Abstract
The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires a significant, coordinated public health response. Assessing case density and spread of infection is critical and relies largely on clinical testing data. However, clinical testing suffers from known limitations, including test availability and a bias towards enumerating only symptomatic individuals. Wastewater-based epidemiology (WBE) has gained widespread support as a potential complement to clinical testing for assessing COVID-19 infections at the community scale. The efficacy of WBE hinges on the ability to accurately characterize SARS-CoV-2 RNA concentrations in wastewater. To date, a variety of sampling schemes have been used without consensus around the appropriateness of grab or composite sampling. Here we address a key WBE knowledge gap by examining the variability of SARS-CoV-2 RNA concentrations in wastewater grab samples collected every 2 hours for 72 hours compared with three corresponding 24-hour flow-weighted composite samples collected over the same period. Results show relatively low variability (respective means for N1, N2, N3 assays = 608, 847.9, 768.4 copies 100 mL-1, standard deviations = 501.4, 500.3, 505.8 copies 100 mL-1) for grab sample concentrations, and good agreement between most grab samples and their respective composite (mean deviation from composite = 159 copies 100 mL-1). When SARS-CoV-2 RNA concentrations are used to calculate viral load (RNA concentration * total influent flow the sample day), the discrepancy between grabs (log10 range for all grabs = 11.9) or a grab and its associated 24-hour composite (log10 difference = 11.6) are amplified. A similar effect is seen when estimating carrier prevalence in a catchment population with median estimates based on grabs ranging 63-1885 carriers. Findings suggest that grab samples may be sufficient to characterize SARS-CoV-2 RNA concentrations, but additional calculations using these data may be sensitive to grab sample variability and warrant the use of flow-weighted composite sampling. These data inform future WBE work by helping determine the most appropriate sampling scheme and facilitate sharing of datasets between studies via consistent methodology.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
All funding for this work was provided by Hampton Roads Sanitation District
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This research has been reviewed and supported by Hampton Roads Sanitation District management. Given the nature of this work, no IRB was necessary.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Data are currently unavailable for distribution.