleatoric and epistemic uncertainty18. Here, aleatoric 

uncertainty refers to the inherent randomness present in most real-world settings, such as the variability 

in measurements of cognitive functioning19. Epistemic uncertainty stems from an incomplete 

understanding of the causal mechanisms behind observed data, such as how surgery impacts cognitive 

functioning. Given that predictions may be unreliable due to aleatoric and epistemic uncertainty, it is 

essential to use methods to quantify uncertainty in individual predictions such that clinicians know when 

predictions can be relied upon20.  

Bayesian models offer two main advantages. First, they can be used to model the uncertainty in 

individual predictions21. Bayesian models do this by learning distributions of possible values for each 

parameter, rather than point estimates. By combining these parameter distributions with the predictors 

for a new data point, Bayesian models produce a probability distribution of potential outcomes. This 

distribution can be used to obtain a point estimate and reflects the uncertainty in the prediction. 

Second, Bayesian models allow for incorporating prior knowledge into parameter estimates using priors. 

These priors represent our beliefs about the parameters before having seen any data, potentially 

improving model performance22. Even though the mechanisms by which glioma affect cognitive 

functioning are poorly understood, weakly informative priors can still be used to provide some guidance 

to the models. Bayesian models already have significant traction for making predictions in clinical 

applications22 and for describing neurological functions19,23, and are becoming increasingly accessible24. 

Predictions of cognitive functioning after treatment could aid in selecting the optimal treatment. 

Unfortunately, previous studies could only partially explain cognitive functioning after treatment at the 

individual level and are limited by a small sample size, a small number of included predictors, and do not 

model uncertainty in individual predictions13.  To address these limitations, the current study aims to 

predict cognitive functioning after treatment in a large sample of patients with a glioma (n=317) using 
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Bayesian models employing a comprehensive set of predictors available before surgery. The current 

study is an extension to our previous study where we employed machine-learning models to predict pre-

operative cognitive functioning using the same set of predictors25.  

Method 
Participants   
Patients were included when they had an oligodendroglioma or astrocytoma (WHO grade 2, 3, and 4) 

and underwent elective surgery between 2010 and 2019 at the Elisabeth-TweeSteden Hospital, Tilburg, 

The Netherlands, and had a valid pre-operative cognitive screening as performed during clinical care. 

Patients were not included when they had reduced testability (e.g. no serious visual or motor deficits) 

for the neuropsychological screening, were under 18, had a progressive neurological disease, or had a 

psychiatric or acute neurological disorder within the previous two years. This study was part of a 

protocol registered with the Medical Ethics Committee Brabant (file number NW2020-32). This is the 

same sample as (in part) included in12,25–29. 

Interview and cognitive testing 
Informed consent was obtained prior to performing a standardized interview. This interview was 

performed to collect age, sex, and education (the Dutch Verhage scale), and to measure symptoms of 

anxiety and depression using the Dutch translation of the Hospital Anxiety and Depression Scale 

(HADS)30 for use as predictors.  

Cognitive functioning was assessed immediately before and three months after surgical resection of the 

tumor using the CNS Vital Signs (CNS VS)31 computerized neuropsychological test battery. The 

psychometric properties of this battery were shown to be comparable to the pen-and-paper tests that it 

is based on in patients with various neuropsychiatric disorders and healthy individuals32–35.  A well-

trained technician (neuropsychologist or neuropsychologist in training) provided test instructions and 

reported on the validity of each test. Requirements for the validity included the patient understanding 

the test, showing sufficient effort, having no vision or motor impairments that significantly affected task 

performance, and the absence of any (external) distractions. Invalid tests were excluded on a test-by-

test basis. Test scores were calculated from the CNS VS results according to the formulas presented in 

Appendix 1 and were defined such that a higher score represents a better performance.  

Clinical characteristics 
Five of the variables used for prediction were collected from patients’ electronic medical records. This 

set consisted of the involved hemisphere, the use of antiepileptic drugs, comorbidities, the ASA score 

(assessment of the patient’s physical status before surgery36), and the symptoms the patient presented 

with. These presenting symptoms were categorized into five binary categories indicating whether the 

symptom was present or not: behavioral/self-reported cognitive problems, language problems, 

epilepsy/loss of consciousness, motor deficits (including paresis), and headache.  

Three tumor characteristics were also included as predictors. These were the tumor grade which 

describes the malignancy of the tumor (classified according to the WHO guidelines as used at the time of 

treatment37,38), histopathological diagnosis (oligodendroglioma, astrocytoma as based on cell 
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origin/molecular markers), and IDH1 mutation status. Note that we used the measured values for these 

tumor characteristics whereas they can only be estimated preoperatively39.  

In our clinical practice, the IDH mutation status of patients with a grade 4 glioblastoma aged over 55 is 

not always tested due to the very low incidence rate of IDH mutant gliomas for these patients40–42. 

Therefore, missing IDH mutation statuses for this subset of patients were set to wild-type. A detailed 

explanation is provided in Appendix 2. 

Tumor volume and location 
Tumor volume and location were also used as predictors. Tumors were segmented automatically from 

routine MRI scans. All segmentations were manually validated and redone semi-automatically when 

deemed incorrect. For low-grade gliomas, the tumor region was defined as the hyperintense area on the 

FLAIR scan, while for high-grade gliomas, it was defined as the hyperintense area on the T1 contrast 

scan. Additional details regarding segmentation are provided in Appendix 3. Tumor volume was 

quantified by the number of voxels (mm³) in the segmentation. Tumor location was determined by 

calculating the percentage of overlap between segmentations and the four lobes individually for each 

hemisphere26.  

Analysis 
Follow-up Participation 
Not all included patients with a valid pre-operative screening returned for or were able to complete the 

follow-up neuropsychological assessment three months after surgery. Therefore, these patients were not 

included in the prediction models. The number of patients without a valid follow-up measurement, 

along with their reasons was reported. Additionally, patient characteristics and cognitive test scores 

were statistically compared between those with and without a valid follow-up measurement. This was 

done using either a t-test, Mann–Whitney U test, or Chi-Square test. No corrections for multiple testing 

were applied given the descriptive nature of these analyses. 

Modeling 
Variable reduction 
The complete set of predictors is listed in Table 1. Although the models used in this study can handle 

large numbers of predictors due to the use of shrinkage priors (see model specification below), an 

excessive number of predictors can hinder model convergence and increase uncertainty in individual 

predictions. Therefore, the number of predictors was reduced by considering the number of patients in 

different categories (at least 10% per category), variance inflation factors (< 0.5), pairwise correlations (> 

0.6 for to-be-combined variables), and the interpretability of combined predictors25.  

Preprocessing 
All predictors were normalized to have a mean of zero and a standard deviation of one to ensure all 

predictors contribute equally during model fitting and to aid the interpretation of model parameters. 

Test scores three months after surgery were normalized relative to pre-operative scores to ensure they 

were on the same scale, facilitating interpretation. Moreover, pre-operative scores of patients without 

valid follow-up screenings, who were not included in the models, were normalized relative to those with 

valid follow-ups for descriptive purposes. As no statistical analyses are performed in the current study, 
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cognitive test scores were not normalized relative to healthy participants, corrected for effects of age, 

sex, and education as found in healthy participants, nor corrected for test-retest effects.  

Model specification 
Three Bayesian models (models 1, 2, and 3) were evaluated for predicting cognitive functioning three 

months after surgery. These models were the following: 

Model 1 was a multiple multivariate linear regression model (i.e., a model with multiple predictors and 

multiple outcomes). A multivariate approach was used to allow for the joint estimation of model 

parameters for the eight different test scores.  

Model 2 was similar to the first but included interaction effects between predictors and the 

histopathological diagnoses (oligodendroglioma, astrocytoma, or glioblastoma). These interactions were 

included as predictors of cognitive function, while related, may vary across different diagnoses43.  

Model 3 was also a multiple multivariate linear model but allowed coefficients to differ between 

histopathological diagnoses using partial pooling. This method allows coefficients to vary across groups 

while pulling them toward the population average.  

All three models were evaluated while modeling residual correlations between the test scores as 

cognitive test scores are known to be correlated44. Moreover, all models were fitted with (a) no 

(additional) interaction effects, (b) an (additional) interaction effect between age and tumor volume, or 

(c) an (additional) interaction effect between education level and tumor volume. These interaction 

effects were added since evidence for the role of tumor volume by itself on postoperative cognitive 

function is mixed11 and may be moderated by proxies of neuroplasticity and cognitive reserve such as 

age and education level45.  

Models were defined using the Bayesian Regression Models using Stan (BRMS) package (v2.20.1)24,46,47. A 

formal description of the models including the BRMS syntax is presented in Appendix 4. Models were 

fitted using the Hamiltonian Monte Carlo algorithm in STAN (v2.21)48. Missing test scores were estimated 

within the Bayesian models themselves. Missing predictors were imputed before fitting the models with 

multiple imputation using MICE49 (v3.16.0). Thirty different imputed datasets were created and models 

were fitted individually on each of the imputed datasets. Afterward, the model parameters were pooled 

to account for the uncertainty in imputation.  

For all models, weakly informative priors were used for the coefficients, intercept, residuals, and random 

effects instead of informative priors for two reasons. First, previous studies employed various 

neuropsychological tests, which differ in both their sensitivity and the cognitive domains they measure. 

Consequently, model parameters may not translate to the tests used in this study. Second, we do not 

expect our model parameters to be independent, complicating the determination of informative priors. 

Alongside the weakly informative priors, expectations regarding the number of non-zero coefficients and 

the magnitude of coefficients were set using horseshoe priors50,51 because of the small sample-to-

variable ratio. For a detailed rationale behind each individual prior used we refer to Appendix 5. To verify 

that the priors correctly modeled our expectations, prior predictive checks were performed for each 

model and described for the best-performing model (see below).    
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The role of pre-operative cognitive functioning 
To assess the added value of clinical predictors beyond pre-operative cognitive functioning, three 

additional models were fitted using only pre-operative cognitive functioning as predictors. These models 
were labeled as 1d, 2d, and 3d and mirror the structure of models 1a, 2a, and 3a respectively while not 

including the clinical predictors. Note that models 2b and 3b still include the interaction effects with or 
structure across different histopathological diagnoses.  

Model convergence and evaluation 
To explore how well the sampling process explored the parameter space, the effect size (ESS) was 

evaluated. To determine if the model converged, the Rhat values were inspected. An ESS of above 1000 

and a Rhat below 1.05 were interpreted as sufficient. 

Models were compared using the expected log pointwise predictive density as determined using the 

expected leave-one-out cross-validation (ELPD-LOO)52 with Pareto smoothed importance sampling 

(PSIS)53. The ELPD-LOO is a Bayesian measure for model comparison that approximates the out-of-

sample generalizability of model predictions based on the full posterior distributions. The best-

performing model was defined as having the highest ELPD-LOO. 

To facilitate comparison with studies using frequentist machine-learning models, point-wise predictions 

resulting from the best-performing model were evaluated using 10-fold cross-validation. Here, point-

wise predictions were defined as the mean of the posterior predictive distribution, and were evaluated 

using the frequentist versions of the mean absolute error (MAE) and coefficient of determination (R2) 

score. Normalization and imputation of the predictors were performed within the cross-validation loop 

to prevent information leakage54. To assess the added value of clinical predictors, point-wise predictions 

were additionally evaluated for the model that obtained the highest ELPD-LOO while only employing 

pre-operative cognitive functioning (and potentially tumor histopathology), and the plain multivariate 

model that only employed pre-operative cognitive functioning (model 1d). To evaluate whether the best-

performing model is a good fit for the observed data, the posterior predictive distributions resulting 

from this model were visualized.   

Sensitivity to selected priors 
To ensure the priors were only weakly informative, fitted model parameters including their credibility 

intervals (i.e. the posterior distributions) were inspected for the best-performing model. Moreover, to 

test the sensitivity to the selected priors and to distinguish between the effect of the horseshoe prior 

and all other priors, model performance was compared against three additional versions of the best-

performing model. These were the same model with only the default priors in BRMS, and versions with 

weakly informative priors where either the horseshoe prior or all weakly informative priors were 

replaced with their default.  

Model interpretation and application 
To interpret the relationships captured by the best-performing model, its fitted model parameters 

including their credibility intervals were inspected. To interpret the certainty of the individual out-of-

sample predictions, the amount of uncertainty in predictions as obtained using the 10-fold cross-

validation (i.e. posterior predictive distributions) was described. Last, to inspect whether the model 
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made any systematic errors, the point-wise out-of-sample predictions were plotted against the 

measured values. 

To illustrate the application of Bayesian models and their uncertainty estimates can be applied in clinical 

practice, an out-of-sample prediction resulting from the best-performing model was visualized. This was 

achieved by showing the point estimate, the posterior predictive distribution describing the uncertainty, 

and the true measured value. The prediction was selected to have a standard deviation in the posterior 

predictive distribution closest to the population median, thus having a median amount of uncertainty. 

Multiple example predictions for all outcome measures selected to differ in their amount of uncertainty 

were provided as an appendix. 

The Bayesian Analysis Reporting Checklist by Kruschke55 was followed and is provided as an online 

supplement. Moreover, documented R (v4.0.4)56 code and dummy data are provided as an online 

supplement.  

Results 
Descriptive statistics and follow-up participation 
A total of 317 patients were included in the study. Eighty of these patients did not participate in the 

three-month follow-up. The reasons for not participating in the follow-up were: not responding to, not 

showing up for, or canceling the appointment without reporting a reason (n=24); being clinically unable 

to show up for or perform the assessment (23); having passed away (12); being treated in a different 

hospital (7); logistical reasons (2); or undergoing a re-resection (1). For eleven patients, the reason could 

not be determined retrospectively. Finally, for seven of the remaining 237 follow-up measurements, all 

tests in the battery were deemed invalid by the test technician. Descriptive statistics for the remaining 

sample (n=230) are provided in Table 1. Moreover, descriptive statistics for the sample that did not 

participate in the follow-up or had a follow-up measurement that was not deemed valid are presented in 

Appendix 6. 

 
Table 1: Sample characteristics 

Variable name 

count Mean / % std min 25% 50% 75% max Missin

(%) 

Age 230 50.92 14.69 18.00 39.25 53.00 61.75 80.00 0.0

Education 230 5.13 1.12 1.00 4.00 5.00 6.00 7.00 0.0

Sex (m) 230 0.64% 0.48      0.0

Astrocytoma 230 0.32% 0.47      0.0

Glioblastoma 230 0.50% 0.50      0.0

Oligodendroglioma 230 0.16% 0.37      0.0

WHO grade 2 230 0.35% 0.48      0.0

WHO grade 3 230 0.11% 0.32      0.0

WHO grade 4 230 0.53% 0.50      0.0

IDH1 mutation status (mutant) 213 0.52 0.50 0.00 0.00 1.00 1.00 1.00 7.3

Lateralization left 230 0.41% 0.49      0.0

Lateralization right 230 0.61% 0.49      0.0

Frontal Lobe left (mm
3
) 224 9179.84 21528.38 0.00 0.00 0.00 7335.25 164182.00 2.6

Occipital lobe left (mm
3
) 224 747.63 3507.75 0.00 0.00 0.00 0.00 22438.00 2.6

Parietal lobe left (mm
3
) 224 1639.32 5421.57 0.00 0.00 0.00 0.25 39587.00 2.6

Temporal lobe left (mm
3
) 224 3588.32 11180.60 0.00 0.00 0.00 0.00 74049.00 2.6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.08.24315076doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.08.24315076
http://creativecommons.org/licenses/by-nc-nd/4.0/


Frontal lobe right (mm
3
) 224 10722.05 19930.29 0.00 0.00 452.50 10880.50 99580.00 2.6

Occipital lobe right (mm
3
) 224 954.83 4576.02 0.00 0.00 0.00 0.00 40452.00 2.6

Parietal lobe right (mm
3
) 224 3850.77 10918.67 0.00 0.00 0.00 538.50 77898.00 2.6

Temporal lobe right (mm
3
) 224 7250.19 16617.50 0.00 0.00 0.00 2255.75 91482.00 2.6

Tumor volume (mm
3
) 224 51589.21 45275.83 305.00 20654.50 38027.00 71466.75 264510.00 2.6

ASA I 229 0.49% 0.50      0.4

ASA II 229 0.46% 0.50      0.4

ASA III 229 0.05% 0.21      0.4

Comorbidity 230 0.42% 0.49      0.0

Corticosteroid use 230 0.56% 0.50      0.0

Antiepileptic drug use 230 0.50% 0.50      0.0

HADS anxiety 209 7.09 4.34 0.00 4.00 6.00 10.00 19.00 9.1

HADS depression 209 4.96 3.58 0.00 2.00 4.00 7.00 17.00 9.1

Presents with attention, executive 

function, memory, and/or 

behavioral problems 

230 0.19% 0.39      0.0

Presents with language problems 230 0.13% 0.34      0.0

Presents with epilepsy or loss of 

consciousness 

230 0.47% 0.50      0.0

Presents with motor deficits 230 0.21% 0.41      0.0

Presents with headache 230 0.24% 0.43      0.0

Pre-operative cognitive test scores 

Verbal memory recognition 216 0.00 1.00 -2.93 -0.68 0.07 0.82 1.76 6.0

Visual memory recognition 227 0.00 1.00 -3.41 -0.61 0.19 0.79 1.79 1.3

Symbol digit coding 226 0.00 1.00 -2.67 -0.60 0.11 0.57 2.51 1.7

Simple reaction time 219 0.00 1.00 -4.60 -0.29 0.35 0.64 1.05 4.7

Stroop interference 211 0.00 1.00 -3.39 -0.56 0.00 0.74 2.63 8.2

Continuous performance test 228 0.00 1.00 -5.83 -0.50 0.12 0.70 2.25 0.8

Shifting attention task 212 0.00 1.00 -2.01 -0.74 -0.11 0.70 2.50 7.8

Finger tapping test 219 0.00 1.00 -4.44 -0.47 0.14 0.61 3.89 4.7

Cognitive test scores after treatment 

Verbal memory recognition 218 -0.01 1.00 -2.93 -0.68 0.07 0.63 1.76 5.2

Visual memory recognition 227 -0.11 0.96 -3.41 -0.81 -0.01 0.59 1.59 1.3

Symbol digit coding 226 0.11 1.05 -3.13 -0.53 0.11 0.89 2.51 1.7

Simple reaction time 220 -0.07 1.05 -6.24 -0.34 0.28 0.58 1.09 4.3

Stroop interference 220 -0.02 0.97 -3.26 -0.69 0.07 0.68 2.73 4.3

Continuous performance test 225 -0.14 1.03 -4.19 -0.66 0.00 0.59 1.93 2.1

Shifting attention task 215 0.13 1.05 -1.87 -0.60 0.10 0.81 3.34 6.5

Finger tapping test 218 0.03 0.96 -4.32 -0.45 0.07 0.58 4.54 5.2

Table 1: Sample characteristics of the sample used for model fitting. Pre-operative test scores were normalized to have zero 

mean and unit variance. Cognitive test scores three months after surgery were scaled relative to the pre-operative test scores. 

Patients who did not participate in the follow-up or had an invalid follow-up measurement more often 

had a comorbidity (chi=6.89, p=0.009), and had lower ASA scores (U=1166, p=0.021). Note that no 

differences in age (U=11191, p=0.103), sex (chi=0.018, p= 0.893), and education (U=10267, p=0.708) 

were found. Regarding cognitive test scores, patients who did not participate in the follow-up or had an 

invalid follow-up measurement had a significantly lower score pre-operatively on the measure of verbal 

memory recognition (U=7315, p=0.020), the symbol digit coding task (T=-4.50, p=0.000), the measure of 

Simple reaction time (U=6906, p=0.000), and the shifting attention task (U=6693, p=0.013), but not the 

other four measures (all p’s>0.127).  
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Variable reduction 
Based on the variance inflation factor, pairwise correlations, and number of patients per category, tumor 

lateralization was grouped into right-lateralized and left-lateralized + bilateral; tumor grades were 

grouped into low-grade (grade 2) and high-grade (grade 3 + 4); ASA scores were grouped into ASA I and 

ASA II + III; use of antiepileptic drugs was merged with ‘presenting with epilepsy or loss of 

consciousness’; and HADS anxiety and depression were combined. The resulting set of predictors used as 

predictors is the same as used in our previous study25. 

Model convergence and evaluation 
The prior predictive check for the best-performing model (model 2c, see below) is reported in Appendix 

7 and was highly similar for all other models. The prior predictive check showed that the simulated data 

covered a wide but reasonable range of outcomes. This indicates that the selected priors were weakly 

informative.  

 

BRMS did not report problems with model fitting. The Rhat values generally were below 1.05 with a 

small number of exceptions ranging up to 1.13, indicating good convergence. The ESS for the bulk and 

tail of the distributions for the different models generally were above 1000 with a small number of 

exceptions as low as 575 and 836 for the bulk and tail ESS respectively, indicating effective sampling.  

 

Table 2 (part 1) presents the ELPD-LOO for each model including the difference relative to the best-

performing model. Model 2c achieved the best performance (ELPD-LOO = -1624) and includes an 

interaction effect between education and tumor volume and interactions with the histopathological 

diagnosis. The five runner-ups (model 2a, 2b, 3a, 3b, and 3c) performed similarly with decreases in ELPD-

LOO ranging from -2.2 to -11.0. These differences were smaller than the standard deviations in this 

difference which were between 7.9 and 14.7. Therefore, we cannot distinguish between these models 

according to their ELPD-LOO. Models that performed partial pooling (Models 3) performed the worst, 

with a decrease in ELPD-LOO of at least -127.6 (SE=17.7). Finally, there was no clear effect of including 

the interaction effect between tumor volume and age or education level. This can be seen from the small 

differences between variants a, b, and c of the different models.  

Table 2 (part 2) presents the performance of models 1d, 2d, and 3d which only employed pre-operative 

cognitive functioning (and histopathological diagnosis) and were evaluated to test the added value of the 

clinical predictors. Of these models, model 2d performed best with an ELPD-LOO of -1638.7. Comparing 

its performance to the best-performing model overall (2c), which has the same structure, only a slight 

decrease in performance is observed with a difference of -14.4 (SE=10.0).  

 

Table 2 Interaction effect ELPD LOO estimate ELPD LOO comparison   

Model name 

Age times 

volume 

Education 

times 

volume Estimate SE Difference 

SE 

Difference 

 

Part 1: Using pre-operative cognitive functioning and all clinical predictors 

Model 2c (interactions hist.diag)  � -1624.3 46.6 Baseline   

Model 1b (plain) �  -1626.4 47.5 -2.2 9.2  
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Model 1c (plain)  � -1627.3 47.5 -3.0 10.2  

Model 2a (interactions hist.diag)   -1630.1 46.5 -5.8 7.8  

Model 2b (interactions hist.diag) �  -1632.0 45.9 -8.7 11.0  

Model 1a (plain)   -1635.3 48.7 -11.0 14.7  

Model 3c (partial pooling)  � -1752.0 47.6 -127.6 17.7  

Model 3a (partial pooling)   -1772.4 51.8 -148.0 31.5  

Model 3b (partial pooling) �  -1773.8 54.6 -149.5 38.1  

Part 2: Only using only pre-operative cognitive functioning (and histopathological diagnosis) 

Model 2d (interactions hist.diag)   -1638.7 46.7 -14.4 10.0  

Model 1d (plain)   -1643.7 47.5 -19.4 16.9  

Model 3d (partial hist.diag)   -1670.1 49.5 -45.7 113.0  

Table 2: Model performance sorted from best to worst individually for models including the clinical predictors (part 1), and 

models not including clinical predictors (part 2). Performance is described as the Expected Log Predictive Density - Leave-One-

Out (ELPD-LOO) and the standard error of this estimate is reported. Moreover, the difference of all models relative to the best-

performing model is reported including the expected standard error of this difference. hist.diag: Histopathological diagnosis 

Table 3 describes the out-of-sample prediction performance of the pointwise predictions using the mean 

absolute error (MAE) and the coefficient of determination (R2). These results show that the best-

performing model as determined using the ELPD-LOO (model 2c) obtained a median R2 of 34.20% of 

variance and a median MAE of 0.599. Performance for the individual tests ranged between an R2 of 

13.77% and an MAE of 0.693 for the Stroop interference ratio and an R2 of 73.22% and an MAE of 0.420 

for the symbol digit coding task.   

 

Model 2c (Best model): 

interactions hist.diag and 

education times size 

Model 2d: Best model when 

using only pre-operative 

functioning and 

histopathology: 

Model 1d: Model using only 

pre-operative functioning:  

Table 3 
R
2
 score MAE R

2
 score MAE R

2
 score MAE 

Verbal memory recognition 26.78% 0.661 28.26% 0.660 28.73% 0.659 

Visual memory recognition 27.93% 0.666 27.71% 0.674 28.78% 0.670 

Symbol digit coding 73.22% 0.420 69.47% 0.441 69.47% 0.441 

Simple reaction time 25.48% 0.602 28.27% 0.590 27.32% 0.592 

Stroop interference ratio 13.77% 0.693 12.59% 0.706 13.96% 0.697 

Continuous performance test 51.06% 0.539 49.91% 0.537 49.49% 0.543 

Shifting attention task 48.64% 0.597 48.97% 0.587 48.89% 0.589 

Finger tapping test 40.47% 0.508 41.19% 0.499 41.01% 0.503 

Median 34.20% 0.599 34.73% 0.589 34.89% 0.590 

Table 3: The mean absolute error (MAE) and the coefficient of determination (R2) individually for each test score and the median 

across the different test scores. Hist.diag: Histopathological diagnosis 

The median R2 score of the best-performing model (2c) and its MAE were lower when compared to both 

models 1d and 2d which only relied on pre-operative cognitive functioning (and histopathological 

diagnosis). This difference, however, is very small with a change of 0.54 percentage points in R2 and a 

change of 0.01 in MAE.  

When considering individual test measures, the best-performing model (Model 2c) obtained the highest 

R2 score and MAE for the measure of verbal memory recognition and the symbol digit coding task. 
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Moreover, this model obtained the highest R2 score for the continuous performance test and the highest 

MAE for the Stroop interference ratio.  

To evaluate whether the best-performing model (2c) accurately describes the distribution of the 

observed data, the posterior predictive checks for this model are visualized in Appendix 8. This figure 

shows that the simulated data matches the observed data for most draws from the model parameters 

and training data. This indicates that the model was able to adequately describe the observed data. For 

most tests, however, and especially the measure of simple reaction time, the model was not able to 

completely capture the skewness.  

Sensitivity to selected priors 
The parameter estimates after model fitting (i.e. the posterior distributions) of the best-performing 

model (model 2c) are visualized in Appendix 9. This visualization shows that they were within the 
specified priors, indicating that the priors were suitable.  

Two of the three sensitivity checks as performed for model 2c did not converge. These were the variant 

with all default priors, and the variant with weakly-informative priors but no horseshoe prior. The variant 
with all default priors except for the horseshoe prior converged and performed slightly worse when 

compared to model 2c with a difference in ELDP-LOO of -12.53 (SE=9.85). This shows that the horseshoe 
prior was crucial for model convergence while the weakly-informative priors only had a small positive 

impact on model fit.  

Model interpretation and application 
For the estimated model parameters for the best-performing model (2c), we refer back to Appendix 9. 
Note that the relationships captured by the model are solely descriptive of how the model obtains its 

predictions.  

Results showed that the most important predictor of a given measure of cognitive functioning after 
treatment was this same measure before treatment with coefficients ranging between 0.35 [95% CI: 

0.20, 0.48] and 0.74 [95% CI: 0.63, 0.84] (Appendix 9A). One notable exception from this was the Stroop 
interference ratio, whose predictions relied mostly on the pre-operative measure of the shifting 

attention task with a coefficient of 0.23 [95% CI: 0.20, 0.40], followed by the pre-operative measure of 
the Stroop interference ratio with a coefficient of 0.11 [95% CI: 0.00, 0.26].  

The contribution of most clinical predictors was negligible with coefficients generally being around zero 

with only 3.34% of the coefficients being above |0.05|. Moreover, the credibility intervals associated 
with these coefficients were large relative to the magnitudes of the coefficients. Additionally, the 

included interaction effect between education level and size contributed little to the predictions with 
coefficients of at most |0.02|. 

The expected variability in the measures of cognitive functioning after treatment (i.e. standard deviation 

of the likelihood) ranged between 0.53 [95% CI: 0.0.48, 0.59] for symbol digit coding and 0.84 [95% CI: 

0.76, 0.93] for verbal memory recognition (Appendix 9C). The median amount of uncertainty in the 

resulting predictions as obtained using 10-fold cross-validation (i.e. standard deviations of the posterior 

predictive distributions) ranged between 0.56 for the symbol digit coding task and 0.94 for the Stroop 

interference ratio (Appendix 10).  
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To inspect whether the model made any systematic errors, out-of-sample predictions were plotted 

against the measured values in Figure 1. This figure shows that there are no systematic deviations in 

model performance as can be seen from most points being clustered around the line representing 

perfect predictions. For Simple reaction time, however, there is some heteroscedasticity. This can be 

seen from predictions for patients who scored poorly on this measure showing more variance in 

prediction error.  

Figure 1: Scatter plots of predicted values obtained using 10-fold cross-validation from the best-performing model (2c) versus the

measured values, individually for each outcome measure. Each dot represents a patient, its position along the x-axis represents 

their measured value, and the position along the y-axis the predicted test score. The red line (x=y) represents perfect predictions,

and the distance along the x-axis represents the error of the prediction.  

A demonstration of how uncertainty estimates can be used in clinical practice is provided in Figure 2. The

large range of outcomes covered by the uncertainty estimate shown in this figure (in blue) indicates that 

clinicians should not rely on the point estimate (in red) as there is a large chance that it will not be close 

to the true value (in green). Therefore, clinicians should not rely on this prediction for decision-making 

 

e 

 

e 
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and can inform patients we don’t know how the treatment will affect their cognitive functioning. 

Additional examples for all outcome measures are presented in Appendix 11, showing similar 

uncertainty in the predictions.  

 

  

Figure 2: Example predictions of verbal memory recognition obtained using 10-fold cross-validation for the best-performing 

model (2c). The example prediction was selected to be at the median in terms of the amount of uncertainty in the prediction. The

blue distribution represents the posterior predictive distribution resulting from the model, which represents the probability of 

each outcome, the red line represents the point estimate obtained from this distribution, and the green line represents the 

measured value. Three example predictions for all cognitive tests can be found in Appendix 11. 

Discussion 
Results show that predicting cognitive functioning three months after surgery using pre-operative 

cognitive functioning and the included clinical predictors is not yet possible. The amount of variance 

explained in cognitive functioning three months after surgery ranged between 13.77% (Stroop 

interference ratio) and 73.22% (Symbol digit coding) with a median of 34.20%. Moreover, the 

uncertainty in individual predictions ranged between a median standard deviation of 0.72 and 0.94 

(relative to the population standard deviations). This performance likely is insufficient for clinical 

application, though further research is needed to establish thresholds for clinical utility.  These findings 

align with the study by Zangrossi and colleagues which explained between 0.81% and 62.41% (median 

39.09%) of variance in cognitive performance one week after awake surgery
13

 while employing age, 

education, and pre-operative neuropsychological test scores.  

The best-performing model relied strongly on pre-operative cognitive functioning to predict cognitive 

functioning three months after surgery, in line with previous studies
12,13

. Moreover, the model using only 

pre-operative cognitive functioning and interactions with the histopathological diagnosis as predictors 

(model 2d) performed similarly to the best-performing model overall (2c). Additionally, the included 

interaction effects between tumor volume and age or education level had a negligible influence on 
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predictions. These findings show that the added value of the clinical predictors and included interaction 

effects as used in the current study are limited when predicting cognitive functioning after treatment.  

The maximum amount of variance that a perfect model can explain is unknown and limited by the 

aleatoric uncertainty. One part of this aleatoric uncertainty stems from the test-retest reliability. For CNS 

VS, the test-retest reliability has only been established for healthy participants35 and likely is lower for 

patients with a brain tumor due to cognitive impairments and medication effects. The epistemic 

uncertainty likely results from relevant predictors that were not included. This set of predictors likely 

comprises predictors that only are available after treatment and therefore could not be used, such as 

surgical complications and the adjuvant treatments received8,10,57–61, and promising predictors that can 

be obtained before surgery but are not (yet) routinely collected in our practice including measures of 

structural and functional connectivity6,62 and information regarding edema57. Additionally, including 

different representations of predictors or interactions thereof may improve model performance. Finally, 

using models that can capture more complex relationships may reduce uncertainty, although this likely 

requires larger datasets25.  

The amount of variance explained in cognitive functioning after treatment differed up to 59.4 

percentage points between tests. These substantial differences can likely be attributed to three factors. 

First, some cognitive domains may be more prone to change after surgery, causing the pre-operative test 

scores to be less informative. Second, the predictive power of the clinical predictors and pre-operative 

test scores to describe the change in functioning may differ across test scores. Third, the cognitive tasks 

used differ in their ability to reliably and repeatably measure the cognitive functions they are intended 

to measure, in line with differences in their test-retest reliability35. 

The current models assume that the decision for surgery is already made. Ideally, predictive models 

would avoid such assumptions, thereby enabling clinicians to compare predictions across various 

treatment decisions. This, however, requires either data from randomized control trials (RCTs)63, 

simulating an RCT from retrospective data64,65, or developing casual models66,67. Unfortunately, neither 

was possible as RCTs are undesirable, simulating an RCT requires all confounders influencing the 

treatment decision to be available, and causal models require the causal mechanism to be known.  

Several limitations of the current study should be noted. First, models are solely based on patients with a 

valid three-month follow-up. Therefore, predictions are only valid if the patient will be able to undergo 

the follow-up, which is unknown before surgery. Consequently, the current model needs to be paired 

with a model that predicts whether a patient will complete the follow-up.  Second, we used the 

histopathological diagnosis, WHO grade, and IDH1 status as determined post-operatively while they can 

merely be estimated pre-operatively39, potentially further limiting the accuracy when applied in clinical 

practice. Third, the sample was gathered during clinical care and therefore did not include patients with 

severe impairments or in need of immediate surgical intervention. Finally, cognitive assessment was 

done using a brief computerized test battery which may be somewhat dependent on processing speed 

and does not measure language function, memory free recall, or visuoconstructive abilities. However, 

more comprehensive evaluations are not typically conducted during clinical care. 
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We believe our results to be highly important as they show that clinicians should not rely on the included 

clinical predictors to infer cognitive functioning three months after surgery. Additionally, our results 

demonstrate how estimates of uncertainty ultimately can be used in clinical practice to facilitate trust in 

predictions. Finally, our results show the importance of collecting larger datasets including additional 

predictors. 

This need for larger datasets is especially important when including high-dimensional and noisy data 

such as structural and functional connectivity68. Moreover, the relatively low signal-to-noise ratio in 

scores resulting from brief neuropsychological screening19,35, and the large individual differences 

between patients add to this need. Therefore, we hope future work will focus on standardizing data 

collection to obtain larger cross-center multimodal datasets. Such datasets have the potential to 

significantly improve the ability to predict cognitive functioning at the individual level while allowing 

models to generalize across centers. This need is being increasingly emphasized by numerous authors 

(e.g.1,6,25,69,70)  

Future studies can use information regarding the planned treatment (both primary and adjuvant) to 

improve predictions and could utilize virtual models of the brain to model the hypothesized effect of the 

planned surgery6,71. Moreover, future work could predict outcomes that are closer to patients daily 

functioning. 

Conclusion 
Predictions of cognitive functioning after treatment could aid in selecting the optimal treatment. The 

current study aimed to predict cognitive functioning three months after surgery (and adjuvant 

treatments) on the individual level using a comprehensive set of clinical predictors available before 

surgery and pre-operative cognitive functioning while employing Bayesian models. While predictions 

accounted for substantial variance in cognitive functioning three months after surgery, individual 

predictions were uncertain and likely of insufficient quality for use in clinical practice. Consequently, 

clinicians should not rely on the included predictors to infer patients' cognitive functioning after 

treatment. Pre-operative cognitive functioning was the most influential predictor and models including 

clinical predictors and pre-operative functioning performed roughly similarly to models using only pre-

operative functioning, showing the limited added value of the clinical predictors and interaction effects 

as used in the current study. The current study further demonstrated how individual predictions 

including their uncertainty estimates may ultimately be used in clinical practice, allowing models to say ‘I 

don’t know’ instead of being confidently wrong. Finally, it stresses the need to collect larger cross-center 

multimodal datasets including additional predictors. Such datasets have the potential to significantly 

improve the ability to predict cognitive functioning at the individual level while allowing models to 

generalize across centers. 
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