Abstract
COVID-19 is a severe global problem, and AI can play a significant role in preventing losses by monitoring and detecting infected persons in early-stage. This paper aims to propose a high-speed and accurate fully-automated method to detect COVID-19 from the patient’s CT scan images. We introduce a new dataset that contains 48260 CT scan images from 282 normal persons and 15589 images from 95 patients with COVID-19 infections. At the first stage, this system runs our proposed image processing algorithm to discard those CT images that inside the lung is not properly visible in them. This action helps to reduce the processing time and false detections. At the next stage, we introduce a novel method for increasing the classification accuracy of convolutional networks. We implemented our method using the ResNet50V2 network and a modified feature pyramid network alongside our designed architecture for classifying the selected CT images into COVlD-19 or normal with higher accuracy than other models. After running these two phases, the system determines the condition of the patient using a selected threshold. We are the first to evaluate our system in two different ways. In the single image classification stage, our model achieved 98.49% accuracy on more than 7996 test images. At the patient identification phase, the system correctly identified almost 234 of 245 patients with high speed. We also investigate the classified images with the Grad-CAM algorithm to indicate the area of infections in images and evaluate our model classification correctness.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
We did not receive any fundings.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
We declare that this paper is original and has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that all have approved the order of authors listed in the paper of us. All the patients' shared data have been approved by Negin Radiology Medical Center located at Sari, Iran, under the supervision of its director(Dr.Sakhaei, radiology specialist) and Dr.Mahdi Hassanzadeh. It must be mentioned that to protect patients' privacy, all the DICOM files have been converted to TIFF format files to remove the patients' information. Dr.Mahdi Hassanzadeh email : mehdi.hasanzadeh.1363{at}gmail.com
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Data and Codes are available at: https://github.com/mr7495/COVID-CT-Code https://github.com/mr7495/COVID-CTset