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Abstract10

Despite the proliferation and clinical deployment of artificial intelligence (AI)-based medical software devices, most11

remain black boxes that are uninterpretable to key stakeholders including patients, physicians, and even the developers12

of the devices. Here, we present a general model auditing framework that combines insights from medical experts with13

a highly expressive form of explainable AI that leverages generative models, to understand the reasoning processes14

of AI devices. We then apply this framework to generate the first thorough, medically interpretable picture of the15

reasoning processes of machine-learning–based medical image AI. In our synergistic framework, a generative model16

first renders “counterfactual” medical images, which in essence visually represent the reasoning process of a medical17

AI device, and then physicians translate these counterfactual images to medically meaningful features. As our use18

case, we audit five high-profile AI devices in dermatology, an area of particular interest since dermatology AI devices19

are beginning to achieve deployment globally. We reveal how dermatology AI devices rely both on features used by20

human dermatologists, such as lesional pigmentation patterns, as well as multiple, previously unreported, potentially21

undesirable features, such as background skin texture and image color balance. Our study also sets a precedent for22

the rigorous application of explainable AI to understand AI in any specialized domain and provides a means for23

practitioners, clinicians, and regulators to uncloak AI’s powerful but previously enigmatic reasoning processes in a24

medically understandable way.25

Introduction26

Medical artificial intelligence (AI) devices have proliferated in recent years1, but currently, the scientific and medical27

community poorly understands what factors influence AI outputs and whether these factors could lead to failures and28

harm to patients when AI is deployed in practice. The reasoning processes of these high-stakes devices—namely those29

that rely on neural networks and other complex “machine-learning” techniques, which automatically learn statistical30

patterns in large datasets—remain opaque to all stakeholders, including patients, medical providers, regulators, and31

even the developers of these AI systems. In principle, a detailed understanding of the reasoning processes of these32

AI devices could help us predict and prevent AI failures, help us improve AI models, and offer scientific value by33

contributing to the community’s knowledge of AI reasoning processes or their underlying training data. However,34

to our knowledge, no thorough medically interpretable picture of the reasoning process of a machine-learning–based35

medical image AI device yet exists. Prior efforts provide extremely limited peeks at medical AI reasoning processes2,3,36

typically via techniques that “sanity check” whether a model is looking in the correct place4–7, and both these and more37

expressive techniques8,9 typically suffer from lack of principled, medically informed analysis, precluding a thorough38

understanding. Indeed, despite technical developments in these explainable AI (XAI) tools, the gap between XAI39

tool output and pragmatic understanding of an AI device, particularly for image analysis and other “representation40

learning” AI systems, remains so large that efforts to apply XAI often miss severe faults in an AI device’s logic10–13,41

such as strong dependence on spurious “shortcut” features4,14.42
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In exploring the reasoning processes of medical image AI, dermatology AI devices serve as a particularly impactful43

use case, for several reasons: numerous academic papers report high performance15–17; the first handful of companies44

have received CE approval to deploy their AI devices on patients in the European Economic Area18,19; and multiple45

developers are working on approval from the United States Food and Drug Administration20. Dermatology AI devices,46

often targeted directly at consumers, may pose particular risks due to the lack of involvement from healthcare providers,47

potential for bias on skin tone21 and other sensitive attributes, and heterogeneity of user-acquired images, since48

there are no implemented DICOM standards in dermatology. Simultaneously, the de facto standard5 XAI modality49

to analyze image models—saliency maps, which highlight the regions of an image that most influence a model’s50

prediction—appear poorly suited to understand dermatology AI devices, which may be best explained in terms of51

dermatological concepts (e.g., “multiple colors of pigment”, “atypical pigment networks”) that spatially overlap or52

manifest diffusely throughout an image (Supplementary Fig. 1). Explanation of even a single prediction involves53

simultaneously high levels of technical AI knowledge and dermatology expertise, impeding a global understanding of54

the AI device’s behavior.55

Here, we scrutinize numerous high-profile dermatology AI models to obtain the first thorough, medically inter-56

pretable picture of medical image AI reasoning processes. In the process, we showcase our workflow that combines57

explainable AI with human domain expertise (Fig. 1a). We demonstrate solutions to severe practical issues with58

explainable AI in the imaging domain, including (i) conceptualizing AI behavior in medically meaningful terms, (ii)59

addressing sampling challenges to form robust conclusions, and (iii) scaling from explanations of individual predictions60

to a global understanding of an AI device’s reasoning processes. At a high level, our workflow involves synthesis of61

counterfactual images, which answer the question “how might a given image plausibly differ to have elicited a dif-62

ferent prediction from the AI?”, via generative models, which circumvent limitations of the de facto standard XAI63

modality (saliency maps) in medical image analysis. Our workflow continues with the analysis of thousands of such64

counterfactual images by dermatology experts, to characterize an AI device in human-understandable medical terms.65

Throughout the process, we emphasize rigor by mitigating problems of sampling and bias, via examination of numer-66

ous images, consideration of multiple datasets, and solicitation of insights independently from two dermatologists via67

a randomized and blinded analysis.68

Results69

Overview of dermatology AI device selection and reproduction70

Aiming to best represent the current state-of-the-art in dermatology AI devices, we explored the scientific literature71

and commercial market, ultimately choosing five AI devices to audit (Fig. 1b). These devices span the spectrum72

of academic and commercial devices, and include devices already distributed for use by consumers. The five devices73

are: (i) DeepDerm, a previously developed reproduction21—using the original training data—of the classifier from a74

seminal academic publication15, which hailed the classifier for its “dermatologist-level” performance; (ii) ModelDerm75

201822, an academic classifier for which a later version (which we were unable to obtain) was CE approved for use76

in the European economic zone; (iii and iv) Scanoma and Smart Skin Cancer Detection (SSCD), two consumer-77

facing, smartphone apps; and (v) a “competition-style” classifier, designed to mimic the key design decisions of78

the winning model24 from the 2020 SIIM-ISIC Melanoma Classification Kaggle challenge25 while circumventing that79

model’s prohibitive computational burden. Authors of additional AI devices declined to make available their full80

models (i.e., model weights), preventing us from analyzing other high-profile devices16,17.81

Since these diverse AI devices were trained on highly varied training data, we hypothesize they may exhibit a wide82

range of internal reasoning processes, for instance focusing on varied dermatological features or spurious signals. The83

training data include both dermoscopic images (taken through a specialized dermatological tool that magnifies and84

enables visualization of deeper layers of the skin) and clinical images (acquired with a digital camera, without the85

use of a dermatoscope). Dermoscopic and clinical images feature unique profiles of potential signals for AI systems86

to learn: for instance, dermoscopic images better reveal a lesion’s fine details, such as pigmentation patterns, and87

exhibit unique artifacts, such as ruler markings and dark corner artifacts; clinical images likewise may provide more88

information on a lesion’s context (location, surrounding lesions), in addition to their own characteristic artifacts, such89

as presence of markings or patient clothing. Dermoscopic images from the ISIC database25–27 were used to train both90

DeepDerm and SIIM-ISIC, though the particular subsets of data used for each model differed. DeepDerm also included91

clinical images in its training set, gathered from numerous online sources. ModelDerm trained on only clinical images,92

including publicly available images as well as images that were never made publicly available. The training procedures93

for the smartphone app AI devices have not been published, but based on the wide public availability of dermatology94

image datasets, we speculate they could have trained at least in part on images from ISIC, Fitzpatrick17k28, or other95

sources. Beyond the variability introduced by differences in training data, additional variation between the models may96
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Fig. 1 | Overview of joint expert, XAI auditing procedure and audited AI devices. a, Our auditing
procedure unites explainable AI with analysis by human experts to understand medical AI devices. Specifically, we
leverage generative models to create counterfactual images that alter the prediction a medical AI device; analysis
of the counterfactuals by human experts (dermatologists) reveals the medical AI device’s reasoning processes. We
perform the analysis on numerous images from each of multiple datasets, gathering insights from two experts, for
each of five different dermatology AI devices. b, Key details of dermatology AI devices audited in this study. c,
Performance of the dermatology AI devices on three datasets, including a dataset (DDI) external to the training data
of every device. We examine the area under the receiver operating characteristic curve (ROC-AUC) to focus on the
model’s internal reasoning processes rather than emphasize the authors’ original choices of model calibration. † Asan,
Atlas, and Hallym datasets described in ref.22; MED-NODE is described in ref.23; Edinburgh is available at https:
//licensing.edinburgh-innovations.ed.ac.uk/product/dermofit-image-library *ROC-AUC<0.5 (i.e., worse
than random performance).

also arise from their diverse architectures, preprocessing schemes, ensembling, and other computational differences.97

All of these devices aim to differentiate benign from malignant skin lesions, while some focus on the narrower98

problem of differentiating melanoma, the most deadly form of skin cancer, from melanoma look-alikes, such as benign99

nevi (moles), seborrheic keratoses, and dermatofibromas. We frame our analysis through this narrower problem, which100

has historically received great attention within the AI community, and which models a well-defined clinical task. In101

particular, we construct our test data to contain only melanomas and melanoma look-alikes, such that AI devices102

trained to more generally differentiate benign from malignant lesions here effectively function as melanoma classifiers.103

Since some classifiers were designed to function on dermoscopic images, others on clinical images, and at least one104

(DeepDerm) both, we examine all classifiers in each context, using ISIC as our source of dermoscopic images, and105

Fitzpatrick17k for clinical images (note that, since we are most interested in what alterations cause images to appear106

more benign or malignant and not benchmarking AI performance, we do not expect our XAI analysis to be sensitive107

to overlap between the training and test data)8.108

We carefully adapted each AI device for use with our XAI tools, such that all analyses could be performed in109

a uniform software environment, thus eliminating a potential source of variation. Wherever feasible (i.e., with the110

exception of SIIM-ISIC), we used the original model weights, to ensure that the original reasoning processes for111

that AI device could not change. While we suspect that the reasoning process of SIIM-ISIC should closely match112

the original 2020 SIIM-ISIC Kaggle competition winning model–we use the same training data, training procedure,113
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and test-time image augmentations/ensembling–we intend our audit of SIIM-ISIC to shed light on the influence of114

these common, performance-boosting techniques rather than to definitively comment on the reasoning process of that115

original model. We verified our adaptations against the original implementations and achieved close reproduction of116

the original results; only slight differences arose due to platform-dependent implementation differences in preprocessing117

or arithmetic (Supplementary Fig. 2).118

Dermatology AI devices perform unreliably119

As a first step toward understanding dermatology AI devices, we evaluated the performance of each device for differen-120

tiation between melanoma and melanoma look-alikes, finding the performance variable and often low (Fig. 1c). After121

accounting for train/test overlap (we expect AI devices trained on a particular dataset to perform artificially well),122

we note the following: (i) ModelDerm, which was trained only on clinical images, performs worst on the dermoscopic123

images (ISIC), though train/test overlap may unfairly advantage the other AI devices; (ii) Despite training on no124

clinical images, SIIM-ISIC outperforms all other models on clinical images; (iii) All models fail to achieve satisfactory125

performance on DDI, the only one of our three datasets known not to overlap with the training data of any AI device.126

This performance gap could come from DDI’s inclusion of diverse skin tones and rare diseases, but may also be due to127

other out-of-distribution features21. Our performance evaluation suggests that the five dermatology AI devices may128

rely on different internal reasoning processes, since the pattern of performance gains or losses across the three datasets129

does not hold consistent among the AI devices.130

Counterfactual images reveal basis for AI decisions131

To understand the reasoning processes of the AI devices, we examined each AI device via an XAI tool: generation of132

counterfactual images. Counterfactual images reveal the basis of an AI device’s decisions by altering attributes of a133

reference image so as to produce a similar image that elicits a different prediction from the AI device. For instance,134

consider the case that an AI device predicts a lesion is malignant, while a counterfactual predicted by the AI device to135

be benign differs in that it features lighter, more uniform pigmentation, and fewer brown spots on the background skin;136

provided that we ensure all differences in the counterfactual push the AI device’s predictions in the desired direction137

(more benign), we may infer that the classifier uses darker pigmentation and brown spots on the background skin as138

part of its reasoning process (Fig. 2a).139

To this end, we improved and applied a previously developed8 technique for generation of counterfactual images,140

Explanation by Progressive Exaggeration, with updates to enable more rigorous conclusions. In the context of our141

dermatology AI devices, this techniques enables generation of both “benign” and “malignant” counterfactuals from142

a reference image (Fig. 2a). We can then learn from comparing two opposing counterfactuals, which guards against143

potential misinterpretations, should the technique introduce any systematic changes to the counterfactuals. Expla-144

nation by Progressive Exaggeration trains a generative AI model in conjunction with an AI device, such that the145

generative model learns how to alter images to change the AI device’s predictions. We train the generative model to146

create counterfactuals that are similar to the reference image and appear realistic, but differ from the reference image147

in order to elicit the desired prediction from the AI device. Importantly, since the generated counterfactuals may148

alter more than one attribute, we updated the technique to ensure that we train the generative model to only change149

attributes when those changes elicit the desired effect on the AI device’s output, whereas the previously published ver-150

sion of this technique may also alter attributes irrelevant to the classifier’s output (Supplementary Fig. 3). Additional151

updates enabled generation of higher quality images that retain fine details, such as hair, that might be important for152

dermatology AI devices (Supplementary Fig. 4). We separately trained such generative models for each AI device,153

for each of the ISIC and Fitzpatrick17k datasets, for a total of ten generative models (Methods, Supplementary Fig.154

5-6); a uniform set of training parameters facilitates comparison between the AI devices (Supplementary Fig. 7).155

While examination of a single counterfactual pair provides some information about an AI device’s reasoning process,156

to obtain a more complete and rigorous understanding of the AI devices and enable direct comparisons between devices,157

we systematically interrogated thousands of counterfactual images, in a randomized and blinded fashion (Fig. 2b).158

We began our analysis by pre-screening the counterfactuals, to ensure we only examined high-quality counterfactuals159

and to facilitate comparisons between AI devices. We excluded counterfactuals that failed to produce the desired160

output from our AI devices (i.e., we ensured the “malignant” and “benign” counterfactuals lie on the correct sides161

of the decision threshold), or that contained visual artifacts (e.g., “water-droplet–like” artifacts37), as judged by162

dermatologists. Two dermatologists then independently annotated each counterfactual pair, which was randomized163

and blinded to reduce bias. To learn whether the dermatologists’ general impressions of the counterfactuals agreed164

with each AI device regarding what appears more or less malignant, we first inquired, “Which image appears most165

likely to represent a melanoma?” We then asked the dermatologists to record individual image attributes that differ166
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Fig. 2 | Joint expert, XAI auditing procedure reveals reasoning processes of dermatology AI devices.
a, Given a reference image and an AI device to investigate, our generative model produces “benign” and “malignant”
counterfactuals, which resemble the reference image but differ in one or more attributes (e.g., pigmentation, solid
arrows, and dots on the background skin, open arrows). When evaluated by the AI device, the counterfactuals’
outputs lie on opposite sides of the decision threshold. Higher values indicate greater likelihood of malignancy, as
predicted by an AI device (Scanoma). b, To obtain robust conclusions, dermatology experts evaluate numerous
counterfactuals after pre-screening and randomization of the images. c, Attributes identified by our joint expert-
XAI auditing procedure as key influences on the output of dermatology AI devices. For each attribute/device pair,
we count the proportion of counterfactual pairs in which experts noted that attribute differs; we display the global
top-10 attributes as determined by lowest rank-sum over all AI devices. Based on expert evaluation of whether the
attribute was present to a greater extent in the malignant or benign counterfactual of each pair, we determine whether
that attribute was “predominant” in benign or malignant counterfactuals, i.e., present to greater extent in benign
(malignant) counterfactuals in at least twice as many images as malignant (benign) counterfactuals. The size of each
square is then determined as the number of counterfactual pairs with a difference noted in the predominant direction.
For comparison, we specify how human dermatologists use each attribute (“Literature”), based on our review of the
literature29–35 combined with expert opinion from two board-certified dermatologists; see Discussion for additional
information. Bar charts indicate Cohen’s κ values for agreement between each expert and the AI device, where each
is asked which image in each counterfactual pair appeared more likely to be malignant. “L”, lesion; “B”, background.
d, Examples of counterfactuals that differ in each of the top ten attributes identified in the ISIC data; the attribute
is present to a greater extent in the right image of each pair. For conciseness, some attribute names were shortened;
refer to Supplementary Table 1 for full names. Images adapted with permission from ref.27 Combalia et al., ref.26

Tschandl et al., and ref.36 Codella et al.
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between the “benign” and “malignant” counterfactuals, such that we could learn which attributes each AI device uses,167

and how it uses them (Supplementary Fig. 8).168

We aggregated the dermatologists’ insights over thousands of counterfactuals to determine the reasoning process169

of each dermatology AI device. We conceptualize the reasoning process as swayed toward a benign or malignant170

prediction by key attributes identified as differing in counterfactual pairs; our analysis provides the typical direction171

of an attribute’s effect, based on whether that attribute was predominant in the benign or malignant counterfactuals,172

as well as an approximate idea of the extent of the effect, based on the frequency with which dermatologists observed173

that attribute differing in counterfactuals. Note that we expect this frequency to depend on multiple factors, including174

the fraction of the dataset to which that attribute is relevant, inductive biases of our generative models, and perhaps a175

combination of a dermatology AI system’s sensitivity to an attribute and the sensitivity of our evaluators in detecting176

that attribute (which may be at odds, in the case of a visually subtle change that sizeably affects a prediction). Our177

analysis reveals that the AI devices focus on both medically relevant and putatively spurious attributes, and exhibit178

considerable heterogeneity in how they interpret those attributes (Fig. 2c).179

A detailed view of medical AI reasoning180

Our counterfactual analysis highlights the pigmentation of lesions as a key attribute in determining the predictions of181

all dermatology AI devices examined, for both dermoscopic and clinical images. In all cases, “darker pigmentation”182

surpassed all other attributes in frequency, with dermatologists noting this change in the majority of counterfactual183

pairs. Consistent with dermatologists’ interpretation of more darkly pigmented lesions, dermatology AI devices typi-184

cally interpret darker pigmentation of lesions as increased likelihood of melanoma; the only exception is ModelDerm185

when evaluated on dermoscopic images—an image type upon which this model was never trained. A subset of the der-186

matology AI devices (DeepDerm, Scanoma, and SSCD) also base their decisions in part on atypical pigment networks187

for dermoscopic images, in agreement with dermatologists’ use of this attribute during pattern analysis of melanocytic188

lesions29,30.189

Dermatology AI devices also depend on a variety of other attributes of the lesion, many of which dermatologists190

also consider when analyzing melanocytic lesions. In both dermoscopic and clinical images, the AI devices consider the191

number of colors in a lesion, where a greater number of colors typically associates with predictions of malignancy31.192

Some AI devices, most prominently SIIM-ISIC, also consider the presence of a blue/white veil, which has previously193

been reported as a specific finding for melanoma32,33. Other attributes of the lesion that factor into the AI devices’194

decisions include presence of structureless areas or regression in dermoscopic images, and uneven pigmentation or195

erythema in clinical images. Aside from erythema, which varies between a benign or malignant signal depending on196

the AI device, these attributes typically associate with the malignant counterfactuals. Their frequency, however, varies197

considerably between devices, pointing out heterogeneity in the devices’ reasoning processes.198

Analysis of each AI devices’s top attributes (Supplementary Fig. 9-10) revealed additional lesional attributes199

considered distinctively by only a subset of the AI devices. In dermoscopic images, these attributes included patchi-200

ness (DeepDerm and SSCD), strawberry pattern (ModelDerm), white spots (SSCD), prominence of follicles or pores201

(SSCD), white striae (SIIM-ISIC), and scale (SIIM-ISIC). In clinical images, these attributes included erosion or ul-202

ceration (DeepDerm and Scanoma), nodular or papular appearance (ModelDerm), uneven borders (ModelDerm), and203

the shininess of a lesion (SIIM-ISIC).204

Attributes of the background skin also influence the dermatology AI devices, and in comparison to attributes of the205

lesion, often elicit more diverse responses among the devices: Brown spots on the background skin influence towards206

benign or malignant predictions depending on the device. Hair typically associates with benign counterfactuals in207

dermoscopic images, but can also associate with malignant counterfactuals in clinical images. More textured skin (e.g,208

skin grooves) associates with the benign counterfactuals of Scanoma and ModelDerm (Supplementary Fig. 9), but is209

rarely highlighted by the counterfactuals of other devices. Erythema or telangiectasias of the background skin also210

feature prominently in the results of our counterfactual analysis, and the effects of these attributes vary both between211

AI devices and within an AI device, depending on whether an image is clinical or dermoscopic. Finally, counterfactuals212

highlighted the “pinkness” of background skin as influencing AI devices’ decisions, particularly in dermoscopic images.213

In contrast to erythema, this attribute often applies uniformly across an image (Fig. 2d), consistent with effects of214

lighting or an image’s color balance. Similarly, we recorded overall darker images and cooler color temperatures as215

influential for one classifier (SIIM-ISIC). Similar to other background skin attributes, lighting or color balance changes216

may sway an AI device toward a more benign or more malignant prediction depending on the device. In comparison,217

we were unable to identify dermatological literature that establishes these attributes of the background skin as signals218

commonly used by dermatologists.219

Darker pigmentation of the background skin, which stands out as the overall second most frequently recorded220

difference in our clinical counterfactuals, consistently associates with malignant counterfactuals. We observed that221

the darker pigmentation sometimes localized to discrete areas of the background skin, for instance to the immediate222
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periphery of a lesion (effectively enlarging the lesion), or alternatively to areas of the image in shadow. In other223

instances, darker pigmentation extended more uniformly throughout the background skin. Among the classifiers,224

SIIM-ISIC—a model that was trained on only images of light skin, and the only of our devices known not to include225

clinical images in its training data—featured this attribute most prominently in its counterfactuals, though all classifiers226

were sensitive to this attribute.227

In general, AI devices and human dermatologists agreed on which image in the counterfactual pair most likely de-228

picted a malignancy. The exception, ModelDerm, exhibited negative Cohen Kappa values compared to dermatologists229

on dermoscopic images; its interpretation of key attributes, such as darker pigmentation of the lesion, diverged from230

the other devices. This device also agreed poorly on clinical images, again coinciding with its focus on a unique profile231

of attributes. Curiously, Scanoma achieved the best agreement with dermatologists on both datasets, despite other232

AI devices achieving higher predictive performance (even when that performance was on external data and therefore233

not inflated by train-test overlap, e.g., SIIM-ISIC with Fitzpatrick17k; Fig. 1c).234

Validation of insights from counterfactuals235

While we engineered our counterfactual generation procedure to ensure that detected attributes indeed influence236

AI devices’ predictions, we performed additional analyses to verify these conclusions. Ideally, we may confirm our237

findings by performing a targeted intervention to experimentally modify a single attribute of an image, in a well-defined238

fashion, then monitor the intervention’s effect on each AI device’s prediction. While existing techniques do not enable239

reliable modification of most attributes detected in our analysis (e.g., addition or removal of atypical pigment networks240

without altering other attributes), well-established techniques enable programmatic modification of the color of an241

image, enabling us to experimentally produce images that are more or less “pink”, an attribute detected as influential242

to most classifiers (Fig. 2c and Fig. 3a). We shifted the color (i.e., the u’ and v’ chromaticity coordinates in the243

CIELUV color space38) of each image in the ISIC dataset, then monitored how each AI device’s prediction changed244

for a range of colors (Fig. 3b).245

These experimental modifications of image color and their impact on the predictions of the AI devices recapitulates246

the trend observed in our previous analysis of counterfactual images (Fig. 3c; compare to 3a): e.g., pinker images247

elicit more benign predictions from DeepDerm and more malignant predictions from Scanoma. Multiple factors248

including the “sensitivity” of an AI device to changes in an attribute determine the relative frequency of an attribute249

among counterfactuals (Fig. 3a); thus, magnitudes are not directly comparable (see Results: “Counterfactual images250

reveal basis for AI decisions”). This experiment validates that the attributes identified in our previous analysis of251

counterfactual images indeed influence the output of the AI devices in the direction described by the counterfactual252

analysis. In addition, this experiment validates our interpretation of “pinker background skin” as a global change in253

lighting or color balance. Indeed, our experimental procedure mirrors computational techniques used to perform white254

balancing (correction for chromatic adaptation) in digital cameras and highlights how changes to lighting or camera255

settings might affect AI dermatology devices’ predictions in undesirable ways.256

Counterfactuals explain failure cases257

To reinforce the core findings from our systematic analysis of counterfactuals, we also present counterfactual explana-258

tions of cases in which the AI devices failed to correctly predict whether a lesion was malignant or benign.259

The reliance of dermatology AI models on the pigmentation of a lesion can lead to failures that are “reasonable”,260

in that they might also be expected from human dermatologists (Fig. 4a): for instance, while presence of atypical261

pigment networks and darker pigmentation lead one AI device to predict a lesion was malignant, it turned out to be262

benign; indeed, authors of this present study who practice dermatology find this lesion concerning for the same reason,263

and would have opted to biopsy the lesion.264

In other cases, dermatology AI models rely on potentially relevant attributes of an image, but use these attributes265

incorrectly. ModelDerm misclassified a malignant lesion as benign, and examination of the corresponding counter-266

factuals revealed attributes such as darker pigmentation of the lesion and absence of erythema as influential for this267

decision (Fig. 4b). However, dermatologists would not typically associate darker pigmentation with decreased likeli-268

hood of melanoma, and the increased erythema of the malignant counterfactual is more consistent with the “strawberry269

pattern” of facial actinic keratoses, a type of premalignant skin lesion30.270

Dermatology AI devices also utilize likely irrelevant attributes in their reasoning process, including associating hair271

on background skin with benign lesions (Fig. 4b). In another example (Fig. 4c), a classifier misclassifies a benign272

lesion as melanoma in part due to the texture of the background skin, namely its lack of prominent skin grooves or273

reticulation.274
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Fig. 3 | Experimental validation of findings from expert analysis of counterfactual images. a, Frequency
with which experts noted that either the benign or malignant image in a pair of counterfactuals displayed a pinker
background; this view details our observations from the ISIC dataset summarized in Fig. 2c, in the row “B: pinker”.
The vertical axis is normalized relative to the maximum observed frequency, that is, 42% of counterfactual pairs from
SIIM-ISIC. b, Experimental setup used to verify the importance of a pink tint to the AI devices’ predictions. We
programmatically color-shifted each image in the ISIC dataset (n = 20260) by modifying its chromaticity coordinates
in the CIELUV color space (see Methods), then compared each AI device’s predictions between the original and
color-shifted images. c, Sensitivity of each AI device to programmatic color shifts, mirroring observations from our
counterfactual experiments regarding the effect of pinker tints on the AI devices’ predictions. The vertical axis is
normalized relative to the maximum change in AI device output, i.e., a decrease of 0.17 with DeepDerm. Vertical
dashed lines indicate the mean change in chromaticity (color) among counterfactual pairs annotated as differing in
their pink tone. Example color-shifted images (below color bar) display the extent of the color shift; the reference
image, adapted with permission from the ISIC archive36, appears at far left.
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Reference Benign Malignant

prediction:      malignant
ground truth: benign

prediction:      malignant
ground truth: benign

prediction:      benign
ground truth: malignant

a

b

c

Fig. 4 | Explanations of failure cases of dermatology AI devices, illustrating key findings from our
systematic analysis. a, Presence of atypical pigment networks (black arrows) and darker pigmentation (white
arrows) contributed to a false positive prediction from Scanoma. b, Curiously, ModelDerm may have required lighter
pigmentation (black arrows), increased erythema (white arrows), and less hair on background skin (gray arrows) to
correctly predict this image pictures a melanoma. c, Lack of prominent skin grooves or reticulation on the background
skin (black arrows), alongside darker pigmentation (white arrows), contributed to another false positive prediction
from Scanoma. Images adapted, with permission, from the ISIC archive26,27,36.
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Discussion275

Relative to previous techniques to analyze medical image AI devices, our framework provides numerous advantages,276

which together enable us to present the most detailed view to date of the reasoning processes of AI systems for medical277

images. Whereas the de facto standard XAI technique for image models, saliency maps, best reveals the importance of278

localizable attributes, our discovery of dependencies on numerous overlapping, textural, and tonal changes to an image279

showcases the importance of our use of XAI based on counterfactual images, and highlights limitations of previous280

work that relied only on saliency maps5. In fact, we surmise that most attributes identified by our framework, such as281

darker pigmentation of lesions, number of colors in a lesion, presence of erythema, pigmentation patterns, etc., would282

be unlikely to be identified by saliency maps. Our framework also improves upon previous efforts8,9 to analyze medical283

image AI systems via counterfactual images. In contrast to other generative techniques8,9 for counterfactual generation284

(including the original Explanation by Progressive Exaggeration) or simply comparing real images predicted as benign285

and malignant, our method enables the inference that each attribute that differs in a benign/malignant pair is indeed286

important for the AI device’s predictions (Supplementary Fig. 3). Our method also offers more detailed reproduction287

of fine-grained features such as hair (Supplementary Fig. 4), which we discovered to influence some AI devices.288

Perhaps more importantly, our framework introduces a means to translate XAI outputs to a human-understandable,289

medically meaningful form, namely via systematic, randomized, blinded analysis by medical experts. Particularly for290

a high-stakes application such as medical decision-making, we contend that such a medically-grounded understanding291

offers greatest potential for actionability.292

We find that dermatology AI devices leverage a number of medically meaningful attributes found within lesions—293

including attributes related to a lesion’s pigmentation—in a manner consistent with human experts. Dermatology AI294

devices also rely on numerous attributes with debatable medical relevance and unclear desirability. Brown spots on295

the background skin may signify a patient’s age or history of sun exposure (a risk factor for melanoma39) but are296

not in any established melanoma diagnosis guidelines. Erythema, particularly in a “pink rim” distribution around a297

lesion34, has been associated with melanoma, but also with benign melanoma look-alikes such as irritated seborrheic298

keratoses35. Hair may suggest a lesion’s location on the body while skin grooves may provide clues on a lesion’s location299

(e.g., acral), the patient’s age, or history of sun exposure. Lighting conditions or color balance also influence many300

dermatology AI devices, and we surmise these almost certainly undesirable dependencies arise from spurious differences301

in image acquisition or preprocessing. Beyond the fundamental scientific interest of this detailed characterization of AI302

reasoning processes, our approach could be used by AI developers to improve their models and to inform stakeholders303

on the trustworthiness of medical AI devices.304

This methodology can help uncover idiosyncratic failure modes of AI, with implications for its regulation and med-305

ical use. We expect distributional shifts in medical AI to be common–especially in dermatology AI, given the diversity306

of image acquisition devices, lighting conditions, skin appearances across demographics, and lack of implemented image307

standards. Our findings suggest that common distributional shifts, such as changes in lighting or color balance, will308

alter AI performance. Thus, we caution potential users of such devices that a device’s advertised performance, which309

is often estimated in a well-circumscribed setting, may not be achieved in real-world use21. Our findings also imply310

that regulators should scrutinize the distribution of data on which a device is evaluated, with particular attention311

toward (i) ensuring it well reflects the intended deployment distribution, and (ii) considering differential performance312

across subgroups (e.g., varied acquisition devices or regions, or key potential dependencies such as lighting and skin313

tone). For AI developers, we envision that our methodology may enable more tractable debugging of AI devices prior314

to more expensive and time-consuming multi-site performance evaluations40.315

A previous publication highlighted that dermatology AI devices perform worse on darker skin tones21, and our316

study reveals mechanistic insights on how this bias may arise in the reasoning processes of dermatology AI devices.317

Moreover, contrasting with that study’s focus on a single source of potential bias (skin tone), our method uncovers318

this bias in an untargeted manner. With our methodology, evaluators often noted diffusely darker background skin319

in the malignant counterfactuals (especially those of SIIM-ISIC, which was trained on only images of light skin). The320

real-world variations most likely to produce changes similar to those observed in the counterfactuals include lighting321

conditions, camera settings (e.g., exposure and color balance), and variations in skin tone. Since the generative models322

may entangle attributes that arise from different physical origins (i.e., skin tone and lighting), the counterfactuals do323

not enable us to distinguish between these (non-mutually exclusive) possibilities, but both are concerning. First,324

to the extent that real-world variations in skin tone may recapitulate the darker background skin observed in our325

counterfactuals, dermatology AI devices may exhibit a direct dependence on skin tone, where darker skin elicits326

more malignant predictions. Second, even if AI devices do not depend directly on skin tone, sensitivity to lighting327

conditions or camera settings may also introduce an indirect dependence on skin tone: camera designs are often biased328

toward ensuring appropriate color in light skin tones, but not dark skin tones41, implying that the dependence of AI329

devices on lighting or color balance may manifest systematically in images of dark skin. Similarly, our counterfactuals330

occasionally highlighted reflections as influential, which could systematically bias predictions in images of dark skin331
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acquired with suboptimal lighting (e.g., use of camera flash)42. These findings reinforce that developers should ensure332

that dermatology AI performs well on dark skin, which is often under-represented in dermatology databases43, and333

highlight the importance of high quality, alongside quantity.334

In conceptualizing the reasoning processes of dermatology AI devices, we aimed to characterize the devices in335

medically meaningful, human-derived terms, while retaining flexibility to faithfully represent processes that a priori336

need not coincide with human concepts. We therefore did not limit our set of attributes to any predefined list and337

instead enabled our evaluators to input any attribute they noticed and could describe. A limitation of this approach is338

that human biases may nonetheless prevent our analysis from uncovering peculiar, AI-specific patterns. Furthermore,339

our analysis does not attempt to provide a complete picture of the decision boundary of the AI devices. We instead340

characterize their reasoning processes with respect to a particular distribution of images, namely, realistic dermoscopic341

and clinical dermatological images, implying that our analysis thus provides limited information on out-of-distribution342

images, or features that rarely appear in the examined images (e.g., patches) . However, our choices to frame our343

analysis in terms of (i) human-derived concepts and (ii) a distribution of images that approximates a clinical use344

case, enable more medically meaningful inferences on the AI devices’ reasoning processes and how they could lead to345

desirable or undesirable behavior in deployment.346

In addition to the immediate value of our analysis to understanding dermatology AI devices, our analysis provides347

a general framework for auditing complex AI systems that require specialized domain knowledge to best understand.348

Specifically, investigators could apply our complete analysis pipeline—training of generative models to synthesize349

counterfactuals, querying of experts via a randomized and blinded data collection app using freeform “attribute”350

fields, and compilation of those responses to attain a global understanding of an AI system—to characterize other351

AI medical image analysis tools, such as the numerous AI-based medical image analysis systems that have been352

deployed clinically, as well as for non-medical, computer-vision tasks such as facial recognition, scene classification in353

autonomous vehicles, or industrial or agricultural monitoring. In addition, our framework for querying experts and354

compiling responses could be applied in conjunction with other XAI techniques to understand AI systems outside the355

image domain, in cases where input features still lack stable semantics, such as systems that operate on time-series356

data. More generally, our study sets a precedent for rigorous application of explainable AI, addressing key issues that357

may have imperiled previous XAI analyses: insufficient sampling, potential for bias, lack of expert involvement, and358

failure to examine AI systems in multiple contexts.359

Methods360

Image selection and preprocessing361

To interrogate the performance of AI-based dermatological classifiers, we collected images of melanomas and melanoma362

look-alike lesions from multiple sources. Our first source, Fitzpatrick17k28, consists of clinical (rather than dermo-363

scopic) images previously aggregated from online dermatology atlases. We filtered Fitzpatrick17k to include only364

melanomas, benign melanocytic lesions, seborrheic keratoses, and dermatofibromas. We additionally excluded dia-365

gramatic and histopathological images, and images that could be clearly identified as pediatric; after exclusions, the366

dataset consisted of 889 images. Advantages of Fitzpatrick17k include closer approximation of the expected inputs367

to consumer-facing dermatology AI tools (as compared to dermoscopic images, which require specialized tools) and368

inclusion of a variety of skin tones. Disadvantages include its relatively small size after filtering and noise in the369

diagnosis labels, which may not have been acquired via histopathological analysis or other gold-standard means.370

Our second source, the ISIC 2019 challenge dataset26,27,36, consists of dermoscopic images from a variety of primary371

sources, including HAM1000026 and BCN2000027. Like Fitzpatrick17k, we filtered the dataset to include melanomas,372

as well as melanoma look-alikes: benign melanocytic lesions, seborrheic keratoses, and dermatofibromas. After filtering,373

the ISIC dataset consisted of 20260 images. Most lesions were confirmed via histopathology (n=13072) or serial374

imaging showing no change (n=3704), while a smaller number were confirmed by single image expert consensus375

(n=1207), confocal microscopy with consensus dermoscopy (n=712), or unspecified means (n=1565). Compared to376

Fitzpatrick17k, ISIC thus offers more reliable diagnoses, but it lacks diversity in skin tones, featuring predominately377

light skin.378

Finally, our third source, DDI21, consists of clinical images gathered from Stanford Clinics. Like other datasets,379

we filtered DDI to include only melanomas and melanoma look-alikes. In the case of DDI, which contains more gran-380

ular and varied diagnoses, we included the following labels in our “melanoma” category: acral lentiginous melanoma,381

melanoma it situ, nodular melanoma, as well as the general tag “melanoma”. As melanoma look-alikes, we included382

the following labels: acral melanotic macule, atypical spindle cell nevus of reed, benign keratosis, blue nevus, der-383

matofibroma, dysplastic nevus, epidermal nevus, hyperpigmentation, keloid, inverted follicular keratosis, melanocytic384

nevi, nevus lipomatosus superficialis, pigmented spindle cell nevus of reed, seborrheic keratosis, irritated seborrheic385
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keratosis, and solar lentigo. After filtering, DDI included 282 images; due to the comparatively high volume of data386

required for training our generative models, DDI was used only for performance evaluation (Fig. 1), rather than for387

our in-depth analysis of medical AI reasoning processes. However, DDI offers a number of desirable characteristics for388

evaluation purposes: (i) its images were not publicly available until after we obtained the five audited dermatology AI389

devices, precluding train-test overlap; (ii) DDI images have diverse skin tones, including enrichment for Fitzpatrick390

skin types V and VI; (iii) DDI contains a wide variety of skin conditions, including uncommon conditions; and (iv)391

the lesions are histopathologically proven, guaranteeing label accuracy. We note also that DDI is likely enriched for392

challenging lesions, since these are the lesions likely to require a biopsy.393

Classifier reproduction394

We reproduced five AI-based dermatological classifiers, including prominent academically designed classifiers proposed395

for clinical use and classifiers currently in use by the public. Two of the classifiers, Scanoma and Smart Skin Cancer396

Detection (SSCD) are designed for use on mobile devices by the general public. The DeepDerm classifier is a previously397

published reproduction21 of a prominent academic model15, sharing its training data and architecture. The ModelDerm398

2018 classifier is a publicly distributed academic model22, of which a later iteration (for which model weights are not399

publicly available) has been CE marked for use by the general public in Europe. The SIIM-ISIC Kaggle competition400

classifier is a reproduction of the first-place classifier24 in the 2020 SIIM-ISIC Kaggle competition25. These models401

cover a broad range of architectures, pre-processing techniques, and training data sources; as such we believe these402

models offer a thorough view of both current practices and the state-of-the-art in dermatology AI.403

Scanoma is commercial software available for mobile platforms including iOS and Android; at the time of writing,404

the app’s AI classifier is free to use, while follow-up human evaluation is available for a fee. Architecturally, it is a405

custom convolutional neural network consistent with a MnasNet44, that is further optimized for use on mobile devices406

via quantization45. We obtained and unzipped the Scanoma APK file (normally installed on Android devices) to407

examine its TensorFlow Lite (TFlite) file, which contains the model specification and weights. Since our analysis408

tools are based on the PyTorch software library, we converted the network to the cross-library Open Neural Network409

Exchange (ONNX) format, which we then parsed in PyTorch. To maintain consistency with the original, quantized410

network while maintaining useful gradients, we implement the network using “fake quantization”45. We verified that411

our PyTorch re-implementation matches the TensorFlow Lite implementation by comparing a series of 1000 test images,412

and we achieved nearly identical outputs (r=0.99, Supplementary Fig. 2a). To account for the small discrepancy413

between the classifiers, we analyzed the processing pipeline step-by-step and found slight differences in the bilinear414

rescaling preprocessing step, which may differ due to different antialiasing constants; the remaining differences were415

explained by sporadic single-bit differences in the quantized feature maps, likely resulting from numerical differences416

between TensorFlow Lite’s native integer arithmetic routines and the equivalent operations performed in floating point417

arithmetic followed by fake quantization.418

Like Scanoma, SSCD is a publicly available app intended for use on mobile devices. The architecture is a Mo-419

bileNetV1, evaluated using floating-point (non-quantized) arithmetic. We followed a similar process to re-implement420

the SSCD classifier in PyTorch: a TFLite file was obtained from the app’s APK package, then converted to ONNX421

before loading in PyTorch. We again verified our reproduction using a series of 1000 images and found that our422

PyTorch re-implementation of the neural network exactly matched the original Tensorflow Lite network. However, to423

ease comparison between classifiers, we update the input image resizing routine (a pre-processing step, prior to the424

neural network) in our implementation relative to the original app. Whereas the original app asks a user to specify425

a bounding box and then scales this box to the 224×224-pixel input image (warping the aspect ratio), we use the426

same preprocessing routine as for all other networks, in which we first center-crop the image and then resize the427

image using a bilinear filter. To assess the impact of this change in image preprocessing, we compared our PyTorch428

implementation against (i) the original TFLite model accompanied by preprocessing with square center-cropping and429

nearest-neighbor resizing and (ii) the original TFLite model with variable aspect-ratio resizing using nearest-neighbor430

rescaling (matching the original Android implementation, under the assumption that the uncropped image represents431

a user-defined bounding box), and we observed Pearson correlation coefficients of 0.97 and 0.92, respectively (Sup-432

plementary Figs. 2b-c). While evaluation of the entire processing pipeline including user selection of bounding boxes433

and choice of resampling filters is important for clinical evaluation of an AI system, our study instead focuses on the434

decision-making processes of the neural networks.435

ModelDerm22 is an academic classifier that has undergone multiple iterations, some of which have been tested436

in clinical settings, and one version of which has been approved for use in Europe via CE marking. We analyze437

the latest version for which model weights are publicly available, which we term ModelDerm 2018 based on the438

date of the accompanying publication22; authors declined to provide weights for the latest version of the model439

due to commercialization plans. ModelDerm is a ResNet-15246 that runs natively in PyCaffe, with preprocessing440

performed in OpenCV. We parse the model architecture and weights directly from Caffe Protocol Buffer files and441
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reconstruct the model in PyTorch. While the majority of the processing pipeline is highly reproducible in PyTorch442

relative to the original implementation, the original implementation preprocesses images channel-by-channel using443

the histogram equalization function in OpenCV, which we could not exactly reproduce in PyTorch while maintaining444

meaningful gradients during backpropagation. Instead, we implemented a custom, differentiable analogue of histogram445

equalization, in which the empirical cumulative density function used in OpenCV’s implementation is replaced with446

a piecewise-linear approximation. Our PyTorch reimplementation of ModelDerm 2018, including the differentiable447

histogram equalization preprocessing step, retains close correspondence to the original PyCaffe/OpenCV implemention448

(r=0.96, Supplementary Fig. 2d).449

The SIIM-ISIC competition classifier is intended to represent key features responsible for the high performance of450

the first-place winning classifier from the 2020 SIIM-ISIC melanoma classification Kaggle challenge, while reducing451

the computational complexity to permit feasible analysis. The original classifier is an extremely large ensemble of 90452

networks, comprising mostly EfficientNets47, but also a few SE-ResNext 101s48 and ResNest101s49, all of which are453

evaluated at test time on 8 flips and rotations of the test image, for a total of 720 model evaluations per prediction. We454

reduced the computational complexity by retraining an ensemble of 3 EfficientNets (an EfficientNet-B5, -B6, and -B7),455

which comprise 80 of the 90 classifiers in the original ensemble, using the same training data, augmentation scheme456

and hyperparameters as the original classifiers. Our classifier additionally retains 8-fold image augmentation at test457

time, which we suspected may reduce the classifier’s sensitivity to subtle image variations. While not intended to be an458

exact reproduction of the original winning classifier, our classifiers attain only slightly lower classification performance459

in 5-fold cross validation as compared to the original classifier (area under the receiver operating characteristic curve460

of 0.966 vs. 0.985).461

The DeepDerm classifier is a previously published reproduction21 of an academically developed model that was462

acclaimed for performing similarly well to dermatologists15. DeepDerm shares the same architecture (Inception-V350)463

and importantly, the same training data as the original model, which was not publicly released. Since DeepDerm is464

distributed natively in PyTorch, no conversion steps were necessary for this classifier.465

Counterfactual generation466

To identify specific image factors responsible for each classifier’s predictions, we generated counterfactual images using467

a variant of the technique “Explanation by Progressive Exaggeration”8. However, to improve image quality, stabilize468

training, and better restrict generated alterations to those that cause a classifier to output a different prediction, we469

introduce multiple updates. We begin with an overview of the technique, then explain our specific updates.470

Explanation by progressive exaggeration uses generative adversarial networks to create alternate versions of images471

that (i) appear “realistic”, in the sense that they lie on the manifold of training images, (ii) produce the desired target472

prediction from a classifier, such as a prediction on the opposite side of the decision threshold as the original image,473

and (iii) are similar to the original image, in the sense that the original image may be approximately reconstructed474

by passing an altered, generated image back through the generator.475

Formally, let X ⊂ [0, 1]d
2

represent a set of images drawn from some data manifold MX , where d ∈ N is the476

horizontal and vertical resolution of the (square) images, and let f : [0, 1]d
2 → [0, 1] be a classifier to be audited. Our477

goal is to obtain a generator G : [0, 1]d
2 × C → [0, 1]d

2

that produces a counterfactual image x̃ when given an input478

image x and a condition c ∈ C ⊂ N, which indicates the target output that the classifier should produce when evaluated479

on the counterfactual image x̃. (Note that for simplicity of notation, we condense the generator and encoder of the480

original paper into a single function G). As in the original implementation of explanation by progressive exaggeration,481

our condition c is a discrete value that indexes a “bin” in the discretized output space of the classifier f ; we chose482

C = {0, 1, ..., 9} with corresponding target outputs in the bins {[0, 0.1), [0.1, 0.2), ..., [0.9, 1]}. The three requirements483

listed above then translate to (i) the range of the generator G(X , C) is contained in the data manifold MX , (ii) the484

prediction of the classifier for the generated image f(G(x, c)) is approximately equal to the target output (in our case,485

the bin’s center at c/10 + 0.05), and (iii) if f(x) falls within the bin indexed by c, then G(G(x, c′), c) ≈ x for each486

c′ ∈ C.487

To obtain a generator with these properties, we optimize the generator G in conjunction with a discriminator488

network D : [0, 1]d
2 → R that attempts to distinguish real from generated images. In contrast to the original imple-489

mentation, we update the discriminator such that it does not depend on a condition c. The original implementation of490

the discriminator attempts to differentiate generated images from real images that elicit a particular prediction from491

the classifier, which may encourage generated images to appear similar to that subset of real images including poten-492

tially via changes that do not alter the output of the classifier. In contrast our implementation of the discriminator493

instead attempts to differentiate generated images from any real image, such that it only encourages that the generated494

images appear similar to real images (Supplementary Fig. 3). To reflect this update, we choose the following functions495

for the loss of the discriminator LD and of the generator LG. In the following equations, the random variables X496
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and C take values in X and C and are distributed uniformly over X and C; θD and θG are the parameters of the497

discriminator and generator, respectively; b : [0, 1] → C returns the bin index b(f(X)) of the output of the classifier;498

b̃ : C → {0.05, 0.15, ..., 0.95} returns the center of the bin at index C; and DKL is the Kullback–Leibler divergence:499

LD(θD) = −λGANEX,C [min(0,−1 +DθD (X)) +min(0,−1−DθD (GθG(X,C))]

LG(θG) = λGANLGAN (θG; θD) + λrecLrec(θG) + λfLf (θG)

The individual components of LG are as follows:500

LGAN (θG; θD) = −EX,C [DθD (GθG(X,C))]

Lrec(G) = EX,C [∥X −G(X, b(f(X)))∥1 + ∥X −G(G(X,C), b(f(X)))∥1]

Lf (θG) = EX,C [DKL(b̃(C)∥f(G(X,C)))]

In addition our introduction of a non-conditional discriminator, we also update G to use an architecture similar501

to that used in CycleGANs51. This network is similar to the residual network-based autoencoder used in the original502

implementation of explanation by progressive exaggeration, but we found it produced images of higher visual quality503

(Supplementary Fig. 4).504

To optimize the networks, we followed the reference implementation and used an Adam optimizer with a learning505

rate of 2 × 10−4, β1 = 0, and β2 = 0.9, with a mini-batch size of 32. To prevent the discriminator from outpacing506

the generator, we trained the discriminator for 5 mini-batches for each mini-batch that the generator was trained,507

and we applied spectral normalization to the discriminator’s parameters. To prevent overfitting, we also applied data508

augmentation including random cropping and random brightness modifications. To choose the hyperparameters λ,509

we followed the original publication and chose λGAN = 1 and λf = 1. To balance the magnitude of the generator’s510

alterations such that the counterfactuals were similar to original images but still contained perceptible differences511

(based on manual visual analysis of images), we chose λcyc = 3 after gradually relaxing the λcyc term from the value512

λcyc = 100 suggested in the original publication (Supplementary Fig. 7). The generative models for each classifier and513

for each dataset were all trained using identical parameters. Comparison of counterfactuals generated by independent514

re-trainings of a generative model preserved which attributes varied between the benign and malignant counterfactuals515

(Supplementary Fig. 11), so we focused on a single generative model for each combination of AI device and generative516

model (Supplementary Table 2).517

To train our models, we reimplemented the original TensorFlow library for explanation by progressive exaggeration518

using PyTorch. Generative models were trained for either 500 epochs (ISIC dataset) or 104 epochs (Fitzpatrick17k519

dataset), to achieve approximately equal total training time for each dataset (∼10,000 kilo images); training time520

for a single generative model amounted to between one week and one month on an NVIDIA RTX 2080 TI graphics521

processing unit, depending on the complexity of the classifier.522

Expert evaluation of counterfactuals523

To identify specific image factors upon which dermatological classifiers base their predictions, we asked two board-524

certified dermatologists, each with six years of experience, to analyze generated counterfactual images and determine525

which aspects of each image were altered, implying that they affect the classifiers’ decisions. We queried these526

dermatologists on hundreds of pairs of counterfactuals for each of five classifiers and two image datasets, amounting to527

thousands of responses. Each pair of counterfactuals was generated from a common “reference” image and consisted528

of an image that the classifier predicted to appear more benign, and an image that the classifier predicted to appear529

more malignant, such that both images depicted the same lesion but displayed differences that altered the output of530

a classifier.531

To facilitate interpretation of the dermatologists’ responses and comparison of the classifiers, we prescreened the532

counterfactual images before analysis of the alterations within counterfactual pairs. Our prescreening consisted of533

a “classifier-consistency” criterion to ensure that the alterations between each pair of counterfactuals meaningfully534

changed the classifiers’ predictions, and a “visual quality” criterion to mitigate the presence of artifacts, which could535

impede our ability to infer the importance of non-artifactual alterations. Our classifier-consistency criterion required536

the “benign” and “malignant” images in a counterfactual pair lay on opposite sides of the decision threshold (i.e., they537

were classified as benign and malignant). In the visual-quality prescreening step, two board-certified dermatologists538

independently evaluated for artifacts each image that passed the classifier-consistency criterion, and we excluded539
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images rejected by either evaluator. To ease comparison between classifiers, we included the same set of counterfactual540

pairs (modulo counterfactual alterations) for all classifiers; more precisely, for each reference image xr, we included541

the corresponding counterfactual images {Gi(xr)}i∈C , where C represents the set of classifiers, if and only if Gi(xr)542

passed the prescreen for each classifier i. For subsequent analysis, we included the 92 images from Fitzpatrick17k that543

passed our pre-screening criteria, and we included 100 images from ISIC to achieve a similar quantity of images.544

To learn which attributes differ between benign and malignant counterfactuals—and thus influence an AI device’s545

predictions—we developed a two-stage annotation approach. We designed the first stage of this approach to encourage546

discovery of a wide variety of attributes, which we then leverage in the second stage to more efficiently collect data.547

Both stages leverage a graphical interface that runs locally in a web browser; expert evaluators view a pair of benign548

and malignant counterfactuals, then answer questions regarding (i) which member of the pair appears most likely to549

be malignant, and (ii) what attributes differ, and how they differ, between the counterfactuals. In the first stage,550

evaluators enter attributes as free text (e.g., “skin lines more prominent”), accompanied by a “direction” specifying551

how the images differ (see Supplementary Fig. 8). After the first 100 pairs were evaluated by each expert, we pooled552

and grouped the free text terms to determine “preset” attributes (e.g., “skin lines more prominent” and “more skin553

lines” map to the preset “Prominence of skin grooves/dermatoglyphs”) that could be selected during the second554

stage of annotation. This stage also retained the option for free text entry, in case a new attribute were discovered.555

To mitigate potential bias, we randomized and blinded evaluators to (i) the appearance order of a counterfactual556

pair (i.e. whether the benign or malignant counterfactual appeared on the left/right) and (ii) the overall order of557

the counterfactual pairs, including randomization of the corresponding reference images and shuffling counterfactual558

pairs from the various AI devices. Evaluators annotated the counterfactual pairs in sets of twenty, which required559

approximately 30 minutes to complete.560

To infer general conclusions regarding which attributes influence the AI devices, we aggregated data from both561

evaluators and both stages of annotation. First, we mapped the free text attributes from the first stage of annotation562

to a common list of attributes, as agreed upon by the evaluators. We then filtered any counterfactual noted by563

either evaluator as “unable to assess” due to the presence of significant artifacts, which amounted to 4% of the total564

images. Finally, to obtain a global picture of each AI device, we tabulated the number of times an evaluator noted an565

attribute, along with the direction in which that attribute differed between the benign and malignant counterfactuals.566

Mathematically, we define an indicator function se,c,a,d,i as 1 if evaluator e recorded for AI device c that attribute a567

differs in direction d in image i, and se,c,a,d,i = 0 otherwise. Then the score for an AI device is given by the mean of568

s over images i ∈ I and evaluators e ∈ E :569

s̄c,a,d :=
∑
i∈I

∑
e∈E

se,c,a,d,i/
∑
i∈I

∑
e∈E

1

To visualize the resulting values (Fig. 2), we further aggregated the “directions” d, which originally included five570

options: benign only, benign < malignant, different, benign > malignant, and malignant only (during data collection,571

which was blinded, these terms appeared as A only, A < B, etc., where images A and B were randomized to benign or572

malignant). We aggregated benign only and benign > malignant into a new category, benign, and likewise aggregated573

benign < malignant and malignant only into the new category malignant. Finally, for each pair of AI device and574

classifier, we determined the “predominate direction” of that attribute, which we defined as benign if s̄c,a,benign >575

2 · s̄c,a,malignant, we defined as malignant if s̄c,a,malignant > 2 · s̄c,a,benign, and we defined as neither otherwise, where the576

cutoff factor of 2 was chosen to prevent emphasis on small differences in frequency between the benign and malignant577

directions. In Fig. 2, the size of the square is then proportional to s̄ for the predominate direction, or the average of578

the directions if neither was predominate.579

Experimental validation of findings from counterfactuals via color shifts580

To validate the attributes identified as important for dermatology AI device’s predictions in our counterfactual exper-581

iments, we aimed to experimentally modify a single attribute and observe the effect on each AI device; we chose image582

color as a test case, since existing mathematical tools38 enable well-defined, unambiguous changes to this attribute.583

To alter the color of each image, we converted from the sRGB color space to the CIE 1976 L*, u*, v* color space584

(CIELUV)38, added an offset to the chromaticity coordinates (u∗, v∗), then converted back to sRGB. Different chro-585

maticity shifts were generated by varying the offset along a circle centered at (u∗, v∗) = (0, 0) with radius 20, where586

the factor 20 was chosen heuristically to produce color changes that we deemed visible while remaining plausible.587
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Data availability588

Images used in this study were obtained from publicly available repositories. ISIC images are available at https:589

//challenge.isic-archive.com/data/. Fitzpatrick17k images are available at https://github.com/mattgroh/590

fitzpatrick17k. The DDI images are available at https://stanfordaimi.azurewebsites.net/datasets/35866158-591

8196-48d8-87bf-50dca81df965.592

Model weights for the DeepDerm classifier are available at https://zenodo.org/record/6784279#.ZFrDc9LMK-Z.593

The weights and model specification for the ModelDerm classifier are available at https://figshare.com/articles/594

Caffemodel_files_and_Python_Examples/5406223. Model weights for our retrained variant of the SIIM-ISIC com-595

petition classifier are available at https://drive.google.com/drive/folders/1Zn7hNRgiI2jt7vpZO1ohpr-so9YztCCb.596

Scanoma and Smart Skin Cancer Detection are third party software for which we cannot redistribute model weights.597

At the time of writing, both are apps are available for download with no fee from the Google Play store and third-party598

APK package download sites.599

Code availability600

Our code, including a PyTorch implementation of explanation by progressive exaggeration and classes for loading601

datasets and classifiers are available at https://github.com/suinleelab/derm_audit. Weights for our trained gen-602

erative models and the re-trained SIIM-ISIC classifier are available at https://drive.google.com/drive/folders/603

1Zn7hNRgiI2jt7vpZO1ohpr-so9YztCCb.604
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Supplementary Methods

Saliency map generation

In initial efforts to understand the reasoning processes of the dermatology AI devices, we generated saliency maps, which
highlight the regions of an image that contribute most to the AI’s prediction. To mitigate the possibility that a particular
technique for saliency map generation may produce less useful results, we applied three popular techniques separately.

Following our previous work that analyzed radiology AI devices1, we first applied Expected Gradients2. This gradient-
based feature attribution technique mitigates shortcomings of previous techniques3, including the tendency to fail to highlight
darker regions of an image4, which would be problematic given that melanomas and melanoma look-alikes are typically darker
than background skin. At a high level, this technique captures the importance of an input pixel by measuring the sensitivity
of the AI devices’s prediction to small changes in that pixel (in mathematical terms, calculating the gradient), and averaging
this value as the image is interpolated from a number of baseline images to the image of interest. Formally, the Expected
Gradients attribution ϕ for a sample x, input feature (pixel) i, baseline distribution D, and AI device f is given by:

ϕi(x) := E
x′∼D,α∼U(0,1)

[
(xi − x′

i)×
∂f(x′ + α× (x− x′))

∂xi

]
(1)

As our background distribution, we chose the full ISIC 2019 dataset; attributions were estimated via Monte Carlo sampling,
using 1000 samples.

As our second feature attribution technique, we next calculated saliency maps via KernelSHAP5. This technique charac-
terizes the importance of an input pixel by measuring how the model’s prediction changes when that feature is “removed” (in
our case, replaced by the mean color of that image). Importantly, feature interactions are properly accounted by removing
multiple features at a time, then summarizing a feature’s effects over these subsets via the Shapley value6, a well-established
technique grounded theoretically in game theory. KernelSHAP estimates the Shapley value by casting it as the solution to a
least squares problem, which can be solved by sampling random sets of features to remove, rather than requiring exhaustive
enumeration of every possible set of features. To enable tractable calculation, we define 16 × 16 super-pixels as features,
then upsample the final result via bilinear interpolation to match the original image size. For each image, we perform the
KernelSHAP estimate using 105 samples, which required approximately one hour of computation on an NVIDIA RTX 2080Ti
graphics processing unit, per image.

Finally, we calculated saliency maps via the highly popular GradCAM approach7. This technique characterizes the
importance of a region of an image by monitoring the activation of individual neurons in a neural network, which may retain
coarse spatial information even in layers far from the input. Specifically, for each channel of an activation map, the technique
multiplies that activation by the derivative of the network’s output with respect to that neuron, then sums over all channels
to determine an aggregate value for a spatial location, before finally discarding negative values. Formally, let A denote the
activations of a neural network f at the layer of interest, let k represent each channel of those activations, and let x denote
the input. Then the GradCAM attributions ϕ are given by:

ϕ(x) := min

[∑
k

Ak
∂f

∂Ak
(x), 0

]
(2)

We take derivatives of the model’s prediction of the likelihood of melanoma such that intuitively, these attributions can
be understood as identifying the regions of the image that contribute toward a prediction of melanoma. As the “layer of
interest,” we target the layer immediately prior to the final global pooling. To account for model ensembling in the AI
device SIIM-ISIC, which includes three individual models, each of which is evaluated at test time on eight versions of the
input image (the original, plus a series of flips and rotations), we treat the channels of that layer of the twenty-four resulting
“sub-models” as channels of one aggregated layer. In other words, in the above equation, k runs over the channels of each
sub-model’s final layer prior to global pooling, as well as over all sub-models; to preserve spatial relationships, we reverse the
augmentations before averaging. The resulting saliency maps match the spatial dimensions of the layer of interest, which (as
is typical with GradCAM) are lower resolution than the input image; we upsample the saliency map via a bilinear filter to
match the dimensions of the original image.

In all cases, we display the final saliency map by taking its absolute value, then overlaying it on a desaturated version of
the original image, with the saliency map blended at α = 80%. To mitigate overemphasis of the color scale on outlier values,
we clip the maximum value of the saliency map at the 99th percentile of each image.
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Supplementary Tables

Category Shortened Original
ISIC

lesion darker pigmentation color of pigmentation - darker
lesion number of colors number of colors in lesion
background pinker color - pink
lesion structureless areas structureless area(s)
background brown spots number or prominence of brown spots
background hair number or prominence of hairs
lesion regression prominence of regression

Fitzpatrick17k
lesion darker pigmentation color of pigmentation - darker
background darker pigmentation color of pigmentation - darker
lesion number of colors number of colors in lesion
lesion erythema redness/erythema
background hair prominence of hair
lesion browner pigmentation color of pigmentation - brown
lesion scale/crust presence of scale/crust

Supplementary Table 1 | Reference for attribute names from main text Fig. 2, which for conciseness shortens
the original attribute names used during our annotation procedure. Some attributes were not shortened: “atypical
pigment networks”, “blue/white veil”, and “erythema” (ISIC); “erythema”, “telangiectasia”, and “uneven pigmentation”
(Fitzpatrick17k).

DeepDerm ModelDerm Scanoma SSCD SIIM-ISIC
ISIC 13.1 19.5 9.6 16.1 16.0
Fitzpatrick17k 22.7 19.6 23.0 8.8 23.6

Supplementary Table 2 | Kernel inception distances (×10−3) between generated images and the reference
dataset. The reference dataset contains all images from ISIC or Fitzpatrick17k, after exclusions (see Methods: Image
selection and preprocessing), i.e., it was not limited to those images evaluated by experts. The generated dataset contains,
for each image in the reference dataset, either the “benign” or “malignant” counterfactual chosen uniformly at random.
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Supplementary Figures

Reference benign malignant
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Supplementary Fig. 1 | Comparison of insights from counterfactuals and saliency maps. We calculated feature
attributions using three popular techniques, Expected Gradients2, Kernel SHAP5, and GradCAM7 (see Supplementary
Methods) and then produced our best-effort visualizations of the resulting saliency maps. We failed to gather insights from
the saliency maps, except that the AI device may focus on the lesion (but perhaps not always, depending on the saliency
technique). In contrast, the counterfactuals provided more granular and medically interpretable insights: for instance, based
on the malignant counterfactuals we inferred that multiple colors of pigment (top + bottom), erythema (middle + bottom),
darker pigmentation (all), and blue-white veil (bottom) tend to elicit more malignant predictions. In this figure, all saliency
maps and counterfactuals were generated in reference to our AI device “SIIM-ISIC”.
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Supplementary Fig. 2 | Similarity of predictions from original classifiers and our PyTorch re-implementations.
To evaluate our PyTorch re-implementations’ similarities to the original models, we compared the classifiers’ predictions on a
series of 1000 images from the ISIC dataset. a, Comparison of our PyTorch re-implementation of Scanoma with a TensorFlow
Lite implementation of Scanoma, which differs from the original Android implementation only by antialiasing constants
in the bilinear filtering preprocessing step. We compared our PyTorch re-implemention of Smart Skin Cancer Detection
(SSCD), which uses square center-cropping and bilinear resizing to preprocess images, against the original TensorFlow Lite
implementation with square center-cropping and nearest-neighbor resizing (b), and nearest-neighbor resampling to a square
input (allowing changes to the aspect ratio, c). Aside from the input resizing routine, our PyTorch implementation achieves
identical outputs to the original TensorFlow Lite classifier. d, Comparison of our PyTorch reimplemention of ModelDerm 2018,
including our differentiable histogram equalization preprocessing step, with the original PyCaffe and OpenCV implementation.
NN, nearest-neighbor interpolation.
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Supplementary Fig. 3 | Comparison of a class-conditional discriminator with a discriminator not conditioned
on class, with respect to their treatment of features correlated with the classifier’s output. Hypothesizing that
a class-conditional discriminator would alter features correlated with a classifier’s predictions, even when not used by the
classifier, we designed a scenario in which the classifier is unlikely to depend on the presence of a test artifact (a red dot
in the corner of the image), but the test artifact correlates with melanoma status in the training data for the generative
model. In particular, we trained an EfficientNet-B7 to detect benign versus malignant lesions among the melanomas and
melanoma-lookalikes of the ISIC 2019 training data; since this training data lacked the test artifact in any image, the classifier
is unlikely to depend strongly on the presence of the artifact. When training the generative models, we introduced the test
artifact into every image of a melanoma, such that it correlates perfectly with melanoma status. While the test artifact is
altered by the generator that was trained in conjunction with the class-conditional discriminator, which could mislead an
investigator to conclude that the classifier’s prediction is based in part on the presence of the test artifact, the generator
trained with the discriminator that is not conditioned on class leaves the test artifact unaltered. In addition, we anecdotally
noted that the generator trained with the unconditional generator produced images of higher visual quality (bottom two
rows).

6

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2023. ; https://doi.org/10.1101/2023.05.12.23289878doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.12.23289878
http://creativecommons.org/licenses/by-nc/4.0/


"M
os

t b
en

ig
n"

Reference image

Reference image

"M
os

t m
al

ig
na

nt
"

"M
os

t b
en

ig
n"

"M
os

t m
al

ig
na

nt
"

Updated architectureOriginal architecture

Supplementary Fig. 4 | Comparison of the visual quality of images produced by the original generator
architecture from ref.8 with those produced by our updated architecture. Our updated architecture successfully
reproduces details such as hairs, which the original architecture fails to capture (red boxes). The original architecture also
introduces linear artifacts (blue boxes) not present in the original image, while we noted no such artifacts in images generated
by the updated architecture.
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Supplementary Fig. 5 | Evolution of loss terms during training of our generative models on the ISIC dataset.
Loss terms are plotted after multiplication by their respective scaling factors (λrec = 3, λD = λGAN = λf = 1). Gray lines
indicate the instantaneous loss, and black lines indicate the exponential moving average (α = 0.001; loss terms were recorded
at each gradient update of their respective model).
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Supplementary Fig. 6 | Evolution of loss terms during training of our generative models on the Fitzpatrick17k
dataset. Loss terms are plotted after multiplication by their respective scaling factors (λrec = 3, λD = λGAN = λf = 1).
Gray lines indicate the instantaneous loss, and black lines indicate the exponential moving average (α = 0.001; loss terms
were recorded at each gradient update of their respective model).
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Supplementary Fig. 7 | Tuning of the hyperparameter λcyc in the generative models. To tune the hyperparameter
λcyc, we started with the value of 100 reported in the original publication of Explanation by Progressive Exaggeration8,
then progressively decreased its value until the alterations between the “most benign” and “most malignant” images became
apparent (based on manual, visual inspection), while ensuring that the generated images still appeared similar to the original,
reference image. Counterfactuals in this figure were generated to analyze the AI device ModelDerm; images were chosen
uniformly at random.
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a b

Supplementary Fig. 8 | Screenshots of app for expert analysis of counterfactuals. a, “Free text” version of the
app, used during the initial phase of data collection to encourage collection of a broad, diverse set of attributes that differ
between benign and malignant counterfactuals. The expert annotator enters an attribute (e.g., “structureless areas”) and
then specifies how that attribute differs between the two images by selecting a comparator (“A only”, “A > B”, “A <
B”, “B only”, or “different”) from the drop down menu. The app allows entry of an arbitrary number of attributes, and
contains multiple categories of attributes (“lesion”, “background”, and “other”) to remind annotators to pay attention to
each part of the counterfactuals. b, After the initial phase of free-text data collection, attributes are pooled and grouped in
collaboration with the expert annotators, to produce a list of “preset” responses that enables faster, more uniform analysis.
In the remaining modules, expert annotators may select a preset from a drop-down list, or continue to enter attributes as
free text, accounting for the possibility that new attributes are discovered after the initial free-text phase.
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benign only
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benign < malignant
malignant only

both (different, but unorderable)

Attribute present in:

lesion: patchiness

lesion: blue/white veil

lesion: structureless area(s)

background: erythema

background: number or prominence of brown spots

lesion: number of colors in lesion

background: telangiectasia

background: color - pink

lesion: atypical pigment networks

lesion: color of pigmentation - darker

DeepDerm

lesion: strawberry pattern

lesion: blue/white veil

lesion: area of pigmentation

lesion: structureless area(s)

background: color - pink

lesion: number of colors in lesion

background: number or prominence of hairs

background: prominence of skin grooves/dermatoglyphs

lesion: erythema

lesion: color of pigmentation - darker

ModelDerm

lesion: white spots

lesion: prominence of follicles/pores

background: number or prominence of brown spots

background: color - pink

other: blurriness

lesion: structureless area(s)

lesion: number of colors in lesion

lesion: patchiness

lesion: atypical pigment networks

lesion: color of pigmentation - darker

SSCD

100% 0% 100%

"benign" "malignant" 

background: color of pigmentation - darker

lesion: scale

background: number or prominence of hairs

lesion: white striae

lesion: number of colors in lesion

lesion: erythema

background: erythema
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background: color - pink

lesion: color of pigmentation - darker

SIIM-ISIC

lesion: structureless area(s)

lesion: blue/white veil

background: number or prominence of brown spots

background: telangiectasia

background: reticulation

background: color - pink

background: prominence of skin grooves/dermatoglyphs

lesion: number of colors in lesion

lesion: atypical pigment networks

lesion: color of pigmentation - darker

Scanoma

Supplementary Fig. 9 | Attributes identified by our join expert-XAI auditing procedure as key influences on
the output of individual dermatology AI devices, when evaluated on the ISIC dataset. In contrast to main text
Fig. 2, attributes are ordered by the proportion of counterfactual pairs from the specified AI device in which experts noted
that attribute differs, enabling examination of attributes relevant to a particular AI device but not necessarily to most AI
devices (e.g., prominence of skin grooves or dermatoglyphs, which influences Scanoma and ModelDerm).
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lesion: presence of erosion or ulceration

lesion: redness/erythema

lesion: presence of scale/crust

background: color of pigmentation - darker

background: presence of brown spots

background: erythema

lesion: uneven pigmentation

lesion: number of colors in lesion

lesion: color of pigmentation - darker

Scanoma

lesion: presence of erosion or ulceration

background: erythema

background: presence of brown spots

lesion: redness/erythema

background: prominence of hair

lesion: color of pigmentation - brown

lesion: uneven pigmentation

lesion: number of colors in lesion

background: color of pigmentation - darker

lesion: color of pigmentation - darker

DeepDerm

lesion: uneven borders

background: color of pigmentation - darker

lesion: area of pigmentation

lesion: number of colors in lesion
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lesion: raised appearance/nodular/papular

background: color - more pink/red
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background: color - more pink/red
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other: darker image
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Supplementary Fig. 10 | Attributes identified by our join expert-XAI auditing procedure as key influences on
the output of individual dermatology AI devices, when evaluated on the Fitzpatrick17k dataset. In contrast
to main text Fig. 2, attributes are ordered by the proportion of counterfactual pairs from the specified AI device in which
experts noted that attribute differs, enabling examination of attributes relevant to a particular AI device but not necessarily
to other AI devices.
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Supplementary Fig. 11 | Independent re-trainings of a generative model using the same training data and AI
device. Retrainings preserve key attributes that vary between benign and malignant counterfactuals, such as erythema of
the background skin (top), darker pigmentation of the lesion (middle), and multiple colors of pigment in the lesion (bottom).
The generative models were trained to evaluate the AI device Scanoma. Images are adapted with permission from the ISIC
dataset9–11.
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