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Introduction: Cognitive impairments of patients with a glioma are increasingly considered when making 
treatment decisions considering a personalized onco-functional balance. Predicting cognitive functioning 
before surgery can serve as a steppingstone for the clinical goal of predicting cognitive functioning after 
surgery. However, in a previous study, machine-learning models could not reliably predict cognitive 
functioning before surgery using a comprehensive set of clinical variables. The current study aims to 
improve predictions while making the uncertainty in individual predictions explicit.  

Method: Pre-operative cognitive functioning was predicted for 340 patients with a glioma across eight 
cognitive tests. This was done using six multivariate Bayesian regression models following a machine-
learning approach while using a comprehensive set of clinical variables. Four models included 
interactions with- or a multilevel structure over histopathological diagnosis. Point-wise predictions were 
compared using the coefficient of determination (R2) and the best-performing model was interpreted. 

Results: Bayesian models outperformed machine-learning models and benefitted from using shrinkage 
priors. The R2 ranged between 0.3% and 21.5% with a median across tests of 7.2%. Estimated errors of 
individual prediction were high. The best-performing model allowed parameters to differ across 
histopathological diagnoses while pulling them toward the population mean.  

Conclusion: Bayesian models can improve predictions while providing uncertainty estimates for 
individual predictions. Despite this, the uncertainty in predictions of pre-operative cognitive functioning 
using the included clinical variables remained high. Consequently, clinicians should not infer cognitive 
functioning from these variables. Different histopathological diagnoses are best treated as distinct yet 
related. 

Highlights:  

• Bayesian regression outperformed machine-learning models. 

• Predictions were uncertain despite improvements. 

• Different histopathological diagnoses are best treated as distinct yet related. 

Keywords: Bayesian regression, uncertainty, cognitive functioning, individual prediction, machine 
learning 

 

Importance of the study: Cognitive impairments of patients with a glioma are increasingly considered 
when making treatment decisions considering a personalized onco-functional balance. Predicting 
cognitive functioning before surgery serves as a steppingstone for the clinical goal of predicting cognitive 
functioning after surgery. The current study is important for two reasons. First, it demonstrates that 
Bayesian models can improve predictions of pre-operative cognitive functioning over popular machine-
learning models. Second, it explicitly shows that individual predictions of pre-operative cognitive 
functioning based on a comprehensive set of readily available clinical variables included in the current 
study are uncertain. Consequently, clinicians should not infer cognitive functioning from these variables. 
Last, it shows that prediction models may benefit a multifaceted view of patients and from treating 
patients with different histopathological diagnoses as distinct yet related.  
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Introduction 
Patients with a glioma often suffer from cognitive impairments which are a great burden for both the 
patients and their caregivers1. Cognitive impairments affect quality of life2, functional independence3, 
and medical decision-making capacity4, and are affected by many variables including variables describing 
the tumor3,5–11, patient characteristics5,12,13, medicine use6,14,15, and overall measures of health13,16,17. 

The consideration of cognitive functioning is becoming increasingly important in patient counseling4,18,19 
and in determining the appropriate treatment in view of a personalized onco-functional balance (i.e. 
balancing treatment against loss of function)20. Ideally, clinicians would be able to employ predictions of 
cognitive functioning after surgery for individual patients using clinical variables readily available before 
surgery. Predicting cognitive functioning before surgery can serve as a steppingstone in the process of 
developing models for the clinical goal of predicting cognitive functioning after surgery. In a previous 
study, however, we found that machine-learning models could not reliably predict cognitive functioning 
before surgery while using a comprehensive set of clinical variables21.  

The ability to obtain reliable predictions is hampered by two sources of uncertainty: aleatoric 
uncertainty and epistemic uncertainty22. Aleatoric uncertainty refers to the inherent randomness in most 
real-world phenomena and cannot be reduced, even with more data or a better understanding of causal 
mechanisms. One example of this is the test-retest variability observed in measurements of 
neuropsychological functioning. In contrast, epistemic uncertainty arises from an incomplete 
understanding of the causal mechanisms behind the observed data and can be mitigated by improving 
our understanding or obtaining additional data. One example of this is the incomplete understanding of 
the mechanisms by which glioma affect cognitive function. 

Bayesian models as used in the current study offer two advantages compared to the machine-learning 
models employed in our previous study. First, they can model the uncertainty in individual predictions23. 
This differs from frequentist models where, by default, we only get point estimates. These uncertainty 
estimates allow for explicitly describing the amount of uncertainty associated with individual predictions. 
Moreover, they can be used to assess if an individual prediction can be relied upon. This is important for 
healthcare applications, especially when using predictions to make important treatment decisions. Such 
uncertainty estimates allow models to say ‘I don’t know’ instead of being confidently wrong24.  

Bayesian models obtain such uncertainty estimates by modeling distributions over the model 
parameters through a process called Markov Chain Monte Carlo (MCMC) sampling. MCMC draws 
numerous samples from the model parameters based on the training data and prior assumptions made 
about the model parameters. This process results in an updated distribution of the model parameters, 
known as the posterior distribution. The posterior distribution of the model parameters consequently 
informs the distribution over an individual prediction when given a set of predictors. This distribution is 
called the posterior predictive distribution and can be used to determine a point estimate. Bayesian 
predictions thus provide a point estimate for each individual patient including a probabilistic distribution 
describing the probability of the different outcomes. Bayesian models have already been successfully 
used to describe neurological functions in the field of computational neuropsychology25, in research on 
mental health26, and for the clinical application of predictions in healthcare settings27. Additionally, their 
use is becoming easier with user-friendly software packages28. 

The second advantage of Bayesian models is that they allow for incorporating prior knowledge, not only 
into the model structure but also into the parameter estimates using priors. These priors represent what 
we believe to be true about model parameters before having seen any data. Using priors can potentially 
improve performance compared to not using priors, as is the case with frequentist models27. Moreover, 
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shrinkage priors such as horseshoe priors can be set over a collection of parameters to incorporate 
expectations regarding the magnitude and number of non-zero coefficients priors29. Using priors likely 
benefits model performance when predicting cognitive functioning as sample sizes are typically small 
relative to the multitude of potential predictors.  

The current study predicts pre-operative cognitive functioning for 340 patients with a glioma using six 
multivariate Bayesian regression models of increasing complexity. This was done while employing a 
comprehensive set of pre-operatively known predictors that are readily available and have been 
associated with cognitive functioning in the literature. Importantly, the current study uses the same 
sample and predictors as our previous study21 where cognitive functioning was predicted using popular 
machine-learning models, allowing us to compare results. We hypothesized that better performance can 
be achieved with Bayesian models when compared to frequentist models while having the additional 
benefit of making the uncertainty in individual predictions explicit.  

Method 
Participants  
We included 340 patients with grade 2, 3, and 4 gliomas who underwent surgery at the Elisabeth-
TweeSteden Hospital, Tilburg, The Netherlands, between 2010 and 2019 and underwent pre-operative 
cognitive screening as part of clinical care. Patients were not included when they were under 18, had a 
progressive neurological disease, had a psychiatric or acute neurological disorder within the past two 
years, or had reduced testability for the neuropsychological testing. For normative purposes, data from 
healthy Dutch adults were used30,31. This study was part of a protocol registered with the Medical Ethics 
Committee Brabant (file number NW2020-32). This is the same sample as (in part) included in21,32–36. 

Interview and cognitive testing 
Patients provided informed consent to use their clinical data for research purposes after which a 
standardized interview was performed. This standardized interview was performed to obtain five of the 
included predictors; age, sex, and education (the Dutch Verhage scale), and symptoms of anxiety and 
depression measured using the Dutch translation of the Hospital Anxiety and Depression Scale (HADS)37.  

All patients performed the computerized CNS Vital Signs (CNS VS)38 brief neuropsychological test 
battery. The psychometric properties of this test battery were shown to be similar to the pen-and-paper 
tests in patients with various neuropsychiatric disorders and healthy participants 31,39–41. Before starting 
each test, instructions were provided by a well-trained technician (neuropsychologist or 
neuropsychologist in training). Afterward, the technician reported on the validity of each test within the 
test battery. Requirements for the validity of the tests included the patient understanding the test, 
showing sufficient effort, having no vision or motor impairments that affect the task, and the absence of 
any (external) distractions. Tests that were labeled as invalid were excluded on a test-by-test basis.  

Cognitive test measures and standardization  
Test scores were calculated from the CNS VS results according to the formulas presented in Appendix 1, 
resulting in eight different raw scores. Test scores were scaled such that a higher test score represents a 
better performance. Scores were converted to socio-demographically adjusted z-scores by correcting for 
effects of age, sex, and education as found in a sample of normative controls using a multiple regression 
approach21,30. Test scores were standardized relative to those of healthy participants, where test scores 
for healthy participants were set to have a mean of zero and a standard deviation of one. All 
preprocessing steps as performed in the current study are visualized in Figure 1 and were the same as 
done in our previous study21.  
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Figure 1: Data preprocessing

 

Caption: Flowchart of the preprocessing steps performed for both the predictors and cognitive test scores. Rectangles represent 
data, diamonds represent an operation, arrows represent the flow of data, and lines indicate a dependency between an 
operation and data. The place where the model is fitted is represented as a rounded rectangle. 

Clinical characteristics 
Eight of the included predictors were collected from patients’ electronic medical files. The set of pre- 
consisted of tumor grade classified according to the WHO guidelines as used at the time of 
treatment42,43, histopathological diagnosis (oligodendroglioma, astrocytoma, or glioblastoma as based on 
cell origin/molecular markers), IDH mutation status, involved hemisphere, use of antiepileptic drugs, 
comorbidities, ASA score (the physical status of the patient before surgery44), and presenting symptoms. 
The presenting symptoms were recorded by the neurosurgeon during the first consultation and were 
later classified into five binary categories indicating the presence or absence of a symptom: 
behavioral/cognitive problems, language problems, epilepsy/loss of consciousness, motor deficits 
including paresis, and headache.  

Note that for the histopathological diagnosis, IDH mutation status, and tumor grade, the measured 
values were used while they can only be estimated pre-operatively45. Moreover, in our clinical practice, 
the IDH mutation status of patients aged over 55 with a grade 4 glioblastoma is not always tested as the 
incidence rate of IDH mutant gliomas in this group is very low46–48. Therefore, missing IDH mutation 
statuses for these patients were set to be wild-type. A detailed rationale behind this choice is provided 
in Appendix 2.  

 

Tumor volume and location 
Two of the included predictors were tumor volume and location. To obtain these predictors, anatomical 
MRI scans (T1, T1 contrast, T2, FLAIR) were collected when available and registered to MNI space using 
affine transformation. Tumors were automatically segmented using a convolutional neural network with 
a U-Net architecture49,50 and segmentations were manually validated. Incorrect segmentations were 
redone semi-automatically. The region making up the tumor was defined as the hyperintense region of 
the FLAIR scan for low-grade gliomas and the hyperintense region of the T1 contrast for high-grade 
gliomas. The volume of the tumor was defined as the number of voxels (mm3) in the segmentation. 
Location was defined as the percentage of overlap between the segmentations and the four lobes using 
individually for each hemisphere. Eight regions were used as higher resolution parcellation likely do not 
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lead to better prediction performance32. More details regarding registration and segmentation can be 
found in Appendix 3. 

Modeling 

Variable reduction 
Even though the models used in the current study can handle large numbers of predictors due to using 
shrinkage priors (see the next section), too many variables may hinder model convergence, affect 
accuracy, and result in a large amount of uncertainty. Therefore, the number of variables was reduced 
such that at least 10% of patients were in a given category, the variance inflation factors were below 0.5, 
the pairwise correlations between to-be-combined variables were above 0.6, and such that the resulting 
variables were interpretable. This was the same as done in our previous study where the process is 
described in detail21. Last, all variables used for prediction were normalized to have a mean of zero and a 
standard deviation of one to ensure all variables contribute equally during model fitting and to aid the 
interpretation of model parameters.  

Bayesian regression models 
Two versions (a/b) of three Bayesian models (models 1, 2, and 3) were evaluated to predict the eight 
outcome measures describing cognitive functioning, resulting in a total of six models.  

Model 1 was a multiple multivariate linear regression model (i.e., a model with multiple dependent 
variables and multiple predictors). A multivariate model was used to allow model parameters for 
different test scores to be jointly estimated.  

Model 2 was the same as the first while additionally including interaction effects between predictors and 
the histopathological diagnoses (oligodendroglioma, astrocytoma, or glioblastoma). This was done as 
predictors of cognitive function, despite being related, may differ across diagnoses11.  

Model 3 was also a multiple multivariate linear model. However, this model allowed coefficients to differ 

between different histopathological diagnoses by using partial pooling. This method models the 

coefficients as coming from the same distribution, enabling them to vary while also pulling them toward 

the population average. 

All three models were evaluated with (b) and without (a) modeling residual correlations between the 
test scores which may benefit performance as cognitive test scores are known to be correlated51. Models 
were implemented using the Bayesian Regression Models using Stan (BRMS) package (v2.20.1)28,52,53. A 
formal description of these models and the BRMS syntax are provided in Appendix 4 and 5 respectively. 

For these six models, weakly informative priors were used for the coefficients, intercept, residuals and 
random effects. This was done as determining informative priors was not possible for two reasons. First, 
previous studies used a variety of neuropsychological tests to measure cognitive functioning which differ 
in their sensitivity and the cognitive domains they measure. Therefore, coefficients and intercepts may 
not translate to our tests. Second, we do not expect our model parameters to be independent, making it 
difficult to determine informative priors. The weakly informative priors provided some information on 
the range of possible model parameters while letting the data provide most of the evidence54. Alongside 
the weakly informative priors, expectations regarding the number of non-zero coefficients and the 
magnitude of coefficients were set using horseshoe priors29,55. Horseshoe priors restrict the complexity 
of the potential models by shrinking both the magnitude of coefficients and the number of non-zero 
coefficients. Details regarding each individual priors are provided in Appendix 6. 
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Missing cognitive test scores were estimated directly within the Bayesian models while missing 
predictors were imputed before model fitting using multiple imputation.  Thirty different imputed 
datasets were created using MICE56 (v3.16.0), and models were fitted individually on each dataset. 
Afterward, model parameters were pooled to account for the uncertainty in imputation. The Bayesian 
Analysis Reporting Guidelines by Kruschke57 were followed. 

To inspect if the priors correctly modeled our expectations, prior predictive checks were performed for 
all models. This involves simulating data from the model before observing the training data (i.e., the 
prior predictive distributions) and comparing it against the measured data. For the best-performing 
model (defined below), this prior predictive distribution was visualized for each cognitive test. Models 
were fitted using the Hamiltonian Monte Carlo algorithm in STAN (v2.21)58. Documented R (v4.0.4)59 
code including dummy data is provided as an online supplement. 

Model convergence evaluation  
To determine if models covered the full parameter space, the effectiveness of the Markov Chain Monte 
Carlo (MCMC) sample chains was evaluated using the effective sample size (ESS). To determine if models 
converged, Rhat values comparing between- and within-chain estimates for model parameters were 
reported. Finally, warnings provided by BRMS were reported. 

The out-of-sample prediction accuracy of point-wise predictions was evaluated using 10-fold cross-
validation. Point-wise predictions were defined as the mean of the posterior predictive distribution. 
Performance was described as the amount of variance explained (R2)60, and the best-performing model 
was defined as having the highest median R2 across the eight cognitive tests. Normalization and 
imputation of the predictors were performed within the cross-validation loop to prevent information 
leakage61. All available test scores were considered in model evaluation regardless of whether the score 
for a different cognitive test was missing for the same patient. Median performances across tests and 
performances for individual tests were compared across models and against the machine-learning 
models in our previous study which were evaluated in the same manner21. Point estimates resulting from 
cross-validation were used to determine performance instead of Bayesian estimates of out-of-sample 
generalizability62,63 to allow this comparison.  

To assess if the best-performing model was a good fit for our data, the posterior predictive distributions 

resulting from this model were visualized.  This involves simulating data from the model after 

conditioning it on the measured data and visualizing the resulting distributions (i.e., the posterior 

predictive distribution) alongside the measured data. 

Sensitivity to selected priors 
To check that the priors were only weakly informative, the fitted model parameters and their credibility 
intervals (i.e., the posterior distributions) were examined for the best-performing model. Moreover, to 
check that the priors were broad enough, and to differentiate between the effect of shrinkage priors and 
the weakly informative priors, the performance of the best-performing model was compared against 
three additional versions of the same model. These were this same model where the horseshoe prior 
(version c of the best-performing model), all weakly informative priors (version d), or all priors (version e) 
were replaced with the default priors in BRMS. 

Explaining the performance of Bayesian models 
To understand the performance of the simplest Bayesian model (model 1a: the multivariable multiple 
regression models without residual correlations) and the effect of using multiple imputed datasets, three 
additional versions of this model were fitted. These were versions of model 1a with uninformative 
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default priors as fitted on only one imputed dataset (model 1c), with uninformative default priors as 
fitted on all thirty imputed datasets (1d), and as fitted on all thirty imputed datasets with all default 
priors except the horseshoe priors (models 1e) or the weakly-informative priors without the horseshoe 
prior (model 1f).  

To facilitate the comparison of the Bayesian models with the frequentist machine-learning models in our 
previous study, two plain frequentist multiple linear regression models were fitted for each outcome 
measure. The first set of frequentist models (Freq1) were fit using only one imputed dataset while the 
second set of frequentist models (Freq2) were fitted individually on each of the thirty imputed datasets. 
These models are highly similar to the multivariable multiple Bayesian regression models without 
correlation and all default priors (model 1c), except that they were optimized using QR factorization (the 
default optimizer in the R package ‘stats’) instead of Bayesian optimization.  For the frequentist models 
using multiple imputed datasets, the models were fitted individually for each imputed dataset after 
which predictions were made using each of the models and averaged to obtain a point estimate64.   

Model interpretation  
To understand how the best-performing model obtains its predictions, the fitted model parameters 
including their credibility interval (i.e. posterior distributions) were interpreted. Moreover, to inspect if 
the model made systematic errors, point-wise out-of-sample predictions of the best-performing model 
were plotted against the measured values for each cognitive test.  

Results 
Descriptive statistics and variable reduction 
Descriptive statistics before variable reduction are provided in Table 1. Five patients had a bilateral 
tumor and were excluded from further analysis. Tumor grades were combined into low-grade (grade 2) 
and high-grade (grade 3 + 4), ASA scores were combined into ASA I and ASA II + III, use of antiepileptic 
drugs was combined with epilepsy/loss of consciousness as a presenting symptom, and HADS anxiety 
and depression were combined. This was the same as described in our previous study21 where this result 
is more extensively discussed. The resulting set of variables consisted of age, sex, education, tumor size, 
tumor location (tumor overlap with the four lobes per hemisphere, lateralization, tumor grade (low 
versus high), histopathological diagnosis (oligodendroglioma, astrocytoma, or glioblastoma), IDH 
mutation status, presenting symptoms (behavioral/cognitive problems, language problems, motor 
deficits, and headache), corticosteroid use, use of an antiepileptic drug or epilepsy/loss of 
consciousness, presence of a comorbidity,  ASA score (I versus II + III), and the combined anxiety and 
depression score. 

The prior predictive check for the best-performing model (model 3b, see below) is reported in Appendix 
7. The prior predictive checks for all other models were highly similar. For all models, the prior predictive 
check showed that the simulated data (depicted in light blue) matches the true data (depicted in dark 
blue) for a small number of draws from the model parameters and training data. All other simulated data 
covered a wide but reasonable range of outcomes (with a mean of 0 and tails reaching up to around -30 
and 30). This indicates that the selected priors are weakly informative and allow for the model to 
describe our measured data. 

Table 1: Sample characteristics 

Variable name 
count Mean / % std min 25% 50% 75% max Missing 

(%) 

Age 340 53.21 14.34 18 45 55 64 81 0.00% 

Education 340 5.05 1.14 1 4 5 6 7 0.00% 

Sex (m) 340 65.88%       0.00% 
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Astrocytoma 340 23.53%       0.00% 

Glioblastoma 340 63.24%       0.00% 

Oligodendroglioma 340 13.24%       0.00% 

WHO grade 2 340 27.65%       0.00% 

WHO grade 3 340 9.41%       0.00% 

WHO grade 4 340 62.94%       0.00% 

IDH1 mutation status (mutant) 246 43.50%       27.65% 

Lateralization left 340 41.76%       0.00% 

Lateralization right 340 59.71%       0.00% 

Frontal Lobe left (mm3) 333 8531.99 20832.66 0 0 0 5936 164182 2.06% 

Occipital lobe left (mm3) 333 791.27 3861.01 0 0 0 0 33466 2.06% 

Parietal lobe left (mm3) 333 1860.60 6135.62 0 0 0 11 42487 2.06% 

Temporal lobe left (mm3) 333 4353.59 12228.73 0 0 0 0 74049 2.06% 

Frontal lobe right (mm3) 333 9243.12 18310.81 0 0 166 9564 99580 2.06% 

Occipital lobe right (mm3) 333 987.62 4653.98 0 0 0 0 43885 2.06% 

Parietal lobe right (mm3) 333 5139.08 13397.25 0 0 0 1081 77898 2.06% 

Temporal lobe right (mm3) 333 7534.59 16717.71 0 0 0 2731 93323 2.06% 

Tumor size (mm3) 333 52553.37 43485.95 305 22153 42176 71417 264510 2.06% 

ASA I 338 44.97%       0.59% 

ASA II 338 49.70%       0.59% 

ASA III 338 5.33%       0.59% 

Comorbidity 340 47.65%       0.00% 

Corticosteroid use 340 59.41%       0.00% 

Antiepileptic drug use 340 48.82%       0.00% 

HADS anxiety 321 6.58 4.59 0 3 6 10 19 5.59% 

HADS depression 321 4.66 3.72 0 2 4 7 17 5.59% 

Presents with attention, executive 
function, memory, and/or behavioral 

problems 340 

22.35% 

      0.00% 

Presents with language problems 340 15.29%       0.00% 

Presents with loss of consciousness 340 42.94%       0.00% 

Presents with motor deficits 340 23.24%       0.00% 

Presents with headache 340 23.82%       0.00% 

Cognitive test scores                  

Verbal memory recognition 323 -0.48 1.22 -3.24 -1.31 -0.35 0.42 2.04 5.00% 

Visual memory recognition 340 -0.47 1.58 -3.94 -1.46 -0.32 0.77 2.36 0.00% 

Finger tapping test 315 -0.89 1.37 -4.28 -1.73 -0.74 0.10 2.68 7.35% 

Symbol digit coding 340 -0.85 1.43 -3.82 -1.79 -0.75 0.20 2.36 0.00% 

Simple reaction time 334 -1.25 2.21 -7.68 -2.07 -0.51 0.30 1.47 1.76% 

Stroop interference 315 -0.35 1.40 -3.64 -1.08 -0.26 0.66 2.79 7.35% 

Shifting attention task 315 -0.61 1.09 -2.35 -1.45 -0.71 0.17 2.96 7.35% 

Continuous performance test 340 -0.75 1.47 -4.25 -1.61 -0.61 0.32 2.15 0.00% 

Table 1: Sample characteristics including the predictors and cognitive test scores. 

Model convergence and evaluation  
There were no warnings reported by BRMS. All models had a Rhat of at most 1.003, indicating good 
convergence. Models effectively sampled the parameter space with ESS values of at least 84413 and 
51130 for the bulk and tail of the distribution respectively.  
 
The performance of all models is displayed in Table 2. The best performance was obtained by model 3a 
(partial pooling without residual correlations), with a median amount variance explained of 7.2%. The 
amount of variance explained ranged between 0.3% for the Stroop interference ratio to 21.5% for the 
measure of simple reaction time. This model obtained the best performance compared to the other 
models for the measures of verbal memory recognition, visual memory recognition, simple reaction 
time, continuous performance, and the finger-tapping task. For all other measures, this model (3a) 
obtained close to the best performance with the amount of variance differing at most 0.5% of variance 
for the symbol digit coding test.  
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The median performance of all Bayesian models was higher than the median performance of the best-
performing machine learning models in our previous study21 (Table 2). The best-performing Bayesian 
model (model 3a) explained an additional 4.4% of variance (median) when compared to the best-
performing machine learning models. Moreover, the performance of the best-performing Bayesian 
model was higher than the machine learning models for all individual cognitive tests with increases in 
performance ranging from 0.3% of the variance for the Stroop interference ratio to 10.6% of the variance 
for the symbol digit coding test. 
 
The simplest model, the multiple multivariate regression model (model 1a) had a median explained 
variance of 5.0%. Adding residual correlations decreased this to 3.4% of variance explained (model 1b). 
Modeling interactions with histopathological diagnosis (model 2a) increased median performance to 
5.3%. Adding residual correlations to this model decreased performance to 3.9% of variance explained. 
Pooling the coefficients and intercepts resulted in the best models with an explained variance of 7.2% 
(model 3a), which decreased to 6.8% when modeling residual correlations (model 3b). Thus, 
conditioning coefficients and intercepts on histopathological diagnosis, and allowing coefficients to differ 
based on the histopathological diagnosis improved model performance, while modeling residual 
correlations decreased performance. 
 

Table 2: Prediction results 
R2 per outcome measure / 

model 
1a: Multivari-
ate multiple 

1b: Multivari-
ate multiple, 
with correla-
tions 

2a: Multivari-
ate with 
interactions 

2b: Multivari-
ate with 
interactions 
and correla-
tions 

3a: Partial 
pooling 

3b: Partial 
pooling, with 
correlations 

Machine 
learning 
Boelders et al. 
(2023)* 

Verbal memory recognition 3.7% 2.4% 3.7% 2.3% 7.2% 6.2% 1.9% 
Visual memory recognition 7.5% 6.5% 7.2% 5.5% 7.9% 7.3% 3.7% 

Symbol digit coding 17.0% 15.4% 17.2% 15.5% 18.4% 18.9% 7.8% 

Simple reaction time 19.8% 17.7% 21.0% 17.8% 21.5% 21.2% 16.3% 

Stroop interference ratio 0.0% 0.0% 0.4% 0.3% 0.3% 0.3% 0.0% 

Continuous performance test 1.8% 0.7% 2.1% 0.9% 4.1% 3.4% 0.5% 

Shifting attention task 6.3% 4.4% 6.8% 5.5% 7.2% 7.4% 5.1% 

Finger tapping task 1.7% 0.2% 2.3% 0.1% 2.7% 1.6% 0.0% 

Median 5.0% 3.4% 5.3% 3.9% 7.2% 6.8% 2.8% 

Table 2: Amount of variance explained (%) per outcome measure and model as determined using 10-fold cross-validation. For 
reference, the amount of variance explained by the best-performing machine learning model per outcome measure as found in 
Boelders et al. (2023) is reported. The best result per outcome measure is displayed in bold. *Negative performances were set to 
zero. 

 

Sensitivity to selected priors 
The model parameters of the best-performing model after model fitting (i.e. posterior distributions) 
(Appendix 8) were within the specified priors, indicating that the priors were broad enough. To test the 
influence of the selected priors, results for models 3a with (partly) uninformative priors are presented in 
Table 3 (models 3c, 3d, 3e).  

Removing the horseshoe prior from the best-performing model resulted in a median explained variance 
of 5.8% (model 3c) relative to 7.2% resulting from the best-performing (3a). This shows the value of 
using the horseshoe prior. The variant of the best-performing model with all default priors except for the 
horseshoe prior resulted in a median explained variance of 6.9% (model 3d), which is only a 0.3 
percentage point decrease when compared to the best-performing model. This shows that the weakly 
informative priors only had a small influence on model performance. Finally, the model with only default 
priors (model 3e) resulted in a median explained variance of 5.4%. This is 1.4 percentage points lower 
when compared to the best-performing model, showing that the selected priors were suitable. 
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Moreover, this is 0.4 percentage points lower compared to model 3c which uses weakly informative 
priors and no horseshoe prior, again showing that the weakly informative only had a small influence on 
performance.  

Table 3: Prediction results for the prior sensitivity tests and frequentist models 
R2 per outcome 

measure \ model 
3c: Partial 
pooling, 
weakly 
informative, 
no horseshoe 

3d: Partial 
pooling, 
default, and 
horseshoe 

3e: Partial 
pooling, 
default priors 

Freq1: Fre-
quentist 
regression, 
one imputed 
dataset 

Freq2: Fre-
quentist 
regression, 
multiple 
imputed 
datasets 

1c: Default 
priors, one 
imputed 
dataset 

1d: Default 
priors 

1e: Default 
and horseshoe 

1f: Weakly 
informative 
priors, no 
horseshoe 

Verbal memory 
recognition 

6.6% 7.5% 7.3% 0.2% 0.0% 3.9% 3.9% 3.7% 3.6% 

Visual memory 
recognition 

5.5% 7.1% 4.9% 0.0% 0.1% 4.5% 4.6% 7.6% 4.9% 

Symbol digit coding 16.8% 18.2% 16.7% 0.0% 8.5% 15.5% 15.7% 17.0% 16.4% 
Simple reaction 

time 
17.7% 20.2% 16.5% 0.2% 3.0% 16.0% 16.0% 19.6% 15.8% 

Stroop interference 
ratio 

0.0% 0.3% 0.0% 0.5% 0.2% 0.0% 0.0% 0.0% 0.0% 

Continuous perfor-
mance test 

3.4% 4.0% 3.1% 0.1% 0.7% 2.8% 2.9% 1.8% 3.0% 

Shifting attention 
task 

6.0% 6.7% 6.0% 1.2% 2.5% 5.5% 5.4% 6.3% 5.3% 

Finger tapping task 4.9% 2.5% 4.4% 0.0% 0.7% 4.5% 4.4% 1.8% 4.4% 

Median 5.8% 6.9% 5.4% 0.1% 0.8% 4.5% 4.5% 5.0% 4.6% 

Table 3: Amount of variance explained (%) per outcome measure and model as determined using 10-fold cross-validation. 
Results describe the models fitted as sensitivity checks (models 3c-3d) for the best-performing model (3b), the frequentist models 
(Freq1-2), and the results for model 1 with (partly) default priors (models 1c-1e). 

 

Explaining the performance of Bayesian models 
To explain the performance of the Bayesian models, the simplest Bayesian (model 1a) was compared to a 
variant with uninformative priors that was fitted on only one imputed dataset (model 1c), variants of this 
model with (partly) uninformative priors fitted on the thirty imputed datasets (model 1d, 1e, and 1f), 
and frequentist models fitted on one (model Freq1) or thirty imputed datasets (model Freq2). Results for 
these additional models are displayed in Table 3.  

Removing the horseshoe prior from model 1a resulted in a median performance of 4.6% (model 1f) of 
variance (versus 5.0%, model 1a). Removing the weakly informative priors but not the horseshoe prior 
resulted in a median performance of 5.0% (model 1e). Using all default priors resulted in a median 
performance of 4.5% (model 1d). These results again show the limited effect of the semi-informative 
priors while also demonstrating the benefits of using the horseshoe prior. These results are in line with 
the sensitivity checks for model 3b.  

The frequentist regression model using one imputed dataset (Freq1) had a median performance of 0.1% 
of variance, which increased to 0.8% when using thirty imputed datasets (Freq2). Comparing the 
frequentist regression as evaluated on one imputed dataset (Freq1) to its Bayesian equivalent as fitted 
on one imputed dataset (model 1c), performance increases from a median explained variance of 0.1% to 
4.5%. When comparing the frequentist model using thirty imputed datasets (Freq2) to its Bayesian 
equivalent using thirty imputed datasets and default priors (model 1d), performance increased from 
0.8% to 4.5% of variance. These results show that Bayesian optimization when using default priors 
resulted in better predictions when compared to QR factorization (frequentist). Notably, the variants of 
model 1 with default priors as fitted on one imputed dataset (model 1c) or averaged across the thirty 
imputed datasets (model 1a) performed roughly equivalent with a median of 4.5% of variance explained. 
This shows that averaging over multiple datasets had little effect on performance for Bayesian models, 
contrary to the frequentist models. 
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Model interpretation  
To evaluate if the distributions of the simulated data as obtained after model fitting match the observed 
data, the posterior predictive check for the best-performing model (model 3a) is visualized in Appendix 
9, individually for each cognitive test. These checks show that the simulated data (depicted in light blue) 
matches the true data (depicted in dark blue) for most of the draws from the model parameters and 
training data. This indicates that the model was able to adequately describe the observed data. For most 
outcome measures, and especially the measure of simple reaction time, the model did not fully capture 
the skewness in the cognitive test data. 

To interpret the relationships captured by the best-performing model, we refer back to the parameter 
estimates after model fitting (i.e., the posterior distributions) as visualized in Appendix 8. It is important 
to note that the relationships identified by the model are purely descriptive of how the model obtains its 
predictions as we used a machine-learning approach. 

Five things can be observed from the model parameters. First, the model relied on most of the 
predictors. This can be seen from most coefficients (Appendix 8A) being comparable in magnitude with a 
median magnitude of 0.005 [95% CI: 0.000, 0.025] and only a few coefficients being close to 0 (23 out of 
192 coefficients smaller than 0.001). Second, the model did not rely strongly on any particular variable. 
This can be seen from the three most influential variables being small relative to the variance in the test 
scores. More specifically, the largest coefficients, which were all found when predicting simple reaction 
time, were tumor volume with a median estimated coefficient of -0.048 [95% CI: -0.57, 0.08], a tumor 
located in the right frontal lobe with a median of coefficient -0.047 [95% CI: -0.46, 0.06], and a tumor in 
the left frontal lobe with a median coefficient of 0.38 [95% CI: -0.06, 0.40]. These coefficients are low 
relative to the variance in the test scores which was 2.21 for simple reaction time (Table 1). Third, the 
model was uncertain in its estimation of the coefficients. This can be seen from the credibility interval 
for most coefficients being wide relative to their magnitude, as exemplified by the largest coefficients 
provided previously. Fourth, the expected variability in measurements of cognitive functioning (Appendix 
8C) was high relative to the standard deviation of the data (see Table 1). More specifically, the expected 
variability ranged between 1.02 [95% CI: 0.94, 1.11] for the shifting attention task and 2.00 [95% CI: 1.83, 
2.15] for simple reaction time, relative to the variance in test scores which ranged between 1.09 for the 
shifting attention task and 2.21 for the measure of simple reaction time. Fifth, the coefficients showed 
substantial variability between patients with different histological diagnoses. This can be seen from the 
average variability of coefficients between groups (i.e. standard deviation of the group-level coefficients) 
being 0.206 [95% CI: 0.136, 0.402], while the median magnitude of coefficients was only 0.005 [95% CI: 
0.000, 0.025] as previously described.   

To ensure that there were no systematic errors, out-of-sample predictions were plotted against the true 
measured values in Figure 1. The points generally cluster around the red line, suggesting that the model 
does not exhibit systematic errors for most patients. The largest errors occur when patients score 
exceptionally poorly on a given test (low value on the x-axis). In these cases, the model tends to 
overestimate performance, as indicated by points appearing in the upper-left region of the plots.
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Figure 2: Predicted values versus measured values 

 

Caption: Scatter plots of predicted values versus the measured values, individually for each outcome measure. Each dot 
represents a patient their true and predicted test score for a given test. The red line represents perfect predictions where the 
predicted value is equal to the measured value (x=y). 

 

Discussion 
The current study showed that Bayesian regression models resulted in better predictions of pre-
operative cognitive functioning for individual patients when compared to the machine-learning models 
described in our previous study21. Despite the performance improvement, the amount of variance 
explained remained low (ranging between 0.3% and 21.5% with a median of 7.2%). Moreover, models 
explicitly showed that the estimated error associated with individual predictions were large. These 
results show that it is not yet possible to make certain inferences about pre-operative cognitive 
functioning using the included clinical variables.  

All Bayesian models performed better than the best-performing machine learning models in our 
previous study, including the simplest multivariate multiple Bayesian regression model with a shrinkage 
prior (model 1a). This model is somewhat similar to the ElasticNet model which was amongst the best-
performing machine learning models. Moreover, this included the Bayesian model that used default 
priors, did not model residual correlations, and was fitted on only one imputed dataset (model 1c). This 
model also was highly similar to and outperformed the frequentist multiple regression models with one 
outcome each (Freq1) as fitted in the current study. These results indicate that the increase in 
performance may, in part, be due to Bayesian estimation or the remaining information in the default 
priors for the intercept and standard error as used by BRMS.  

Prediction performance increased when allowing coefficients and intercepts to differ between 
histopathological diagnoses (model 2). This indicates that coefficients and intercepts are best treated as 
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different across histopathological diagnoses when considering prediction performance, which is in line 
with previous studies showing that the effects of predictors may differ across different types of tumors11. 
Performance increased further when pulling the coefficients and intercepts toward the average across 
the different histopathological diagnoses (model 3). This indicates that at least a subset of coefficients 
and intercepts are related across these groups.  

Using weakly informative priors instead of the default priors was of little influence on model 
performance. This finding is unsurprising given that the weakly informative priors still provide little 
information to the model. Using the horseshoe prior resulted in better performance when compared to 
not using horseshoe priors. This indicates that the assumptions regarding the magnitude of coefficients 
and the number of non-zero coefficients were appropriate. Inspecting the coefficients of the best-
performing model showed that most variables contributed weakly to the prediction. The finding that 
models using a horseshoe prior performed best and that the resulting models relied on most variables 
without relying strongly on any specific variable indicate that a multifaceted view of patients is necessary 
to obtain the best possible prediction, which is in line with our previous study21. 

All models except for the models without interaction effects, partial pooling, or residual correlation 
(models 1a and 2a) shared some parameter estimates across cognitive test scores. This allowed these 
models to use more information by estimating missing test performance during model fitting. Despite 
this, adding residual correlations between outcome measures (models 1b, 2b, and 3b) decreased model 
performance. This may be explained either by the added number of parameters to estimate or due to 
the estimations of missing test scores being inaccurate and uncertain like the predictions themself.  

Averaging models over multiple imputed datasets to account for uncertainty in imputations improved 
the performance of frequentist models, but had no effect on the performance of the Bayesian models. 
This difference can likely be attributed to the Bayesian model already performing better when not using 
multiple imputed datasets compared to frequentist models, leaving less room for model performance to 
increase. The limited effect of using multiple imputed datasets for both the Bayesian and frequentist 
models can likely be explained by the large number of relatively weak relationships found by the models. 
These weak relationships cause the influence of any specific (imputed) variable to be limited.  

Three limitations of the current sample should be mentioned. First, the current sample was collected as 
part of routine clinical care. Therefore, it only included patients who were suitable for 
neuropsychological testing and tumor resection. Consequently, the current study did not include 
patients with, amongst others, patients in need of immediate surgical intervention or patients with 
significant motor impairments or severe cognitive limitations. This may have limited the variance in 
cognitive functioning. Second, a brief computerized test battery was used which may be somewhat 
reliant on processing speed40, and which does not measure language function, memory free recall, or 
visuoconstructive abilities.  Therefore, the current study does not rule out that there are other cognitive 
domains for which predictions can be made with better performance. However, more comprehensive 
cognitive evaluations are not typically conducted during the presurgical clinical care of patients with a 
brain tumor. Last, it is important to note that only readily obtainable clinical variables were considered. 
Therefore, better and more certain predictions may be obtained by using additional information such as 
measures of structural65 and functional66–68 connectivity or additional molecular markers5. 

We believe the current study is highly important as it is the first to explicitly show that individual 
predictions of pre-operative cognitive functioning for patients with a glioma based on the 
comprehensive set of clinical predictors included in the current study are uncertain. Therefore, clinicians 
should not infer cognitive functioning from these predictors. Moreover, our results show that Bayesian 
models can result in better predictions when compared to popular machine-learning models. Therefore, 
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we hope the current study stimulates the use of Bayesian models, especially when the certainty of 
individual predictions is important and when sample sizes are small. 

Future studies should collect larger multimodal cross-center datasets to allow for more accurate and 
more certain predictions and for models to generalize across centers. Moreover, to obtain guarantees 
regarding the certainty of predictions, methods such as conformal prediction69,70 or simulation-based 
calibration71 can be used to ensure that the credible intervals are trustworthy for new data. Last, future 
work may be aimed at predicting cognitive function after surgery using variables available before surgery 
and can consider predicting outcomes that are more relevant to patients’ daily functioning such as being 
able to take care of children.  

Conclusion 
Bayesian models resulted in better predictions than machine learning models while having the additional 
benefit of providing estimates of uncertainty for individual predictions. Despite the performance 
improvements, individual predictions were uncertain. Therefore, we conclude that it is not yet possible 
to infer the pre-operative cognitive functioning of individual patients from the comprehensive set of 
clinical variables used in the current study. Results further show that the weakly informative priors only 
had a small positive impact on performance while shrinkage priors had a larger positive effect. The best-
performing model relied on many variables without relying strongly on any particular variable, indicating 
that a holistic view of a patient likely is necessary to make the best predictions. Results further show that 
patients with different histopathological diagnoses are best treated as different yet related. Future 
studies should consider using Bayesian models when datasets are small and when estimates of 
uncertainty in individual predictions are important. Moreover, future studies should collect larger 
multimodal cross-center datasets to obtain more reliable predictions. Finally, future studies should move 
towards predicting cognitive functioning after surgery for models to be useful in clinical practice.  
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