ABSTRACT
Airborne transmission of aerosols produced by asymptomatic individuals is a large portion of the SARS-CoV-2 spread indoors. Outdoor air ventilation rate, air filtration, room occupancy, exposure time, and mask-wearing are among the key parameters that affect its airborne transmission in indoor spaces. In this work, we developed a new web-based platform, City Reduced Probability of Infection - CityRPI, to calculate the indoor airborne transmission of COVID-19 in various buildings of a city scale. An archetype library of twenty-nine building types is developed based on several standards and references. Among the mitigation strategies recommended to reduce infection risk, some could result in significant energy impacts on buildings. To study the combined effects of energy consumption and reduced infection probability, we integrated CityRPI with City Building Energy Model. We applied the integrated model to Montreal City and studied the impact of six mitigation measures on the infection risk and peak energy demand in winter. It shows that the same strategy could perform quite differently, depending on building types and properties. In the winter season, increasing the outdoor air ventilation rate may cause massive building energy consumption. All strategies are shown to reduce the infection risk but wearing a mask and reducing exposure time are the most effective strategies in many buildings, with around 60% reduction. Doubling the outdoor air ventilation rate is not as effective as other strategies to reduce the risk with less than 35% reduction. It also significantly increases building peak heating demand with 10-60%.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The research is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada through the Discovery Grants Program [#RGPIN-2018-06734] and the Advancing Climate Change Science in Canada Program [#ACCPJ 535986-18].
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study does not involves human subjects, so IRB/oversight body review is not required.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The data in this manuscript are available from the CityRPI website.