Abstract
Infant mortality is a reflection of a complex combination of biological, socioeconomic and health care factors that require various data sources for a thorough analysis. Consequently, the use of specialized tools and techniques to deal with a large volume of data is extremely helpful. Machine learning has been applied to solve problems from many domains and presents great potential for the proposed problem, which would be an innovation in Brazilian reality. In this paper, an innovative method is proposed to perform a neonatal death risk assessment using computer vision techniques. Using mother, pregnancy care and child at birth features, from a dataset containing neonatal samples from São Paulo city public health data, the proposed method encodes images features and uses a custom convolutional neural network architecture to classification. Experiments show that the method is able to detect death samples with accuracy of 90.61%.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research was supported by Bill & Melinda Gates Foundation (Process no: OPP1201970) and Ministry of Health of Brazil, through the National Council for Scientific and Technological Development (CNPq) (Process no: 443774/2018-8). It was also supported by NVIDIA, that donated a GPU XP Titan used by the research team.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This paper uses publicly available data (SIM and SINASC) that has been de-identified and was deemed exempt from approval from a human research ethics committee.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Data will be made public after paper acceptance in a journal.