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Commentary 9 

The time course and burden of the COVID-19 pandemic will depend on the herd 10 

immunity threshold (HIT) of the virus, which is the fraction of the population that needs to be 11 

immunized for an epidemic to slow in the absence of mitigation efforts. Estimates for the 12 

COVID-19 HIT range from 6% to over 60%1,2. Given that roughly 10% of the global population 13 

has been infected3, the low end of this range implies that the pandemic should soon burn out on 14 

its own, while the high end paints a grim picture of future morbidity and mortality, in the absence 15 

of pervasive non-pharmacological interventions, efficacious vaccines, or life-saving drugs.  16 

The recent publication of the Great Barrington Declaration (GBD), which calls for 17 

relaxing all public health interventions on young, healthy individuals, has brought the question of 18 

herd immunity to the forefront of COVID-19 policy discussions4,5. The authors state that 19 

“immunity in the population is playing a substantial role in controlling the spread,” tacitly 20 

referencing preprints by multiple GBD authors that posit HITs of 10-20%2,6. Evidence against 21 

this claim is mounting, including pandemic resurgences throughout Europe and the US and 22 

attack rates exceeding 50% in the hardest hit regions and congregate living settings7–9.  23 
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Given that this unpublished work is fundamentally shaping public discourse and global 24 

policy, reconciling its claims with the rapidly evolving state of the pandemic is paramount. To 25 

this end, we reevaluated the core model from the study and have identified a fundamental flaw 26 

that leads to underestimation of the COVID-19 HIT. The authors sought to identify the cause of 27 

the summer slowdown in four European countries by fitting an SEIR-like model of COVID-19 28 

transmission to case count data up to July of 2020. The analysis is structured so that one of two 29 

explanations are possible. Either the pandemic is self-limiting (i.e., the HIT is low) or social 30 

distancing and other community mitigation efforts slowed transmission. However, teasing apart 31 

the contributions of these factors from the case data alone is statistically impossible. In other 32 

words, one cannot estimate the HIT without making assumptions about the efficacy of 33 

community mitigation, and vice versa (See supplement). 34 

So the researchers made a strong assumption about community mitigation efforts in 35 

Europe in the spring and summer of 2020. Roughly, they assume that Europe locked down 36 

throughout April and then returned to normal (linearly) by the end of August (Figure 1A - Blue). 37 

By assuming that interventions disappear steeply, the model concludes that the pandemic must 38 

be fading due to immunity buildup, and thus estimates low HITs.  As it turns out, the derived HIT 39 

is highly sensitive to the assumed timeline of mitigation (Figure S2-S3) and we have good 40 

reason to believe their assumption is flawed. The authors use mobility traces to justify their 41 

pattern2, but other precautionary policies like school closures, wearing of face coverings, and 42 

social distancing have likely kept transmission repressed far below the pre-April baseline 43 

(Figure 1A - Black). When we plug this plausible scenario into the Aguas et al. model2 (Figure 44 

1A - Green), the COVID-19 HIT estimate increases six-fold for Belgium, three-fold for England, 45 

ten-fold for Portugal, and six-fold for Spain (Figure 1B). A range of alternative scenarios produce 46 

similar estimates (Figure S2-S3). If policymakers were to adopt a herd immunity strategy, in 47 

which the virus is allowed to spread relatively unimpeded, we project that cumulative COVID-19 48 

deaths would total almost 650,000 (95% CI: 500,000 - 780,000) across all four countries 49 
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through the end of the pandemic under the revised HIT estimates, roughly five-fold higher that 50 

projected under the original low HIT estimates (Figure S4).  51 

The fragility of the Aguas et al. study2 undermines a key premise of GBD and other 52 

recent calls for “herd immunity” strategies. To their credit, the authors clearly demonstrate that 53 

population heterogeneity in susceptibility to infection can dramatically lower the herd immunity 54 

threshold10. However, their model can only disentangle the impacts of heterogeneity versus 55 

interventions on COVID-19 transmission when approached with sufficient data and validated 56 

assumptions. Our rough, but arguably more plausible, re-estimates of the COVID-19 HIT 57 

corroborate strong signals in the data and compelling arguments that most of the globe remains 58 

far from herd immunity. Moreover, abandoning community mitigation efforts would jeopardize 59 

the welfare of communities and integrity of healthcare systems. 60 

 61 

 62 

Figure 1: Re-estimation of the COVID-19 herd immunity thresholds (HIT) in four European 63 

countries, using the model of Aguas et al.2. (A) Strength of non-pharmacological 64 

interventions indicated by a government response index11 (black) compared to the trends 65 

assumed by Aguas et al.2 (blue) and plausible alternatives (green) derived to match the 66 

observed indices. The time-series are scaled for comparison, where values of zero and one 67 
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correspond to lack of mitigation efforts and the average level of community mitigation in April, 68 

respectively. (B) Estimated HIT using the Aguas et al.2 approach, under the original assumption 69 

that non-pharmacological efforts rapidly decrease to baseline (blue) and alternative assumption 70 

that measures mirror the government response index (green).  71 
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1 Overview7

The low COVID-19 herd immunity thresholds (HITs) of 6-21% estimated in8

Aguas et al. [1] are inconsistent with other model-derived estimates [5, 9, 2] and9

seroprevalence-based estimates from some of the hardest hit regions around the10

world [3]. To explain this apparent discrepancy, we conducted a thorough review11

of their methods and code. We identified key assumptions about the timing and12

extent of community mitigation efforts that shift the COVID-19 HIT estimates13

downward. As their code was made openly available (https://github.com/14

mgmgomes1/covid), we apply their exact model structure and fitting procedure15

to evaluate the sensitivity of the HIT estimates to these assumptions.16

Below, we detail our: (1) slight modification to their model fitting proce-17

dure, (2) sensitivity analyses with respect to the assumed mitigation curves (i.e.,18

timing and magnitude of transmission reduction via non-pharmacological inter-19

ventions), (3) derivation of alternate plausible mitigation curves from the Oxford20

COVID-19 Government Response Tracker response index data, (4) long-range21

COVID-19 mortality projections depending on the estimate HIT, and, finally (5)22

mathematical argument regarding the statistical non-identifiability the model23

(i.e., inability to simulataneously estimate the impact of community mitiga-24

tion and population heterogeneity). The code used for the primary analyses25

along with the data can be accessed here: https://github.com/pratyush16/26

VariationalSusceptibility27

2 Modification to the Aguas et al. model28

We slightly modified the modeling framework of Aguas et al. [1] to include29

an additional month of COVID-19 incidence data (through August 7th, 2020)30

for Belgium (https://epistat.wiv-isp.be/covid/) and England (https://31

coronavirus.data.gov.uk/details/about-data). For Portugal and Spain we32

1
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analyzed data through July 10th, 2020 as in [1]. We made this adjustment to33

address a strong tendency of the model to estimate a low HIT without evidence34

of increased transmission following intense mitigation during the initial stay at35

home orders.36

3 Sensitivity of COVID-19 HIT estimates to mit-37

igation curves38

We analyzed the sensitivity of the HIT estimates from Aguas et al. to variations39

in the assumed temporal progression of the mitigation curves within their mod-40

eling framework. Specifically they assume a general shape of mitigation where41

mitigation begins, increases until it reaches a maximum level, remains at the42

maximum for some time, and then slowly returns to a baseline of no mitigation.43

In this shape there are five key parameters governing the progression: (1) the44

time that mitigation begins, (2) the time it takes for mitigation to take full45

effect, (3) the maximum impact of mitigation, (4) the duration that mitigation46

remains at maximum, and (5) the time for mitigation to be completely removed.47

The modeling framework fits the timing that mitigation begins and the max-48

imum impact it will have, but makes assumptions about the remaining parame-49

ters. Their framework assumes that once mitigation begins it will take 21 days50

to reach a maximum level, will remain there for 30 days, and will subsequently51

return to the original baseline level after 120 days. They test sensitivity to52

slight deviations of the time to return to baseline and find minimal change in53

HIT estimates looking at 150 or 180 days. As noted in the manuscript and54

seen in Figure 1, we believed their assumptions about mitigation progression55

were driving their low HIT estimates, so we tested the sensitivity of the low56

HIT estimates to a wide-range of values for the maximum mitigation duration57

(Figure S2) and times to return back to baseline (Figure S3). It’s clear that58

the model is sensitive to the assumed shape of mitigation, with HIT estimates59

ranging from almost 5% to 85% depending on the country and assumed shape.60

It is clear that the estimated HITs are extremely sensitive to these assump-61

tions, and that there are many combinations of heterogeneity and mitigation62

progression that can give similar fits (described in the next section), so it is63

extremely important that the assumed mitigation curves match reality. While64

Aguas et al. matched their mitigation shapes to mobility data, these data are not65

an accurate picture for total transmission mitigation, as decoupling of mobility66

and transmission has been previously noted as populations adopt precautionary67

behavior like mask wearing and social distancing [12].68

Instead, we focused on the government response index developed by re-69

searchers at the University of Oxford [7]. This index captures 18 policy in-70

dicators widely implemented around the world, and produces an overall value71

that captures the strength of government responses through time as shown in72

Figure 1A. We found that the Aguas et al baseline assumptions did not match73

the actual progression of mitigation policies, and instead chose to fit the esti-74

2
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Figure S1: Country-specific case counts used for fitting alongside daily estimates
of the effective reproduction number. Case counts in black indicate data used
that are the same as Aguas et al, and light grey indicates the additional data
we included in our fitting procedure as described in the modifications section of
the supplement.

mated time to completely remove mitigation according to the government re-75

3
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Figure S2: Sensitivity of herd immunity threshold (HIT) estimates to assump-
tions about the duration at maximum mitigation. Vertical black dashed line
indicates the assumed value in Aguas et al. All estimates are made assuming
the baseline value of time for mitigation to be completely removed of 120 days.

sponse index. We assumed the baseline assumptions of 21 days to implement76

mitigation and 30 days at maximum mitigation impact, and fit the timing to77

completely remove mitigation based on the trends in the government response78

index. Fitted estimates for the time to return to normal can be found in Figure79

S3 for each country, and are almost an order of magnitude larger than assumed80

in Aguas et al (120): Belgium (828 days), England (1,130 days), Portugal (98181

days), and Spain (1,033 days). While the government response index also likely82

doesn’t capture the full progression of community mitigation, because it doesn’t83

capture adherence to policies, we feel that it likely captures general countrywide84

trends better than mobility data alone.85

4 Projecting mortality under a herd immunity86

policy87

We calculated the final epidemic size for an uncontrolled epidemic based on88

the method described in [6] for each country. We carried out the same fitting89

4
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Figure S3: Sensitivity of herd immunity threshold (HIT) estimates to assump-
tions about the time for mitigation to be completely removed. Colored solid
lines show sensitivity across all four European countries. Vertical black dashed
line shows the assumed value in Aguas et al, and vertical colored lines show the
fitted value from government response index used in our main analysis for each
of the specific countries. All estimates are made assuming the baseline value of
maximum mitigation duration of 30 days.

procedure as Aguas et al. using either their assumed mitigation curve or our90

revised version, we then calculated the mortality cost of following a “herd im-91

munity strategy” using the estimated parameters from each European country.92

For each European country we used the estimated final epidemic size estimated93

for that scenario as the total infection count and an infection fatality rate of94

0.68% (95% CI: 0.53%-0.82%) [10]. For the US, we assumed average final epi-95

demic sizes based on the average of the estimates for the four countries for each96

assumed mitigation curve scenario, which suggests final epidemic sizes of 13.9%97

and 79.2% for the Aguas et al. and alternative scenarios respectively. Estimates98

for both scenarios can be seen in Figure S4. Country population sizes were as-99

sumed to be 56,286,961 (England), 11,607,113 (Belgium), 10,186,314 (Portugal),100

46,761,086 (Spain), and 331,674,530 (United States) as estimated from UN pop-101

ulation statistics made available through hrefhttps://www.worldometers.info/.102

5
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Figure S4: Mortality estimate for a herd immunity strategy for each of the
four European countries and the United States. Comparison between estimated
mortality if herd immunity thresholds are as low as estimated in Aguas et al
(Blue), versus those estimated using the policy-based, alternative mitigation
curve (Green). Estimates assume an infection fatality rate of 0.68% (95% CI:
0.53%-0.82%) [10]

5 Non-identifiability of the model103

The model fitting procedure from Aguas et al. explains transmission dynamics104

between mitigation and population heterogeneity, which impacts herd immu-105

nity thresholds. In Aguas et al., they begin with assumed mitigation curves and106

estimate the herd immunity threshold. Here we describe mathematically why107

their estimation procedure is only identifiable with strong assumptions about108

the shape of the mitigation curves. We first break down the model structure109

into component parts to make clear the tension between mitigation and herd110

immunity. Then we use this analytical framework to flip their estimation proce-111

dure around to show how one can estimate mitigation curves that fit epidemic112

trajectories for any assumed herd immunity threshold.113

To start, consider an SEIR model with variable susceptibility St(x) and114

time-dependent mitigation Mt due to non-pharmaceutical interventions (NPIs),115

as given in Aguas et al.:116

6
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Ṡ(x) = −xλS(x)M

Ė(x) = xλS(x)M − δE(x)

İ(x) = δE(x)− γI(x)

Ṙ(x) = γI(x)

Then,117

R0 =
β

γ
, Rt =

β

γ
S̄tMt = R0S̄tMt,

where R0 is the basic reproduction number, Rt = Reff(t) is the effective repro-118

duction number at time t, and S̄t =
∫
x′St(x

′)dx′ is the mean susceptibility at119

time t. More generally, we can consider time-dependent effective reproduction120

numbers of the form121

Rt = R0Ft(S)Mt, (1)

where Ft(S) is some functional of the variable susceptibility St(x) as a function122

of x (notice that the functional itself does not change over time, but that the123

resulting function has a time dependence since St(x) does). The model of Aguas124

et al. corresponds to the case when Ft(S) = S̄t. From this equation it is already125

clear that given a time series Rt, we can for every t only infer the combined126

impact of heterogeneity and mitigation (the product Ft(S)Mt), but not each127

separately.128

Now consider R̃t = Rt/Mt = R0Ft(S), the effective reproduction number if129

there was no intervention at all (i.e., if Mt ≡ 1). Herd immunity is reached at130

T = min
{
t′ : R̃t ≤ 1 for all t ≥ t′

}
(i.e., the first time after which R̃t remains131

at or below 1), and the corresponding herd immunity threshold is132

HIT = 1− ST ,

where St =
∫
St(x

′)dx′.133

Epidemic dynamics with Gamma-distributed variable sus-134

ceptibility135

Following a similar derivation as that in Montalban et al. [11], it can be shown136

that137

St(x) = S0(x)e−x·kt

where kt =
∫ t

0
λsMsds and λt is the force of infection at time t. Assuming S0(x)138

is a Gamma(a, a) density (where a is related to the coefficient of variation by139

CV = 1/
√
a), we have that140

St(x) =

(
a

a+ kt

)a
Gammaa,a+kt(x).

7
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Taking integrals, it can be shown that141

St =

(
a

a+ kt

)a
and142

S̄t =

(
a

a+ kt

)a+1

= (St)
a+1
a .

Using the previous formula, we have that St = (S̄t)
a

a+1 . Since R̃T =143

RT /MT = 1, we have that R0S̄T = 1 and144

HIT = 1− (S̄T )
a

a+1 = 1−R−
a

a+1

0 .

Deriving mitigation curves from herd immunity thresholds145

We now show how it is possible to derive a mitigation curve Mt that is consistent146

with the dynamics under Gamma-distributed variable susceptibility for a given147

herd immunity threshold.148

To begin, let us reparameterize time in terms of the proportion of susceptibles149

St to make our calculations simpler. First, Note that St is strictly monotone150

decreasing so long as λtMt > 0 for all t (i.e., both the force of infection and151

mitigation curve are strictly positive), and that S0 = 1 and St → 0 as t → ∞.152

Let σt = 1 − St. Then, we can reparameterize time by t 7→ σ (i.e., [0,∞) 7→153

[0, 1]). That is, Equation (1) becomes154

Rσ = R0FσMσ.

Assume that Ft and Rt are given. Then Mσ can be calculated as155

Mσ =
Rσ
R0Fσ

.

Let us write script letters for log of the values:156

Mσ = log(Mσ) = log(Rσ)− log(R0)− log(Fσ) = Rσ −R0 −Fσ.

Since Ft(S) = (St)
(a+1)/a, we have that Fσ = (1 − σ)(a+1)/a. Therefore, Fσ =157

a+1
a log(1− σ) and158

Mσ = Rσ −R0 −
a+ 1

a
log(1− σ).

As before, herd immunity is reached at the value S∗ of S at which no growth159

occurs in the absence of intervention, i.e., Rt/Mt ≡ R∗/M∗ = 1. That is,160

1 = R0F∗(S∗),

and therefore F∗(S∗) = R−1
0 . Let σ∗ = 1 − S∗ = HIT. Since F (S) = S(a+1)/a,161

this implies162

(1− σ∗)
a+1
a =

1

R0
.

8
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Taking logarithms, we find that163

a+ 1

a
=

−R0

log(1− σ∗)
.

Finally, substituting this into the expression above above we get164

Mσ = Rσ −R0 +
R0

log(1− σ∗)
log(1− σ)

= R0

(
log(1− σ)

log(1− σ∗)
−
(

1− Rσ
R0

))
.

Inverting the mapping t 7→ σ, we can again write this as a function of time t:165

Mt = R0

(
log(St)

log(S∗)
−
(

1− Rt
R0

))
.

Exponentiating both sides, we finally arrive at the expression166

Mt = exp

[
log(R0)

(
log(St)

log(S∗)
−
(

1− log(Rt)

log(R0)

))]
= Rt ·R

log(St)
log(1−HIT)

−1

0 (2)

This gives us a formula for calculating a mitigation curve Mt that is consistent167

with the underlying variable susceptibility model of Aguas et al., for any chosen168

value of a herd immunity threshold.169

Computing mitigation curves as a function of herd immu-170

nity threshold171

We can see from the previous section that the model is attempting to match the172

dynamics seen in the data through a combination of mitigation and herd immu-173

nity as impacted through population heterogeneity. To further show why strong174

mitigation assumptions are needed to estimate the herd immunity thresholds,175

we show how one can craft mitigation curves to match dynamics for a wide176

range of herd immunity thresholds for each of the four countries investigated177

(Belgium, England, Portugal, and Spain).178

Using Equation (2), we can estimate daily mitigation impacts for a given herd179

immunity threshold (HIT) given the necessary data. To do so, one only needs180

estimates for the basic reproduction number (R0), daily effective reproduction181

number (Rt), and the proportion of the population still susceptible to the disease182

(St). For each of the four countries we first estimated Rt using the available183

case data and a common method for measuring the instantaneous reproduction184

number assuming a mean serial interval of 5.8 days and standard deviation of185

4.48 days [4, 8]. We took the largest value of Rt as our rough estimate for the186

R0. Finally, we used the case data and the estimated country-specific reporting187
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rates estimated in Aguas et al. to estimate the true incidence of disease each188

day, which we converted to St using St = St−1 − Ct/ρ. Here, Ct is the number189

of the reported cases in that country at time t, and ρ is the country-specific190

reporting rate from Aguas et al: Belgium (0.06), Portugal (0.09), Spain (0.059),191

England (0.024).192

In Figure S5 we show the calculated mitigation curves for each country across193

a range of potential HITs from 20% to 70%.194
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Figure S5: Using cases data and Rt estimation we calculate Mt, the NPI trans-
mission multiplier timelines that would be inferred to have a predetermined
HIT.
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