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Abstract: (1) Background: The estimation of daily reproduction rates

throughout the infectivity period is rarely considered and only their sum Ro

is calculated to quantify the level of virulence of an infectious agent; (2)

Methods: We give the equation of the discrete dynamics of epidemic growth

and we obtain an estimation of the daily reproduction rates, by using a tech-

nique of deconvolution of the series of observed new cases of Covid-19; (3)

Results: We give both simulation results as well as estimations for several

countries for the Covid-19 outbreak; (4) Conclusions: We discuss the role of

the noise on the precision of the estimation and we open on perspectives of

forecasting methods to predict the distribution of daily reproduction rates

along the infectivity period.
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1 Introduction

After the Severe Acute Respiratory Syndrome outbreak by coronavirus

SARS CoV in 2002 and the Middle East Respiratory Syndrome outbreak by

coronavirus MERS CoV in 2012, the Covid-19 disease by coronavirus SARS

CoV-2 is the third coronavirus outbreak in the past two decades. Human

coronaviruses including 229E, OC43, NL63, and HKU1 are a group of viruses

that cause a significant percentage of all common colds in humans. The SARS

CoV-2 can be transmitted from person to person by respiratory droplets and

through contact and fomites. Therefore, the severity of disease symptoms

such as cough, sputum, and their viral load are most often important factors

in the virus’s ability to spread, and these factors can change rapidly in just

a few days during the period of infectivity of an individual. This ability to

spread is quantified by the classic basic reproduction number Ro (also called

basic reproduction ratio or rate), an epidemiology parameter which describes

the transmissibility of an infectious agent and is equal to the mean number

of susceptible individuals, an infected individual can contaminate during his

infectivity period. Ro is not a biological constant for a pathogen: in fact, Ro

is affected by numerous exogenous factors like geoclimate, demographic and

socio-behavioural factors that govern pathogen transmission [1,2,3,4,5,6].
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Figure 1. Spread of an epidemic disease from a first infected ”patient

zero”(in red) located on the centre of his influence sphere made of the succes-

sive generations of infected, for the same value of the reproduction number
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Ro = 3, with a deterministic dynamics (left) and a stochastic one (right)

with standard deviation σ of the uniform distribution on an interval centred

on Ro and with a random time interval i between infected generations (after

[7]).

Because of these environmental factors, Ro might change seasonally, but

these factors variations are not significant if a very short time in considered.

Ro depends also on endogenous factors like the viral load of the infected

individuals during their infectivity period; the variations of this viral load

[8,9,10,11,12,13,14] is often neglected in the theoretical and applied studies

on the Covid-19 outbreak, in which the authors estimate a unique reproduc-

tion number Ro linked to the Malthusian growth parameter of the exponential

phase of the epidemic during which Ro is greater than 1 (Figure 1) and they

rarely consider the distribution of partial daily reproduction numbers at day

j of the infectivity period, denoted R′js [1]. When this distribution is consid-

ered, it is more convenient i) to define for each age class the distribution of the

marginal daily reproduction numbers, ii) to estimate in each case its entropy

and simulate the dynamics either using a Markovian model like that defined

in Delbrück’s approach [2] or an ODE SIR model. In the Markovian case, Ro

has to be replaced by the evolutionary entropy defined by L. Demetrius as

the Kolmogorov-Sinäı entropy of the corresponding random process, which

has properties concerning the stability of its Markovian invariant measure,

analogue to the properties of the Malthusian parameter for the stability of

the ODE’s steady state [3,4]. We compare these two modelling approaches

in Section 2, then present in Section 3 as illustration results of estimation of

daily reproduction rates in different countries at different periods. In Sec-

tion 4, we discuss our method in the framework of the classical population

dynamics (Leslie model) and eventually, in Section 5, we conclude and open

the approach to the multi-age model.
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2 Materials and Methods

2.1 Relationship between Markovian and ODE SIR
approach

2.1.1 Obtaining SIR equation from a discrete mechanism

Let consider the classical reproduction rate Ro. If the model is determin-

istic, if Xj denotes the number of new cases at day j, and the contagious

period is made of r consecutive days, with Rk the marginal reproduction rate

at day k of the contagious period, we have:

Xj =
∑
k=1,r

RkXj−k (1)

It is easy to show that, if Xo = 1 and r = 5 (inside the estimated in-

terval of the duration of the maximal contagion period for the COVID-19

[5,6,7,8,9,10,11,12,13,14,15,16,17], we obtain:

X5 = R5
1 + 4R3

1R2 + 3R2
1R3 + 3R1R

2
2 + 2R2R3 + 2R1R4 +R5 (2)

If R2 and R3 are dominant and equal to R/2, then X5 behaves as 2R2R3 =

R2/2, which shows the difficulty to estimate Ro, which is the mean value of

the R′is on the contagious period. The length of this period can be estimated

from the ARIMA series of the stationary random variables Y ′j s, equal to

the X ′js without their trend: one can take the interval on which the auto-

correlation function remains more than a certain threshold, e.g., 0.1 [15].

More generally if R1 = a,R2 = b and R3 = c, we get:

Xo = 1, X1 = a,X2 = a2 + b,X3 = a3 + 2ab+ c,X4 = a4 + 3a2b+ b2 + 2ac,

X5 = a5+4a3b+3ab2+3a2c+2bc,X6 = a6+5a4b+4a3c+6abc+6a2b2+b3+c2,

X7 = a7 + 6a5b+ 5a4c+ 10a3b2 + 12a2bc+ 4ab3 + 3b2c+ 3ac2 (3)

If R1 and R2 equal respectively a and b, and if a = b = R/2, c = 0, then

X5 behaves like:

X5 = R5/32 +R4/4 + 3R3/8 (4)
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If R = 1, {Xj}j=1,∞ is the Fibonacci sequence, and more generally, for R > 1,

the generalised Fibonacci sequence. Let suppose now that b = 0 and a

depends on the day j such as aj = νC(j), where C(j) represents the number

of possible susceptible individuals, which can be recruitable by one infectious

individual at day j. If cumulated infected individuals (supposed to be all

infectious) at day j are denoted by Ij, we have:

Xj = ∆Ij/∆j = Ij − Ij−1 = νC(j)Ij−1 (5)

Figure 2. Spread of an epidemic disease from a first infected (located at

his influence circle centre) progressively infecting all the neighbours in some
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regions (rectangles) on successive spatial layers.

Suppose that the first infected is recruited at the centre of his sphere of

influence and that the secondary infected individuals remain in this sphere,

by widening the radius on day j, therefore the susceptible individuals C(j),

where each infectious on day j − 1 can recruit are located on a decreasing

part of the sphere of influence of the first infected 0 (Figure 2).

The function C(j) decreases due to the bulk on the successive spheres and

we can consider the following functional form C(j) = S(j)/(c+S(j)), where

S(j) is the number of susceptible individuals at day j. Then, we can write

the following equation taking into account the mortality:

Xj = ∆Ij/∆I = νIj−1S(j)/(c+ S(j))− kIj (6)

The corresponding continuous equation is close to the SIR equation, if c is

greater before S:

dI/dt = νSI/(c+ S)− kI (7)

2.1.2 Second obtention of the SIR equation from a discrete mech-
anism

Another way to derive the SIR equation from a probabilistic approach

is to start from the microscopic equation of molecular shocks by Delbrück

[2] which corresponds to a classical birth-and-death process: if at least one

event (contact ν, birth f , death µ or recovering ρ) occurs in (t, t + dt), we

have, if births compensate deaths, leaving constant the total size N of the

population:

P (S(t+dt) = k, I(t+dt) = N−k) = (1−(µk+νk(N−k)−fk−ρ(N−k))dt)

P (S(t) = k, I(t) = N − k) + (f(k − 1) + ρ(N − k + 1))dt

P (S(t) = k − 1, I(t) = N − k + 1)− (µ(k + 1) + ν(k + 1)(N − k − 1))dt

P (S(t) = k + 1, I(t) = N − k − 1) (8)

Hence, we have, if Pk(t) denotes P (S(t) = k, I(t) = N − k):

dPk(t)/dt = (P (S(t+dt) = k, I(t+dt) = N−k)−P (S(t) = k, I(t) = N−k))/dt

7
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= −(µk+ νk(N − k)− fk− ρ(N − k))P (S(t) = k, I(t) = N − k) + (f(k− 1)

+ρ(N − k + 1)P (S(t) = k − 1, I(t) = N − k + 1)− (µ(k + 1)

+ν(k + 1)(N − k − 1))dtP (S(t) = k + 1, I(t) = N − k − 1)

and we obtain:

dPk(t)/dt = −(µk + νk(N − k)− fk − ρ(N − k))Pk(t)

+(f(k−1)+ρ(N−k+1))Pk−1(t)−(µ(k+1)+ν(k+1)(N−k−1))Pk+1(t) (9)

Then, by multiplying by sk and summing over k, we obtain the characteristic

function of the random variable S, which is proven to be a Poisson random

variable if the coefficients ν, f, µ and ρ are sufficiently small. If births do not

compensate deaths, we have:

P (S(t+ dt) = k, I(t+ dt) = j) = (1− (µk + νkj − fk − ρj)dt)

P (S(t) = k, I(t) = j) + (f(k − 1) + ρ(j + 1))dt

P (S(t) = k−1, I(t) = j+1)−(µ(k+1)+ν(k+1)(j−1))dtP (S(t) = k+1, I(t) = j−1)

(10)

If S and I are independent and if the coefficients ν, f, µ and ρ are sufficiently

small, they are Poisson random variables, whose expectations E(S) and E(I)

verify:

dE(S)/dt = fE(S)−νE(SI)−µE(S)+ρE(I) ≈ E(I)(−νE(S)+ρ), if f = µ,

(11)

which leads to the SIR equations for the variables S, I and R considered as

being deterministic:

dS/dt = −νSI + ρR

dI/dt = νSI − kI − µI

dR/dt = kI − ρR (12)
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2.2 Distribution of the rate of transmission along the
infectiousness period of an individual

Figure 3 gives the average transmission rate Ro calculated on the 25th of

October 2020 just before the second lockdown (re-confinement) in France

[16], but because at this day the second wave of the epidemic is still in its

exponential phase, it is more convenient i) to consider the distribution of the

marginal daily reproduction numbers, and ii) to calculate its entropy and

simulate the epidemic dynamics using a Markovian model [2]. If Ro denotes

the average transmission rate (or mean reproduction number) among the

studied population, we can estimate the distribution V (whose coefficients are

Vj = Rj/Ro) of the daily reproduction numbers Rj along the infectiousness

period, by remarking that the number Xj of new infectious cases at day j,

equal to Xj = I(j)–I(j − 1), where I(j) is the number of infectious at day

j, verifies the discrete convolution equation:

Xj =
∑
k=1,r

RkXj−k, giving in continuous time : X(t) =

∫ r

1

R(s)X(t− s)ds,

(13)

where r is the duration of the contagion period, estimated by 1/(k+µ),where

k is the recovering rate and µ the death rate in SIR equations:

dS/dt = −νSI

dI/dt = νSI − (k + µ)I, (14)

where S and I are respectively the size of the susceptible and infectious

populations.

If r and S can be considered as constant during the first exponential phase

of the pandemic, we can also assume that the distribution V is constant and

then, V can be estimated by solving the linear system:

Xj =
∑
k=1,r

RkXj−k, Xj−1 =
∑
k=1,r

RkXj−1−k, Xj−1, · · · , Xj−r+1 =
∑
k=1,r

RkXj−r−k,

(15)

which can be written as X = MR, hence giving:

9
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R = M−1X (16)

and the equation (13) can be solved numerically, if the pandemic is observed

during a time greater than 1/(k + µ). Then, the entropy of V = R/Ro can

be calculated, as the Kolmogorov-Sinäı entropy of the Markovian Delbrück

scheme [2] ruling the X ′js and giving new parameters for characterising pan-

demic dynamics, namely for quantifying its robustness and stability [3,4].

2.3 The biphasic pattern of the virulence curve in
coronaviruses

Mostly, the clinical course of patients with seasonal influenza shows a

biphasic occurrence of symptoms with two distinct peaks. Patients have a

classic influenza disease followed by an improvement period and a recurrence

of the symptoms [1,2,3]. The influenza RNA virus shedding (the time during

which a person might be infectious to another person) increases sharply one-

half to one day after infection, peaks on day 2 and persists for an average

total duration of 4.5 days, between 3 and 6 days, which explains that we will

choose in the following as infectivity duration these extreme values, i.e., either

3 or 6 days depending on the positivity of the estimated daily reproduction

rates. It is common to see this biphasic influenza clinically: after incubation

of one day, there is a high fever, then a drop in temperature before rising,

hence the term ”V ” fever. The other symptoms like coughing often also have

this improvement on the second day of the flu attack: after a first feverish

rise (39 − 40oC), the temperature drops to 38oC on 2nd day, then rises be-

fore disappearing on the 5th day, the fever being accompanied by respiratory

signs (coughing, sneezing, clear rhinorrhea, etc.). By looking the shape of

virulence curves observed in coronaviruses patients [5,6,7,8,9,10,11,12], we

often see this biphasic pattern.

10
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3 Results

3.1 Distribution of the daily reproduction numbers
Rj’s along the infectiousness period of an individ-
ual. A theoretical deterministic example.

Deterministic Toy Model

Let’s suppose that a priori R′js are equal to:R1

R2

R3

 =

2
1
2


then the inverse of the matrix M is given by:

M−1 =

37 14 5
14 5 2
5 2 1

−1 =

−1/4 1 −3/4
1 −3 1
−3/4 1 11/4


and the deconvolution gives the a posteriori R′js:−1/4 1 −3/4

1 −3 1
−3/4 1 11/4

98
37
14

 =

2
1
2

 =

R1

R2

R3

 ,
thanks to the following calculation:

R1 = −49/2 + 37− 21/2 = 2

R2 = 98− 111 + 14 = 1

R3 = −147/2 + 37 + 77 = 2

and we obtain for the a posteriori distribution of the daily reproduction rates

the exact replica of the a priori distribution.

3.2 Distribution of the daily reproduction numbers
Rj’s. A simulated stochastic example.

Let’s consider a stochastic version of the deterministic toy model given in

Section 3.1., by introducing an increasing noise on the R′js, e.g., a uniform

11
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distribution on the three following intervals:[2−a, 2+a], [1−a/2, 1+a/2], [2−
a, 2 + a], with increasing values of a, from 0.1 to 1, in order to see when the

deconvolution would give negative a posteriori R′js, with conservation of the

average of their sum Ro, if you repeat the random choice of the values of the

R′js at each generation?

We will give the results of the random simulations for increasing values

of a from a = 0.1 to a = 1.

1) For a= 0.1, let’s choose the a priori distribution of the daily re-

production numbers R1 in the interval [1.9, 2.1], R2 in [0.95, 1.05] and R3 in

[1.9, 2.1] as R1 = 2.1, R2 = 0.95, R3 = 2.1. Then, transition matrix M1 is

equal to:

M1 =

41.7391 15.351 5.36
15.351 5.36 2.1
5.36 2.1 1


and we have:

M−1
1 =

 −0.2154195 0.92857143 −0.79535147
0.92857143 −2.95 1.21785714
−0.79535147 1.21785714 2.7055839


From X6 = 113.491, X5 = 41.7391, X4 = 15.351, a posteriori R′js can be

calculated: R1 = 2.1, R2 = 0.95, R3 = 2.1

The next a priori R′js are chosen as: R1 = 2, R2 = 0.95, R3 = 1.9 and we

have:

X7 = 2X6 + 0.95X5 + 1.9X4 = 226.982 + 39.652 + 29.17 = 295.8

X8 = 2X7 + 0.95X6 + 1.9X5 = 591.6 + 107.816 + 79.304 = 778.72

Then, we get the matrices M2 and M−1
2

M2 =

 295.8 113.491 41.7391
113.491 41.7391 15.351
41.7391 15.351 5.36



M−1
2 =

−0.07779371 0.20964295 0.00524305
0.20964295 −1.0123552 1.26721348
0.00524305 1.26721348 −3.48354228


12
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The a posteriori R′js equal: R1 = 2.0279, R2 = 7.6158, R3 = −16.426

The following a priori R′js are: R1 = 2, R2 = 1.05, R3 = 1.9 and we have:

X9 = 2X8 + 1.05X7 + 1.9X6 = 1557.44 + 310.59 + 215.63 = 2083.66

X10 = 2X9 + 1.05X8 + 1.9X7 = 4167.32 + 817.656 + 562.02 = 5546.996

Then, we get the matrices M3 and M−1
3

M3 =

2083.66 778.72 295.8
778.72 295.8 113.491
295.8 113.491 41.7391


M−1

3 =

 0.02596375 −0.05192766 −0.04280771
−0.05192766 0.0256605 0.29823273
−0.04280771 0.29823273 −0.48358035


The a posteriori R′js equal: R1 = 2.486, R2 = −2.33, R3 = 7.38769

The next a priori R′js are: R1 = 1.9, R2 = 1.05, R3 = 1.9 and we have:

X11 = 1.9X10+1.05X9+1.9X8 = 10539.292+2187.843+1479.568 = 14206.703

X12 = 1.9X11 +1.05X10 +1.9X9 = 26992.7+5824.3+3958.954 = 36775.9998

Then, we get the matrices M4 and M−1
4

M4 =

14206.703 5546.996 2083.66
5546.996 2083.66 778.72
2083.66 778.72 295.8


M−1

4 =

−0.00171315 0.00313855 0.00380517
0.00313855 0.02400326 −0.08529916
0.00380517 −0.08529916 0.20113412


The a posteriori R′js equal: R1 = 2.69, R2 = −16.72, R3 = 43.809

2) For a=1, let’s choose the a priori R1 in [1.0, 3.0], R2 in [0.5, 1.5] and

R3 in [1, 3] e.g., R1 = 1, R2 = 1.355, R3 = 1.1. Then, transition matrix is

equal to:

M1 =

9.101 4.81 2.355
4.81 2.355 1
2.355 1 1


13
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and its inverse is given by:

M−1
1 =

−1.11983471 2.02892562 0.60828512
2.02892562 −2.93801653 −1.84010331
0.60828512 −1.84010331 1.40759184


The new cases are: X6 = 18.209, X5 = 9.101, X4 = 4.81, X3 = 2.355, X2 =

1, X1 = 1, and by deconvolution, we get a posteriori R′js equal: R1 = 1, R2 =

1.355, R3 = 1.1, i.e., the exact a priori distribution.

Let’s consider now a new a priori R1 = 1, R2 = 1, R3 = 1. That gives a

new matrix M2, with new X7 and X8 calculated from the new a priori R′js,

by using the former values of X6, · · · , X2 :

X7 = X6 +X5 +X4 = 18.209 + 9.101 + 4.81 = 32.12

X8 = X7 +X6 +X5 = 32.12 + 18.209 + 9.101 = 59.43

Hence, we get:

M2 =

 32.12 18.209 9.101
18.209 9.101 4.81
9.101 4.81 2.355


Then, by inverting M2, we can calculate the a posteriori R′js:

M−1
2 =

−0.35061537 0.1839519 0.97925345
0.1839519 −1.47916605 2.31025157
0.97925345 2.31025157 −8.07834211


and a posteriori R′js equal: R1 = 2.90, R2 = 5.4888, R3 = −14.696

We continue the process by calculating X9 and X10 using new a priori

R1 = 3, R2 = 0.5, R3 = 2.9 :

X9 = 3X8 + 0.5X7 + 2.9X6 = 178.29 + 16.06 + 52.81 = 247.16

X10 = 3X9 + 0.5X8 + 2.9X7 = 741.48 + 29.715 + 93.148 = 864.343

Hence, we get:

M3 =

247.16 59.43 32.12
59.43 32.12 18.209
32.12 18.209 9.101


14

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2020.12.30.20249010doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.30.20249010


M−1
3 =

 0.00718287 −0.00805357 −0.00923703
−0.00805357 −0.22288084 0.47435642
−0.00923703 0.47435642 −0.80659958


and a posteriori R′js equal: R1 = 3.66898, R2 = −33.857, R3 = 61.32

Let’s choose now a new a priori R1 = 2.6, R2 = 0.7, R3 = 2.6

Then, we have:

X11 = 2.6X10 + 0.7X9 + 2.6X8 = 2247.29 + 173.012 + 154.518 = 2574.82

X12 = 2.6X11 + 0.7X10 + 2.6X9 = 6694.532 + 605.04 + 642.616 = 7942.188

and we get the matrices M4 and M−1
4 :

M4 =

2574.82 864.343 247.16
864.343 247.16 59.43
247.16 59.43 32.12


M−1

4 =

−0.0018705 0.00554927 0.00412574
0.00554927 −0.00917459 −0.0257258
0.00412574 −0.0257258 0.04698525


Then, a posteriori R′js equal: R1 = 2.99859, R2 = −1.785, R3 = 7.139

More precise simulation results are given in Table 1, which summarises

computations made for random choices of a priori distributions, for a =

0.1 and a = 1. These simulations show a great sensitivity to the noise,

but a qualitative conservation of the down biphasic (D-B) shape of their

distribution along the infectivity period of individuals.

Table 1. Simulation results obtained for extreme noises a = 0.1 and

a = 1, showing great variations of the deconvoluted a posteriori distribution

of the daily reproduction numbers X ′js and a qualitative conservation of the

down biphasic(D-B) shape of their distribution along the infectivity period.

Note: INV means Inverted
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a a priori Rj’s t Xt Xt+1 Xt+2 a posteriori Rj’s Ro D-B

0.1 2.1;0.95;2.1 4 15.35 31.74 113.5 2.1;0.95;2.1 5.15 Yes
2;0.95;1.9 6 113.5 295.8 778.7 2.03;7.6;-16.4 -6.77 INV
2;1.06;1.9 8 778.7 2083.7 5547 2.49;-2.33;7.39 7.55 Yes

1.9;1.05;1.9 10 5547 14207 36776 2.69;-16.7;43.8 29.8 Yes
1.9;0.95;1.9 12 36776 93910 240359 2.92;1.68;-6.7 -2.1 No

1.9;1;1.9 14 240359 622149 1605227 2.29;-4.83;14.3 11.8 Yes
2;1.05;1.9 16 1605227 4331630 11561153 2.76;27;-70 -40.2 INV
1.9;1;1.95 18 11561153 29558395 76502587 2.49;-6.48;17.9 13.9 Yes

2;1;2.1 20 76502587 207683519 556226772 2.67;-7.6;19.7 14.8 Yes
1 1;1.355;1.1 4 4.81 9.1 18.21 1;1.355;1.1 3.455 No

1;1;1 6 18.21 32.12 59.43 2.90;5.49;-14.70 -6.31 INV
3;0.5;2.9 8 59.43 247.16 864.34 3.67;-33.9;61.32 31.1 Yes

2.6;0.7;2.6 10 864.34 2574.82 7942.19 3;-1.79;7.14 8.35 Yes
2.5;0.75;1.5 12 7942.2 23083.1 67526.6 3.35;2.54;-11.6 -5.71 No
2.4;0.8;2.4 14 67526.6 199590 588437 2.58;-0.5;4.8 6.88 Yes

2;1;2 16 588437 1511517 4010652 2.72;-1.08;3.19 4.83 Yes
2.3;1.15;2.3 18 4010652 12316150 36415885 2.88;-7.9;21.7 16.7 Yes

2.8;0.6;2 20 36415885 117375471 375133150 3.7;4.1;-17 -9.2 INV

3.3 Distribution of the daily reproduction numbers
Rj’s. The real example of France.

The Figure 3 gives the average transmission rate Ro calculated the 25th

of October 2020 just before the second lockdown (re-confinement) in France

[18]. Because the second wave of the epidemic is still in its exponential

phase, it is more convenient i) to consider the distribution of the marginal

daily reproduction numbers, and ii) to calculate its entropy and simulate the

epidemic dynamics using a Markovian model [2].

By using the daily new infectious cases given by [6], we can calculate M−1

for the period from 20th to 25th October 2020, by choosing 3 days for the

duration of the infectiousness period and the following raw data for the new

infected cases (Figure 3):

Oct 25 : 52010, 45422, 42032, 41622, 26676, 20468 : Oct 20
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Figure 3. Top: estimation of the average transmission rate Ro for the 20th

and the 25th October 2020 [18]. Bottom left: daily new cases in France be-

tween February 15 and Oct 27 [6]. Bottom right: V-shape of the evolution

of the daily R′js along the infectious 3-day period of an individual.
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We have:

M−1 =

45422 42032 41622
42032 41622 26676
41622 26676 20468

−1

=

−0.000016398981167 −0.000029218877645 0.000071428628796
−0.000029218877645 0.000093816139226 −0.000062853781739
0.000071428628796 −0.000062853781739 −0.000014476983882


Hence, we can deduce the daily R′js i.e., the vector (R1, R2, R3) :

−0.000016398981167 −0.000029218877645 0.000071428628796
−0.000029218877645 0.000093816139226 −0.000062853781739
0.000071428628796 −0.000062853781739 −0.000014476983882

52010
45422
42032

 =

−0.85291101049567 −1.32717986039119 3.00228812555347
−1.51967382631645 4.26131667592337 −2.64187015405365
3.71500298367996 −2.85494447414886 −0.60849658654673

 =

0.822197254666612
0.099772695553274
0.251561922984372

 =

R1

R2

R3


The average transmission rate is equal to Ro ≈ 1, 174, value close to that

calculated directly (Figure 3 ), giving V = (0.7, 0.085, 0.215), with a maximal

daily reproduction rate the first day of the infectiousness period. The entropy

H of V is equal to: H = −
∑

k=1,r VkLog(Vk) = 0.25 + 0.21 + 0.33 = 0.79.

3.4 Calculations of the Rj’s for different countries

3.4.1 Chile

By using the daily new infectious cases given by [6], we can calculate M−1

for the period from 1st to 12th November 2020, by choosing 6 days for the

duration of the infectiousness period and the following 7-day moving average

data for the new infected cases (Figure 4):

Nov 12 : 1408, 1394, 1387, 1384, 1385, 1389, 1405, 1362, 1359, 1382, 1370, 1400 :

Nov1
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Figure 4. Top: estimation of the average transmission rate Ro for the 1st

and the 12th November 2020 [18]. Bottom left: Daily new cases in Chile

between November 1 and November 12 [6]. Bottom right: V-shape of the

evolution of the daily R′js along the infectious 6-day period of an individual.
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We have:

M−1 =


1394 1387 1384 1385 1389 1405
1387 1384 1385 1389 1405 1362
1384 1385 1389 1405 1362 1359
1385 1389 1405 1362 1359 1382
1389 1405 1362 1359 1382 1370
1405 1362 1359 1382 1370 1400



−1

=


−0.05714222 0.01016059 −0.00901664 0.01474588 0.00640175 0.03539322
0.01016059 −0.01827291 0.0106261 −0.00763363 0.02139586 −0.01613675
−0.00901664 0.0106261 −0.00544051 0.02150289 −0.01468484 −0.00286391
0.01474588 −0.00763363 0.02150289 −0.01796266 −0.00553414 −0.00509801
0.00640175 0.02139586 −0.01468484 −0.00553414 −0.00305831 −0.00452917
0.03539322 −0.01613675 −0.00286391 −0.00509801 −0.00452917 −0.00686198


Hence, after deconvolution we have:

R =


−0.36256122
0.22645436
0.01488726
0.33918287
0.28557502
0.50696243


The average transmission rate is equal to Ro ≈ 1, 011, value close to that

calculated directly, with a maximal daily reproduction rate the last day of

the infectiousness period.

Because of the negativity of R1, we cannot derive the distribution V and

therefore calculate its entropy. The quasi-endemic situation in Chile since

the end of August, which corresponds to the increase of temperature and

drought at this period of the year [15], gives a constancy of new cases of

infected and a periodicity of their occurrence corresponding to the length

of the infectious period of about 6 days, analogue to the cyclic phenomenon

observed in simulated stochastic data of Section 3.2. with a similar M-shaped

distribution of the R′js.
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3.4.2 Russia

By using the daily new infectious cases given by [6], we can calculate M−1

for the period from September 30 to October 5, 2020, by choosing 3 days

for the duration of the infectiousness period and the following 7-day moving

average data for the new infected cases (Figure 5):

Oct 05 : 9473, 9081, 8704, 8371, 8056, 7721 : Sept 30
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Figure 5. Top: estimation of the average transmission rate Ro for the 30th

September and the 5th October 2020 [18]. Bottom left: Daily new cases in

Russia between September 30 and October 5 [6]. Bottom right: V-shape

of the evolution of the daily R′js along the infectious 3-day period of an

individual.
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We have:

M−1 =

9081 8704 8371
8704 8371 8056
8371 8056 7721

−1

and 0.031553440566948 −0.027594779248393 −0.005417732076268
−0.027594779248393 −0.00482333528665 0.034950483895551
−0.005417732076268 0.034950483895551 −0.030463575061795

9473
9081
8704

 =

R1

R2

R3


where:

R1 = 298, 905742490698404−250, 588190354656833−47, 155939991836672 = 1, 161612144205

R2 = −261, 405343820026889−43, 80070773806865+304, 209011826875904 = −0, 997039731220

R3 = −51, 322175958486764+317, 385344255498631−265, 15495733786368 = 0, 908210959148

The average transmission rate is equal to Ro ≈ 1, 073, value close to that

calculated directly, with a maximal daily reproduction rate the first day of

the infectiousness period.

Because of the negativity of R2, we cannot derive the distribution V and

therefore calculate its entropy. The period studied corresponds to a local slow

increase of new infectious cases at the start of the second wave in Russia,

which seems to have a succession of slightly inclined 4-day plateaus followed

by a step.

3.4.3 Nigeria

By using the daily new infectious cases given by [6], we can calculate M−1

for the period from November 5 to November 10 2020, by choosing 3 days

for the duration of the infectiousness period and the following raw data for

the new infected cases (Figure 6) :

Nov 10 : 166, 164, 161, 133, 149, 141 : Nov5

23

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2020.12.30.20249010doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.30.20249010


Figure 6. Top: estimation of the average transmission rate Ro for the 5th

and the 10th November 2020 [18]. Bottom left: Daily new cases in Nige-

ria between November 5 and November 10 [6]. Bottom right: increasing

evolution of the daily R′js along the infectious 3-day period of an individual.
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We have:

M−1 =

164 161 133
161 133 149
133 149 141

−1 =

 0.01796807 0.01502897 −0.03283028
0.01502897 −0.02832263 0.01575332
−0.03283028 0.01575332 0.02141264


After deconvolution, we get:

R =

0.16177513
0.38618314
0.58115333


The average transmission rate is equal to Ro ≈ 1.129, value close to that

calculated directly, with a maximal daily reproduction rate the last day of

the infectiousness period. V = (0.143, 0.342, 0.515) and the entropy H of V

is equal to : H = −
∑

k=1,r VkLog(Vk) = 0.29 + 0.37 + 0.34 = 1.

3.5 Weekly patterns in daily infection cases

Daily new infectious cases are highly affected by weekdays, such that case

numbers are lowest at the start of the week, and increase afterwards. This

pattern is observed at the global level, as well as at the level of almost

each single country or USA state. Hence, in order to estimate biologically

meaningful infection rates, clean of weekly patterns due to administrative

constraints, analyses have to be restricted to specific periods shorter than

a week, or at the rare occasions when patterns escape the administrative

constraints on weekly patterns. This weekly phenomenon occurs during ex-

ponential increase as well as decrease phases of the pandemic, and during

stagnation periods in numbers of daily cases. In addition, the daily new

infection case record is discontinuous for many countries/regions, which fre-

quently publish on Monday or Tuesday a cumulative count for that day and

the weekend days. For example, Sweden typically publishes over one week

only four numbers, the one on Tuesday cumulating cases for Saturday, Sun-

day and the two first weekdays. Discontinuity in records further limit the

availability of data enabling detailed analyses of daily infection rates and can
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be considered as extreme weekday effects on new case records due to various

administrative constraints.

Figure 7. Daily new confirmed cases for the whole world as a function of

days since February 24 until August 23.+ indicate Sundays, x indicate Mon-

days.

We calculated Pearson correlation coefficients r between a running win-

dow of daily new case numbers of 20 consecutive days, and a running window

of identical duration with different intervals between the two running win-

dows. There is typically a peak with a time-lag of seven days between the

two running windows. This could reflect a biological phenomenon of seven

infection days. However, examinations of frequency distributions of time-lags

for r maxima reveals, besides the median at time-lag 7 days, local maxima for

multiples of 7 (14, 21, 28, 35, etc). About 50 percent of all local maxima in r

involve time-lags that are multiples of seven (seven included). This excludes

a biological causation. We tried to control for week days using two methods,

and combinations thereof.

For the first method, we calculated z-scores for each weekday, considering

the mean number of cases for each weekday, and subtracted that mean from

the observed number for a day. This delta was then divided by the standard

deviation for the number of cases for that day. This was done for each
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weekday.

Figure 8. Z-transformed scores of daily new confirmed cases for the whole

world, from Figure 7, as a function of days since February 24, until August

23.+ indicate Sundays, x indicate Mondays. Z-transformations are specific

to each weekday.

The second method implies data smoothing using a running window of

5 consecutive days, where the mean number of cases calculated across the

five days is subtracted from the observed number of cases for the third day.

Hence data for a given day are compared to a mean including two previous,

and two later days.
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Figure 9. Smoothed daily new confirmed cases for the whole world, from

Figure 7, as a function of days since February 24, until August 23. + indi-

cate Sundays, x indicate Mondays. For each specific day j, the mean number

of new confirmed cases calculated for days j − 1, j − 2, j + 1 and j + 2 is

subtracted from the number for day j.

We constructed two further datasets, one where the second data-smoothing

method is applied to the z-scores from the first method, and the other,

where the z-scores from the first method are applied to the data after data-

smoothing from the second method (Figures 10 and 11).
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Figure 10. Smoothed daily new confirmed cases for the whole world applied

to Z scores from Figure 8, as a function of days since February 24, until Au-

gust 23. + indicate Sundays, x indicate Mondays. For each specific day j,

the mean number of new confirmed cases calculated for days j−1, j−2, j+1

and j + 2 is subtracted from the number for day j.

These four datasets transformed according to different methods and com-

binations thereof designed to control for weekday were analysed using the

running window method. Despite attempts at controlling for weekday ef-

fects, the median time-lag was always seven days across all four transformed

datasets, and local maxima in time-lag distributions were multiples of seven.

Despite data transformations, about 50 percent of all local maxima were

time-lags that are multiples of seven, seven included.

Visual inspection of plots of these transformed data versus time for daily

new infection cases from the whole world systematically show systematic lo-

cal biases in daily new infection cases (after transformations) on Sundays and

Mondays, for all four transformed datasets, with Sundays and/or Mondays

as local minima and/or local maxima, along which method or combination

thereof. Hence, the methods we used failed to neutralise the weekly pat-

terns in daily new cases due to administrative constraints. This issue highly

limits the data available for detailed analyses of daily new cases aimed at es-
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timating biologically relevant estimates of infection rates at the level of short

temporal scales, but it reinforces the hypotheses done in previous sections

on the existence of an heterogeneity of the virulence along the infectiousness

period, independent of administrative constraints observed in collecting new

daily cases.

Figure 11. Z-transformed scores of daily new confirmed cases for the whole

world, smoothed data from Figure 9, as a function of days since February 24,

until August 23.+ indicate Sundays, x indicate Mondays. Z-transformations

are specific to each weekday.

4 Discussion

Rhodes and Demetrius have pointed out the interest of the distribution

V of the daily reproduction numbers [5]. In particular, they found that

this distribution was generally not uniform, which we have confirmed here

by showing many cases with the biphasic form of the virulence observed in

respiratory viruses, such as those of influenza. The entropy of the distribution

V makes it possible to evaluate the intensity of this biphasic character. By

taking into account the mortality due to the Covid-19, the discrete dynamics

of new cases can be considered as a Leslie dynamics governed by the matrix
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equation Xj = LXj−1, where Xj is the vector of the new cases living at day

j and L is the Leslie matrix given by:

L =



R1 R2 R3 · · · · · · Rr

b1 0 0 · · · · · · 0
0 b2 0 · · · · · · 0

. . .
. . .

0 0 0 · · · br−1 0


and

Xj−1 =



Xj−1
Xj−2
Xj−3

...

...
Xj−r


(17)

where bj = 1−µj ≤ 1, ∀i = 1, · · · , r, is the survival recovered probability

between days j and j + 1.

The dynamical Xk stability for L2 distance to the stationary infection age

pyramid P= limjXj/
∑

k=j,j−r+1Xk is related to |λ−λ,|, the modulus of the

difference between the dominant and sub-dominant eigenvalues of L, namely

λ = eR and λ, (where R is the Malthusian growth rate), where P is the left

eigenvector of L corresponding to λ. The dynamical stability for the distance

(or symmetrized divergence) of Kullback-Leibler to P considered as station-

ary distribution is related to the population entropy H [4,19,20,21,22,23,24],

which is defined if Ij =
∏

i=1,j−1 bi and pj = IjRj/λ
j, as follows:

H = −
∑
j=1,r

pjLog(pj)/
∑
j=1,r

jpj (18)

The mathematical characterisation by population entropy defined in (18) of

the stochastic stability of the dynamics described by equation (17) has its

origin in the theory of large deviations [25,26,27]. This notion of stability

31

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2020.12.30.20249010doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.30.20249010


pertains to the rate at which the system returns to its steady state conditions

after a random exogenous and/or endogenous perturbation and it could be

useful to quantify the variations of the distribution of the daily reproduction

rates observed for many countries.

5 Conclusions and Perspectives

The article has used a discrete approach for describing the dynamics of the

Covid-19 outbreak. In the ODE SIR case [28,29,30], marginal R′js can be

estimated in the same way, but by using continuous deconvolution equation.

An improvement in this framework could be the introduction of the demo-

graphic notion of age class, because the daily reproduction rates distribution

is depending on the state of the immune defences both of the infected and

susceptible individuals, and on the mode of transmission, this mode being

associated in social settings recording age and infection schedule with more

secondary cases for young and adult than for elderly at home [31,32]. Then,

for each age class k a reproduction number Rok can be calculated by sum-

ming the marginal R′jks, which correspond to this age class k, and eventually

a global Ro can be estimated from the R′oks, weighted by the proportion of

their age class in the whole population. Both global Ro and dedicated to

age classes R′oks could serve to follow the effects of public health measures

as lockdowns and quarantines.
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