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ABSTRACT 

A SIRU-type epidemic model is employed for the prediction of the COVID-19 epidemy 

evolution in Brazil, and analyse the influence of public health measures on simulating the 

control of this infectious disease. Since the reported cases are typically only a fraction of 

the total number of the symptomatic infectious individuals, the model accounts for both 

reported and unreported cases. Also, the model allows for a time variable functional form 

of both the transmission rate and the fraction of asymptomatic infectious that become 

reported symptomatic individuals, so as to reflect public health interventions, towards its 

control, along the course of the epidemic evolution. An analytical exponential behaviour 

for the accumulated reported cases evolution is assumed at the onset of the epidemy, for 

explicitly estimating initial conditions, while a Bayesian inference approach is adopted 

for parametric estimations employing the present direct problem model with the data from 

the known portion of the epidemics evolution, represented by the time series for the 

reported cases of infected individuals. The direct-inverse problem analysis is then 

employed with the actual data from China, with the initial phase of the data been 

employed for the parametric estimation and the remaining data being used for validation 

of the predictive capability of the proposed approach. The full dataset for China is then 

employed in another parameter identification, aimed at refining the values for the average 

times that asymptomatic infectious individuals and that symptomatic individuals remain 

infectious. Following this validation, the available data on reported cases in Brazil from 

February 15th till March 29th, 2020, is used for estimating parameters and then predict the 

epidemy evolution from these initial conditions. As for the China analysis, the data for 

the reported cases in Brazil from March 30th till April 23rd are reserved for validation of 

the model. Finally, public health interventions are simulated, aimed at evaluating the 

effects on the disease spreading, by acting on both the transmission rate and the fraction 

of the total number of the symptomatic infectious individuals, considering time variable 

exponential behaviours for these two parameters, usually assumed constant in epidemic 

evolutions without intervention. It is demonstrated that a combination of actions to affect 

both parameters can have a more effective result in the control of the epidemy dynamics. 
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NOMENCLATURE 

 

𝐶𝑅(𝑡) cumulative number of reported infectious symptomatic cases at time t 

𝐶𝑈(𝑡) cumulative number of unreported infectious symptomatic cases at time t 

𝐷𝑅(𝑡) daily number of reported infectious symptomatic cases at time t 

𝑓(𝑡) 
time-variable fraction of asymptomatic infectious who become reported 

symptomatic infectious 

𝑓0 
initial fraction of asymptomatic infectious who become reported 

symptomatic infectious 

𝑓𝑚𝑎𝑥 
second value of fraction of asymptomatic infectious who become reported 

symptomatic infectious 

𝑓𝑚𝑎𝑥2 
third value of fraction of asymptomatic infectious who become reported 

symptomatic infectious 

𝐼(𝑡) number of asymptomatic infectious individuals at time t  

I0 asymptomatic infectious individuals at initial time 𝑡0 

𝑁 
time in days of application of the first public health intervention that changes 

transmission rate 

𝑁2 
time in days of application of the second public health intervention that 

changes transmission rate 

𝑁𝑓 

time in days for application of the first public health intervention that 

changes the fraction of asymptomatic infectious that become reported 

symptomatic infectious 

𝑁𝑓2 

time in days for application of the second public health intervention that 

changes the fraction of asymptomatic infectious that become reported 

symptomatic infectious 

𝑁𝑃 total number of parameters in estimation algorithm 

𝑀 total number of measured data used in the estimation 

𝑅(𝑡) number of  reported symptomatic infectious individuals at time t  

R0 reported symptomatic infectious individuals at initial time 𝑡0 

P vector of parameters under estimation (P1, P2, ..., PNP) 

𝑆(𝑡) number of individuals susceptible to infection at time t 

S0 number of individuals susceptible to infection at initial time 𝑡0 

𝑡 time variable, in days 

𝑡0 beginning date of the epidemic, in days 

𝑈(𝑡) number of unreported symptomatic infectious individuals at time t 

U0 unreported symptomatic infectious individuals at initial time 𝑡0 

Y vector of measured data (Ym at time tm,m = 1, …, M) 
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Greek Symbols 

1/η average time in days that the symptomatic infectious remain with symptoms  

1/ν average time in days that the asymptomatic infectious remain asymptomatic 

ν1 
rate at which asymptomatic infectious become reported symptomatic 

infectious 

ν2 
rate at which asymptomatic infectious become unreported symptomatic 

infectious 

𝜇 argument of the 𝜏(𝑡) function 

𝜇2 argument of the 𝜏(𝑡) function 

𝜇𝑓 argument of the f(t) function 

𝜇𝑓2 argument of the f(t) function 

𝜋(𝐘) marginal probability density 

𝜋(𝐘|𝐏) likelihood function 

𝜋𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 posterior probability density 

𝜋𝑝𝑟𝑖𝑜𝑟 prior probability density 

𝜏(𝑡) time-variable transmission rate  

𝜏0 initial amplitude of the 𝜏(𝑡) function 

𝜒1 fitting parameter in the early exponential phase of the epidemic 

𝜒2 fitting parameter in the early exponential phase of the epidemic 

𝜒3 fitting parameter in the early exponential phase of the epidemic 
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INTRODUCTION 

A new human coronavirus started spreading in Wuhan, China, by the end of 2019, 

and turned into a pandemic disease called COVID-19 as declared by the World Health 

Organization on March 11th, 2020. The affected countries and cities around the world 

have been reacting in different ways, towards locally controlling the disease evolution. 

These measures include general isolation through quarantine and massive testing for 

focused isolation, with varying degrees of success so far, as can be analysed from the 

limited data available. Naturally, China offers the longest time series on reported infected 

cases and the resulting effects of combining different public health interventions. As of 

March 26th, 2020, there were no reports in China of further internal contaminations, and 

all the new cases are associated with infected individuals that (re)entered in the country. 

Despite the apparent success of the interventions in China, each region or country might 

require a specific combination of measures, due to demographic spatial distribution and 

age structure, health system capabilities, and social-economical characteristics. In this 

sense, it urges to have a mathematical model that would allow for the simulation of such 

possible interventions on the epidemic evolution within the following weeks or months. 

This article presents a collaborative research effort towards the construction of an 

epidemic evolution prediction tool, which combines direct and inverse problem analysis 

and is both reliable and easy to implement and execute, initially motivated by offering 

some insight into the control of COVID-19 within Brazil.   

 The classical susceptible-infectious-recovered (SIR) model describes the 

transmission of diseases between susceptible and infective individuals and provides the 

basic framework for almost all epidemic models. At the onset of the coronavirus epidemy 

in China, there were some initial studies for the prediction of its evolution and the analysis 

of the impact of public health measures [1], which however did not consider in the 

modelling the presence of unreported infectious individuals cases, which are in practice 

inherent to this process. The present work is first based on the SIRU-type model proposed 

in [2], which deals with the epidemic outbreak in Wuhan by introducing the unreported 

cases in the modelling, and evaluating the consequences of public health interventions. It 

was a direct application of previous developments [3,4] on the fundamental problem of 

parameter identification in mathematical epidemic models, accounting for unreported 

cases. This same modelling approach was more recently employed in the analysis of the 

epidemic outbreak in different countries, including China, South Korea, Germany, Italy, 
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and France [5-7]. Besides identifying unreported cases, this simple and robust model also 

allows for introducing a latency period and a time variable transmission rate, which can 

simulate a public health orientation change such as in a general isolation measure. In 

addition, an analytical exponential behaviour is assumed for the accumulated reported 

cases evolution along an initial phase just following the onset of the epidemy, which, 

upon fitting of the available data, allows for the explicit analytical estimation of the 

transmission rate and the associated initial conditions required by the model. 

 Here, the SIRU-type model in [2-7] is implemented for the direct problem 

formulation of the COVID-19 epidemic evolution, adding a time variable parametrization 

for the fraction of asymptomatic infectious that become reported symptomatic 

individuals, a very important parameter in the public health measure associated with 

massive testing and consequent focused isolation. The same analytical identification 

procedure is maintained for the required initial conditions, as obtained from the early 

stage exponential behaviour. However, a Bayesian inference approach is here adopted for 

parametric estimation, employing the Markov Chain Monte Carlo method with the 

Metropolis-Hastings sampling algorithm [8-12]. At first, the goal of the inverse problem 

analysis was estimating the parameters associated with the transmission rate and the 

fraction of asymptomatic infectious that become reported symptomatic individuals, which 

can be quite different in the various regions and countries and may also vary according 

to the public health measures. Then, in light of the success in this parametric 

identification, an extended estimation was also employed which incorporates the average 

time the asymptomatic infectious are asymptomatic and the average time the infectious 

stay in the symptomatic condition, due to the relative uncertainty on these parameters in 

the literature. The proposed approach was then applied to the data from China, first by 

taking just the first portion of these data points in the estimation, while using the second 

portion to validate the model using the estimated parameters with just the first phase of 

the epidemy evolution, and second by employing the whole time series in the MCMC 

estimation procedure, thus identifying parameters for the whole evolution period. This 

second estimation was particularly aimed at refining the data for the average times that 

asymptomatic infectious individuals and that symptomatic individuals remain infectious. 

Upon validation of the approach through the data for China, we have proceeded to the 

analysis of the epidemic dynamics in Brazil, employing about 36 days (February 15th till 

March 29th) of collected information on reported infected individuals. First, the available 

data was employed in the parametric estimation, followed by the prediction of the 
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epidemy evolution in Brazil. For this purpose, the following 20 days (from March 31st to 

April 19th) were reserved to be used in the validation of the proposed model for the 

COVID-19 evolution in Brazil. Finally, we have explored the time variation of both the 

transmission rate and the fraction of asymptomatic infectious that become reported 

symptomatic individuals, so as to reflect public health interventions, in simulating 

possible government measures, as described in what follows. 

 

DIRECT PROBLEM 

 The implemented SIRU-type model [2-7] is given by the following initial value 

problem: 

 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝜏(𝑡)𝑆(𝑡)[𝐼(𝑡) + 𝑈(𝑡)] (1.a) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜏(𝑡)𝑆(𝑡)[𝐼(𝑡) + 𝑈(𝑡)] − 𝜈𝐼(𝑡) (1.b) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝜈1(𝑡)𝐼(𝑡) − 𝜂𝑅(𝑡) (1.c) 

𝑑𝑈(𝑡)

𝑑𝑡
= 𝜈2(𝑡)𝐼(𝑡) − 𝜂𝑈(𝑡) (1.d) 

where, 

𝜈1(𝑡) = 𝜈𝑓(𝑡);   𝜈2(𝑡) = 𝜈(1 − 𝑓(𝑡))                                 (2.a,b) 

with initial conditions 

𝑆(𝑡0) = 𝑆0;    𝐼(𝑡0) = 𝐼0;     𝑅(𝑡0) = 0;     𝑈(𝑡0) = 𝑈0;                                 (3.a-d) 

 

Here, t0 is the beginning date of the epidemic in days, S(t) is the number of individuals 

susceptible to infection at time t, I(t) is the number of asymptomatic infectious individuals 

at time t, R(t) is the number of reported symptomatic infectious individuals (i.e., 

symptomatic infectious with severe symptoms) at time t, and U(t) is the number of 

unreported symptomatic infectious individuals (i.e., symptomatic infectious with mild 

symptoms) at time t. Asymptomatic infectious individuals I(t) are infectious for an 

average period of 1/ν days. Reported symptomatic individuals R(t) are infectious for an 

average period of 1/η days, as are unreported symptomatic individuals U(t). We assume 

that reported symptomatic infectious individuals R(t) are reported and isolated 

immediately, and cause no further infections. The asymptomatic individuals I(t) can also 
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be viewed as having a low-level symptomatic state. All infections are acquired from either 

I(t) or U(t) individuals. The fraction f(t) of asymptomatic infectious become reported 

symptomatic infectious, and the fraction 1-f(t) become unreported symptomatic 

infectious. The rate asymptomatic infectious become reported symptomatic is ν1(t) = f(t)ν, 

the rate asymptomatic infectious become unreported symptomatic is ν2(t) = (1-f(t)) ν, 

where ν1(t) + ν2(t) = ν. The transmission rate, τ(t), is also allowed to be a time variable 

function along the evolution process. Figure 1 below illustrates the infection process as a 

flow chart. 

 

 

Figure 1 – Flow chart illustrating the infection path process [3]. 

 

 The time variable coefficients, τ(t) and f(t), are chosen to be expressed as: 

 

𝜏(𝑡) = 𝜏0 , 0 ≤ 𝑡 ≤ 𝑁 (4.a) 

𝜏(𝑡) = 𝜏0 exp (−𝜇(𝑡 − 𝑁)), 𝑡 > 𝑁 (4.b) 

𝑓(𝑡) = 𝑓0 , 0 ≤ 𝑡 ≤ 𝑁𝑓 (4.c) 

𝑓(𝑡) = (𝑓𝑚𝑎𝑥−𝑓0) [1 − exp (−𝜇𝑓(𝑡 − 𝑁𝑓))] + 𝑓0, 𝑡 > 𝑁𝑓 (4.d) 

 

These parametrized functions are particularly useful in interpreting the effects of public 

health interventions. For instance, the transmission rate, τ(t), is particularly affected by a 

reduced circulation achieved through a general isolation or quarantine measure, while the 

fraction f(t) of asymptomatic infectious that become reported, thus isolated, cases can be 

drastically increased by a massive testing measure with focused isolation. In the above 

relations,  𝜇 is the attenuation factor for the transmission rate, N is the time in days for 
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application of the public health intervention to change transmission rate, 𝜇𝑓 is the 

argument of the f(t) variation between the limits (𝑓0, 𝑓𝑚𝑎𝑥). The first time variable 

function has been previously considered, while the second one has been introduced in the 

present work, so as to allow for the examination of combined measures.  

The cumulative number of reported cases at time t, 𝐶𝑅(𝑡), which is the quantity offered 

by the actual available data, and the a priori unknown cumulative number of unreported 

cases, 𝐶𝑈(𝑡), are given by: 

 

𝐶𝑅(𝑡) = ∫ 𝜈1(𝑠)𝐼(𝑠)𝑑𝑠
𝑡

𝑡0

  (5.a) 

𝐶𝑈(𝑡) = ∫ 𝜈2(𝑠)𝐼(𝑠)𝑑𝑠
𝑡

𝑡0

  (5.b) 

 

The daily number of reported cases from the model, 𝐷𝑅(𝑡), can be obtained by computing 

the solution of the following equation: 

 
𝑑𝐷𝑅(𝑡)

𝑑𝑡
= 𝜈𝑓(𝑡)𝐼(𝑡) − 𝐷𝑅(𝑡) (6.a) 

with initial conditions 

  𝐷𝑅(𝑡0) = 𝐷𝑅0                                                                   (6.b) 

 

INVERSE PROBLEM 

Inverse problem analysis is nowadays a common practice in various science and 

engineering contexts, in which the groups involved with experimental data and numerical 

simulation collaborate so as to obtain the maximum information from the available data, 

towards the best possible use of the modelling for the problem under study. Here, as 

mentioned in the introduction, we first review an analytical parametric identification 

described in more details in [4-7], that from the initial phases of the epidemic evolution 

allows to explicitly obtain the unknown initial conditions of the model, while offering a 

reliable estimate for the transmission rate at the onset of the epidemy. Nevertheless, even 

after these estimates, a few other parameters in the model remain uncertain, either due to 

the specific characteristics of the physical conditions or response to the epidemy in each 

specific region, or due to lack of epidemiological information on the disease itself. 

Therefore, an inverse problem analysis was undertaken aimed at estimating the main 
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parameters involved in the model, as summarized in Table 1 below. First, for the dataset 

on the accumulated reported cases for China, the focus is on the parametrized time 

variation of the transmission rate (𝜏0 and 𝜇) and the fraction of asymptomatic infectious 

that become reported (𝑓0 ), in this case assumed constant, followed by an effort to refine 

the information on the average times (1/ν and 1/η) through a simultaneous estimation of 

the five parameters. Then, employing the dataset for Brazil just up to March 29th, the 

parametrized time variation of the transmission rate (𝜏0 and 𝜇) and the fraction of 

asymptomatic infectious that become reported 𝑓(𝑡), assumed time-variable, are estimated 

by parametrization of an abrupt variation that requires just the estimation of 𝑓𝑚𝑎𝑥 and 𝑁𝑓. 

 

Table 1 – Summary of the estimated parameters on each inverse problem analysis.  

China 

Case 
Parameter under 

estimation 

Data range used in the Inv. Prob. 

case 1: CH3p 𝑓0, 𝜇, 𝜏0 January 19th up to February 17th   

case 2: CH5p-full 𝑓0, 𝜇, 𝜏0, 1/ν, 1/η January 19th up to April 16th   

Brazil 

case 3: BR5p 𝑓0, 𝜇, 𝜏0, 𝑓𝑚𝑎𝑥 , 𝑁𝑓 February 25th up to March 29th 

 

The statistical inversion approach here implemented falls within the Bayesian 

statistical framework [8-12], in which (probability distribution) models for the 

measurements and the unknowns are constructed separately and explicitly, as shall be 

briefly reviewed in what follows. 

As explained in previous works employing this model [4-7], it is assumed that in 

the early phase of the epidemic, the cumulative number of reported cases grows 

approximately exponentially, according to the following functional form: 

 

𝐶𝑅(𝑡) = 𝜒1 exp(𝜒2 𝑡) − 𝜒3 ,   𝑡 ≥ 𝑡0  (7.a) 

 

After fitting this function to the early stages of the epidemic evolution, one may extract 

the information on the unknown initial conditions, in the form [4-7]: 
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𝑡0 =
1

𝜒2
[ln (𝜒3 ) − ln (𝜒1) (7.b) 

𝐼0 =
𝜒3𝜒2

𝑓0𝜈
 (7.c) 

𝑈0 =
(1 − 𝑓0)𝜈

𝜂 + 𝜒2
𝐼0 (7.d) 

 

In addition, an excellent estimate for the initial transmission rate can be obtained from 

the same fitted function, in the form: 

 

𝜏0 =
𝜒2 + 𝜈

𝑆0

𝜂 + 𝜒2

(1 − 𝑓0)𝜈 + 𝜂 + 𝜒2
 (7.e) 

 

Also, the basic reproductive number for this initial phase model is estimated as: 

 

ℛ0 =
𝜏0𝑆0

𝜈
[1 +

(1 − 𝑓0)𝜈

𝜂
] (7.f) 

 

The statistical approach for the solution of inverse problems here adopted employs 

the Metropolis-Hastings algorithm for the implementation of the Markov chain Monte 

Carlo (MCMC) method [8-9]. The MCMC method is used in conjunction with the 

numerical solution of the ordinary differential system, eqs.(1-3), for estimating the 

remaining model parameters. Consider the vector of parameters appearing in the physical 

model formulation as: 

 

PT  [P1, P2, ..., PNP]      (8) 

 

where NP is the number of parameters. For estimating P, we assume that a vector of 

measured data is available (Y) containing the measurements Ym at time tm, m = 1, …, M. 

Bayes’ theorem can then be stated as [8-9]: 

 

( ) ( )
( ) ( )

( )

prior

posterior = =
 

 


P Y P
P P Y

Y
       (9) 
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where  posterior(P) is the posterior probability density, that is, the conditional probability 

of the parameters P given the measurements Y,  prior(P) is the prior density, that is, the 

coded information about the parameters prior to the measurements,  (Y|P) is the 

likelihood function, which  expresses the likelihood of different measurement outcomes 

Y with P given, and  (Y) is the marginal probability density of the measurements, which 

plays the role of a normalizing constant. If different prior probability densities are 

assumed for the parameters, the posterior probability distribution may not allow an 

analytical treatment. In this case, Markov chain Monte Carlo (MCMC) methods are used 

to draw samples of all possible parameters, and thus inference on the posterior probability 

becomes inference on the samples [8-9]. The main merit of the MCMC method is about 

providing a picture of the posterior distribution, without solving the mathematical 

integrals in Bayes’ rule. The idea is to approximate the posterior distribution by a large 

collection of samples of values. This method is especially suitable when it is unfeasible 

to yield an analytical solvable posterior distribution and/or a large space of parameters is 

involved, allowing one to do Bayesian inference even in rich and complex models. The 

idea behind the Metropolis-Hasting sampling algorithm is illustrated below, and these 

steps should be repeat until it is judged that a sufficiently representative sample has been 

generated. 

1) Start the chain with an initial value, that usually comes from any prior information 

that you may have; 

2) Randomly generate a proposed jump aiming that the chain will move around and 

efficiently explores the region of the parameter space. The proposal distribution can take 

on many different forms, in this work a Gaussian random walk was employed, implying 

that the proposed jumps will usually be near the current one; 

3) Compute the probability of moving from the current value to the proposed one. 

Candidates moving to regions of higher probability will be definitely accepted. 

Candidates in regions of lower probability can be accepted only probabilistically. If the 

proposed jump is rejected, the current value is tally again. For more details on theoretical 

aspects of the Metropolis-Hastings algorithm and MCMC methods and its application, 

the reader should refer to [8-12]. 
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RESULTS AND DISCUSSION 

 

Model Validation: China 

 

Before proceeding to the analysis of the COVID-19 epidemic evolution within 

Brazil, which is the major concern in the present contribution, the need was felt in 

validating the proposed direct-inverse problem analysis approach. In this sense, due to 

the availability of the largest dataset on this pandemic, we have chosen to use the 

information from China in terms of the accumulated confirmed infectious cases. The data 

for China was extracted from [6], complemented by the most recent data from [13] from 

January 1st up to April 17th, 2020. The exponential fit for the early phase of the China 

CR(t) dataset provided the estimates of the three parameters, 𝜒1 = 0.14936, 𝜒2 =

0.37680, 𝜒3 = 1.0, from which we have estimated 𝑡0 = 5.046. The remaining data for 

the initial conditions, 𝐼0 and 𝑈0, and the early stage transmission rate, 𝜏0, are in fact 

recalculated from within the MCMC algorithm, since the changing values of f will affect 

them, according to eqs. (7.c-e). The average times in the model were taken as 1/ν=7 and 

1/η=7 days and the isolation measures were taken at N=25 days [6]. First, experimental 

data from China from the period of January 19th up to February 17th was employed in 

demonstrating the estimation of three parameters, 𝑓0, 𝜇, and 𝜏0,  assuming there is no 

significant time variation in the function f(t) (𝜇𝑓 = 0). In the absence of more informative 

priors, uniform distributions were employed for all three parameters under estimation. 

Table 2 presents the prior information and the initial guesses for the parameters. If the 

initial guesses were used to predict the CR(t) behavior, an over-estimation of the 

accumulated reported infected individuals would occur, especially in the long term, as 

can be noticed in Figure 1, confirming the need for a proper parameter estimation.  

The central tendency (mean value) of the posteriors here sampled, after neglecting 

the first 20,000 burning in states of the chain, are called the estimated values. Both the 

estimated values and their 99% confidence intervals are presented in Table 3. It should 

be mentioned that these values are fairly close to those employed in [6], where τ0 was 

estimated as 4.51x10-8. Once a value of f0 = 0.8 was assumed, which means that 20% of 

symptomatic infectious cases go unreported, it led to a good agreement with the data by 

taking μ=0.139 in [6].  
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Table 2 – Prior distributions and initial guesses for the parameters to be estimated 

𝑓0, 𝜇, and 𝜏0 (Wuhan, China). 

Case 1: CH3p 

Param. Prior distribution Initial Guess  

𝑓  𝑈[0, 1] 0.5 estimated 

𝜇  𝑈[0, 5] 0.1 estimated 

𝜏0  𝑈[0, 1 × 10−6] 4.478 × 10−8 estimated 

S0 11.0x106 fixed 

𝑡0 5.04617 fixed 

1/ν 7 days fixed 

1/η 7 days fixed 

N 25 fixed 

𝜒1 0.14936 fixed 

 𝜒2 0.37680 fixed 

 𝜒3 1.0 fixed 

 

 

Figure 1 – Comparison of the theoretical model for CR(t) with the initial guesses from 

Table 2 (black dashed line), against the model prediction with the estimated values from 

Table 3 (solid black line), and actual data from China from January 19th to February 17th 

(blue cross) -- Case 1: CH3p 
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Figure 1 also demonstrates the adherence of the model with the data within this 

portion of the dataset, once the estimated values in Table 3 are employed in the direct 

problem solution, as can be seen from the excellent agreement between the estimated 

CR(t) (solid line) and the experimental data from China (blue stars). The desired model 

validation is illustrated in Figure 2, confirming the excellent agreement of China's full 

dataset (period from January 19th till April 16th) with the mathematical model 

predictions, after adopting the estimated values for the parameters in Table 3. It should 

be recalled that non-informative priors were adopted for the three parameters, as 

presented in Table 2, and except for the transmission rate, when eq.(7.e) provides an 

excellent initial guess, the remaining guesses were completely arbitrary. 

 

Table 3 – Estimated values and 99% confidence intervals for three parameters, 

𝑓0, 𝜇, and 𝜏0 (Wuhan, China). 

Case 1: CH3p 

Parameter Estimated values 99% confidence interval 

𝑓 0.780719 [0.77956, 0.7818] 

𝜇 0.135635 [0.135219, 1.136153] 

𝜏0 4.47793 × 10−8 [4.47793 × 10−8, 4.47793 × 10−8] 

 

 Although the present estimated parameters have led to a good prediction of the 

second phase of the China epidemic evolution data, there are still uncertainties associated 

with the average times here assumed both equal to 7 days, according to [6]. This choice 

was based on early observations of the infected asymptomatic and symptomatic patients 

in Wuhan, but more recent studies have been refining the information on the epidemic 

evolution and the disease itself, such as in [14-17]. For this reason, we have also 

implemented a statistical inverse analysis with the full dataset of China, but now seeking 

the estimation of five parameters, so as to simultaneously estimate the average times (1/ν 

and 1/η). Both uniform and Gaussian distributions were adopted for the two new 

parameters, with initial guesses of 1/ν=7 days and 1/η=7 days, and N=25 days, as 

employed in [6]. Table 4 presents the prior information and the initial guesses for the 

parameters. 
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Figure 2 – Comparison of the theoretical model for CR(t) with the three estimated 

parameter values from Table 3 (solid line), against the dataset for China from 

January19th to February17th (blue stars) and from February18th to April 16th (red dots) -- 

Case 1: CH3p 

 

 

 Table 5 provides the estimated values and 99% confidence intervals for all five 

parameters, with Gaussian priors for the two average times with data obtained from 

[14,17], after neglecting the first 15,000 burn in states of the chain. The most affected 

parameter in comparison with the previous estimates is the average time 1/η, which is 

also the one with widest confidence interval. This behaviour is also evident from the 

Markov chains for this parameter, now simultaneously estimated. Figure 3 compares the 

theoretical predictions with the model incorporating the five estimated parameters as in 

Table 5, against the full CR(t) dataset for China, confirming the improved agreement. The 

99% confidence interval bounds for this predicted behavior is lso shown in Fig.3, bounded 

by the gray lines.  
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Table 4 – Prior distributions and initial guesses for the 5 parameters to be estimated, 

𝑓0, 𝜇, 𝜏0, 1/ν and 1/η, (Wuhan, China) 

Case 2: CH5p 

Param. Prior distribution Initial Guess  

𝑓0  𝑈[0, 1] 0.8 estimated 

𝜇  𝑈[0, 5] 0.131 estimated 

𝜏0  𝑈[0, 1 × 10−6] 4.4779 × 10−8 estimated 

1/ν 𝑁[5.2, 𝜎 = 2.1] 

(Min=1, Max=21) 

7 estimated 

1/η 𝑁[10.4, 𝜎 =  2.6] 

(Min=1, Max=21) 

7 estimated 

S0 11.0x106 fixed 

𝑡0 5.04617 fixed 

N 25 fixed 

𝜒1 0.14936 fixed 

 𝜒2 0.37680 fixed 

 𝜒3 1.0 fixed 

 

 

Table 5 – Estimated values and 99% confidence intervals for five parameters, 

𝑓0, 𝜇, 𝜏0, 1/ν and 1/η (Wuhan, China). 

Case 2: CH5p 

Parameter Estimated values 99% confidence interval 

𝑓0  0.718491 [0.711595, 0.723138] 

𝜇  0.132032 [0.131789, 0.13227] 

𝜏0  4.47793 × 10−8 [4.47793 × 10−8, 4.47793 × 10−8] 

1/ν 6.20798 [6.12574, 6.25764] 

1/η 11.2784 [10.4379, 12.3593] 
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Figure 3 – Comparison of the theoretical model for CR(t) with the five estimated 

parameter values (black solid line) and 99% confidence intervals (gray lines), against 

the complete dataset for China from January 19th up to April 16th (blue cross) -- Case 

2: CH5p 

 

 

Model Application: Brazil 

 

The CR(t) data for the accumulated reported infectious in Brazil, from February 

25th, when the first infected individual was reported, up to April 23rd, is presented in the 

Appendix. Similarly to the previous example with the data from China, a portion of the 

available data on accumulated reported infectious was employed in the model parameters 

estimation, up to March 29th. Then, the second portion of the data, from March 30th up to 

April 23rd, was utilized in validating the constructed model.  

First, the exponential phase of the evolution was fitted, taking the data from day 

10 to 25, yielding the estimates of the three parameters, 𝜒1 = 0.42552, 𝜒2 =

0.293696, 𝜒3 = 3.2335, from which we have estimated 𝑡0 = 6.9051. The remaining 

data for the initial conditions, 𝐼0 and 𝑈0, and the early stage transmission rate, 𝜏0, are in 

fact recalculated from within the MCMC algorithm, since the changing values of 𝑓0 will 

(
)
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affect them, according to eqs. (7.c-e). The average times in the model were taken as 1/ν= 

6.20798 days and 1/η= 11.2784 days, which were obtained from the MCMC simulation 

on the full dataset for China (Table 5), as discussed in the previous section.  

The Brazilian government took isolation measures starting on N=21 days, which 

was enforced throughout the country. Also, there were initially only 30,000 exam kits 

available, and an additional 30,000 were later acquired, but till mid April at least, the 

resulting rather small ration of testing per million inhabitants in Brazil and the retardation 

in the exam results confirmation due to a centralized operation, has caused a perceptible 

change in the data structure for the reported infectious cases, which can only be 

represented by a time varying function f(t). The progressive reduction on the number of 

executed exams of the symptomatic individuals and the delay of the results availability, 

has certainly affected the partition of reported to unreported cases by the end of this period 

covered by the present dataset. Therefore, the more general model including the time 

variation of the partition f(t), eqs.(4.c,d), is here implemented for a more refined inverse 

problem analysis. It is then expected that a reduction on the f value can be identified 

(𝑓𝑚𝑎𝑥<𝑓0), with an abrupt variation on the exponential behaviour, here assumed as a sharp 

functional time dependence (large 𝜇𝑓). Therefore, a statistical inverse problem analysis 

is undertaken, this time for estimating five parameters, namely, 

𝑓0, 𝜇, 𝜏0, 𝑓𝑚𝑎𝑥, and 𝑁𝑓 (Case 3 – BR5p) aimed at enhancing the overall agreement with 

the CR(t) data behaviour, with a likely reduction on the partition of the reported and 

unreported infectious cases.  

 With uniform distributions for all five parameters, guided by the previous 

estimates for the first three parameters, and arbitrary guesses for 𝑓𝑚𝑎𝑥 , and 𝑁𝑓, the prior 

distributions and initial guesses for the 5 parameters are presented in Table 6 and the five 

estimated quantities, after neglecting the first 80,000 burning in states of the chain are 

shown in Table 7, together with the 99% confidence interval for each parameter  

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.03.31.20049130doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.31.20049130


Table 6 – Prior distributions and initial guesses for the 5 parameters to be estimated, 

𝑓0, 𝜇, 𝜏0, 𝑓𝑚𝑎𝑥 , 𝑁𝑓 (Brazil) 

Case 3 - BR5p 

Param. Prior distribution Initial Guess  

𝑓0  𝑈[0, 1] 0.300 estimated 

𝜇  𝑈[0, 5] 0.04 estimated 

𝜏0  𝑈[0, 1 × 10−6] 1.66755 × 10−9 estimated 

𝑓𝑚𝑎𝑥 𝑈[0, 1] 0.165 estimated 

𝑁𝑓 𝑈[10, 35] 30.5 estimated 

1/ν 6.20798 days  fixed 

1/η 11.2784 days fixed 

S0 211.3 × 106 fixed 

𝑡0 6.90514 fixed 

N 21 fixed 

𝜇𝑓 10 fixed 

𝜒1 0.42552 fixed 

 𝜒2 0.293696 fixed 

 𝜒3 3.2335 fixed 

 

 

Table 7 – Estimated values and 99% confidence intervals for five parameters, 

𝑓0, 𝜇, 𝜏0, 𝑓𝑚𝑎𝑥 , and 𝑁𝑓  (Brazil). 

Case 3 – BR5p 

Parameter Estimated values 99% confidence interval 

𝑓0  0.303671 [0.302624, 0.304697] 

𝜇  0.0389639 [0.0388438, 0.0390961] 

𝜏0  1.66755 × 10−9 [1.66755 × 10−9, 1.66755 × 10−9] 

𝑓𝑚𝑎𝑥 0.156734 [0.156146, 0.157217] 

𝑁𝑓 30.4197 [30.3522, 30.4915] 
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Figure 4 presents the predicted evolution of the accumulated reported infectious 

cases in Brazil, CR(t), from February 25th up to April 23rd, plotted as the black dashed 

line. Also shown in this figure are the red dots in the first portion of the available data, up 

to March 29th, which were employed in the estimation of the parameters in Table 7 that 

compose the present model. In addition, the blue dots represent the second portion of the 

available data from March 30th till April 23rd, that were not employed in the parametric 

estimation, but saved for the present validation. It is clear that the built model has an 

excellent predictive feature, reproducing the epidemic evolution up to the available date 

at the time of this work submission, with a mean relative error of 5.8% during this phase. 

One can see the marked reduction on the f(t) parameter from the estimates in Table 

7, which results in the increase of the unreported to reported infectious cases, as is shown 

in Figure 5 for CR(t) and CU(t) predictions up to 150 days. Clearly, the reduction on the 

testing, and thus on the isolation of reported infectious individuals, leads to an impressive 

increase on the total number of infected symptomatic individuals after 150 days (752,888 

cases), including unreported (633,698) and reported cases (119,190). Both the reported 

and unreported infectious individuals curves, R(t) and U(t), show a peak at around the 

70th day (May 3rd). 
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Figure 4 – Prediction of the accumulated reported infectious, CR(t), with the five 

estimated parameter values from the available dataset for Brazil from February 25th up 

to March 29th (blue cross) and validated with the data up to April 23rd (red dots). 

 

 

Figure 5 – Comparison of the theoretical model for CR(t) (black dashed curve), CU(t) 

(red dashed curve), R(t) (cyan solid curve) and U(t) (blue solid curve) with the five 

estimated parameter values from the available dataset for Brazil from February 25th up 

to March 29th. (red dots show 60th available data of CR(t) up to April 23rd) 
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Scenarios analyses: Brazil 

 

Next, the model constructed with this parametric estimation is employed in the 

prediction of the COVID-19 evolution in Brazil under different hypothesis. Five scenarios 

were here explored: (i) the present public health interventions remain active, with the 

same transmission rate decay; (ii) a stricter social distancing and/or prevention measures 

are implemented from now on, further reducing the transmission rate decay; (iii) an 

attenuation on the social distancing and/or prevention measures, leading to a more mild 

reduction on transmission rate; (iv) an increment on the fraction of reported cases, through 

a more intensive blood testing, for instance, leading to more unreported cases to become 

reported ones, thus isolating them earlier; (v) a combination of public health measures 

acting on reducing the transmission rate, though with some relaxation of the social 

distancing, but simultaneously increasing the conversion factor of unreported to reported 

cases.  

Table 8 summarizes both the fixed and variable parameter values adopted for these 

five scenarios. The additional public health interventions simulated in the above scenarios 

act on either the time variation of the transmission coefficient or on the reported to 

unreported partition coefficient. Since April 23rdcorresponds to t=59 days, the parametric 

changes are assumed to start at a chosen date further ahead, in the present case t=64 days 

(𝑁2 = 𝑁𝑓2 = 64), and the scenarios analysis are undertaken by acting on either or both 

coefficients, 𝜏(𝑡) and 𝑓(𝑡), according to the following parametrizations: 

 

𝜏(𝑡) = 𝜏0 , 0 ≤ 𝑡 ≤ 𝑁 (10.a) 

𝜏(𝑡) = 𝜏0 exp(−𝜇(𝑡 − 𝑁)) , 𝑁 < 𝑡 ≤ 𝑁2 (10.b) 

𝜏(𝑡) = 𝜏02 exp(−𝜇2(𝑡 − 𝑁2)) , 𝑡 > 𝑁2 (10.c) 

with     𝜏02 = 𝜏0 exp(−𝜇(𝑁2 − 𝑁)) (10.d) 

  

𝑓(𝑡) = 𝑓0 , 0 ≤ 𝑡 ≤ 𝑁𝑓 (10.d) 

𝑓(𝑡) = (𝑓𝑚𝑎𝑥−𝑓0) [1 − exp (−𝜇𝑓(𝑡 − 𝑁𝑓))] + 𝑓0, 𝑁𝑓 < 𝑡 ≤ 𝑁𝑓2 (10.e) 

𝑓(𝑡) = (𝑓𝑚𝑎𝑥2−𝑓02) [1 − exp (−𝜇𝑓2(𝑡 − 𝑁𝑓2))] + 𝑓02, 𝑡 > 𝑁𝑓2 (10.f) 

with    𝑓02 = (𝑓𝑚𝑎𝑥−𝑓0) [1 − exp (−𝜇𝑓(𝑁𝑓2 − 𝑁𝑓))] + 𝑓0 (10.g) 
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In the first scenario, it is assumed that no additional public health interventions 

are implemented, other than those already reflected by the data up to April 23rd, which 

would then be fully maintained throughout the control period, and the epidemics should 

evolve from the present stage, under the parameters above identified. Figure 5 has already 

shown the evolution of the accumulated and instantaneous reported, CR(t) and R(t), 

unreported, CU(t) and U(t), infectious individuals, up to 150 days. Due to the fairly low 

value of f(t) starting with 𝑓0 ≈ 0.30 and reaching 𝑓𝑚𝑎𝑥 ≈ 0.16, the accumulated number 

of unreported infectious cases is quite high, as already discussed. No predictions on 

casualties are here proposed, since these are highly dependent on age structure, social-

economical conditions, and health system response.  

 

Table 8 – Input data in each scenario for epidemic evolution in Brazil 

Fixed parameters 

𝑓0 0.303671 

𝜇 0.0389639 

𝑁 21 

𝜏0 1.66755 × 10−9 

𝑓𝑚𝑎𝑥 0.156734 

𝜇𝑓 10 

𝑁𝑓 30.4197 

1/ν 6.20798 days  

1/η 11. 2784 days 

S0 211.3 × 106 

𝑡0 6.90514 

𝜒1 0.42552 

 𝜒2 0.293696 

 𝜒3 3.2335 

Changing parameters: (64th – 150th day) 

Scenario (i) (ii) (iii) (iv) (v) 

𝜇2 0 0.0779278 0.019482 0 0.019482 

𝑁2 - 64 64 - 64 

𝑓𝑚𝑎𝑥2 - - - 0.607342 0.607342 

𝜇𝑓2 0 0 0 10 10 

𝑁𝑓2 - - - 64 64 
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Next, the second scenario explores the implementation of more strict distancing 

and sanitary habits to further reduce the transmission rate by assuming, after day N2=64 

(eq.10.c), by doubling the value of 𝜇 here identified, thus around, 𝜇2=0.0779, still well 

below that achieved in China (0.132). The time variable transmission rate is then 

computed from eq.(10.c) after t > N2. The changes in the accumulated reported and 

unreported cases, as shown in Figure 6, are quite significant. The predicted number of 

unreported symptomatic infectious cases is now much lower reaching after 150 days 

around 545,324 individuals, while the reported cases should reach 102,764 individuals, 

with an impressive reduction to a total of around 648,088 infectious symptomatic cases. 

The predicted evolution of the reported infectious cases would then show a peak at around 

t=69 days. 

 

 

Figure 6 – Scenario (ii) predictions for CR(t) (black dashed curve), CU(t) (red dashed 

curve), R(t) (cyan solid curve) and U(t) (blue solid curve) with the five estimated 

parameter values from the available dataset for Brazil from February 25th up to March 

29th. (red dots show available data of CR(t) up to April 23rd). 

 

Through the third scenario, one can predict the consequences of mildly relaxing 

the public health measures that affect transmission rate, for instance through reduction of 

isolation measures. This is simulated here by reducing the identified transmission rate 

attenuation factor, by assuming, after day N2=64, half the value of 𝜇 here identified, thus 
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around, 𝜇2=0.0195. The changes in the accumulated and instantaneous reported and 

unreported symptomatic cases, as shown in Figure 7, are worse than in the base scenario 

(i), Figure 5. The predicted number of accumulated unreported infectious cases is now 

higher reaching after 150 days around 765,612 individuals, while the reported cases 

would reach 143,708 individuals, with an increase to a total of around 909,319 infectious 

symptomatic cases. The predicted evolution of the instantaneous reported infectious cases 

would then show a peak at around t=72 days. 

 

 

Figure 7 – Scenario (iii) predictions for CR(t) (black dashed curve), CU(t) (red dashed 

curve), R(t) (cyan solid curve) and U(t) (blue solid curve) with the five estimated 

parameter values from the available dataset for Brazil from February 25th up to March 

29th. (red dots show available data of CR(t) up to April 23rd). 

 

Besides acting on the transmission rate along time, public health measures may 

also be effective in reducing the ratio of reported to unreported infectious case, since the 

reported cases are, according to the model, directly isolated and thus interrupting the 

contamination path, as analyzed in the fourth scenario. For instance, one may double the 

initial fraction of reported and unreported infectious cases parameter, 𝑓0, to reach 𝑓𝑚𝑎𝑥2 =

0.607, after 𝑁𝑓2 = 64 𝑑𝑎𝑦𝑠,  somehow closer to the value previously obtained from the 

China dataset. Therefore, Figure 8 shows the behavior of CR(t), R(t) and CU(t), U(t), 

which according to the value of 𝜇𝑓2 = 10, occurring after the day Nf2 = 64, leads to the 
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crossing of instantaneous reported and unreported cases, R(t) and U(t), that can be 

observed. The predicted number of unreported infectious cases would now reach, after 

150 days, around 441,949 individuals, while the reported cases should reach 241,931 

individuals, with an also marked reduction to a total of around 683,880 infectious cases. 

The predicted evolution of the reported infectious cases would then show a peak at around 

t=76 days. Although this peak value is higher than for the base case scenario (i), before 

further public health intervention, a number of these are of mild symptomatic cases that 

were moved from the unreported to the reported cases evolution, thus isolated earlier.  

 

Figure 8 – Scenario (iv) predictions for CR(t) (black dashed curve), CU(t) (red dashed 

curve), R(t) (cyan solid curve) and U(t) (blue solid curve) with the five estimated 

parameter values from the available dataset for Brazil from February 25th up to March 

29th. (red dots show available data of CR(t) up to April 23rd). 

 

In the fifth scenario, the combination of public health measures affecting both the 

transmission rate and the conversion factor of unreported to reported cases is analyzed 

for Brazil. Let us consider after day N2=64, some relaxation of social distancing leading 

to half of the 𝜇 value here identified, thus around, 𝜇2=0.0195, and simultaneously 

doubling the fraction of reported and unreported infectious cases, to become 𝑓𝑚𝑎𝑥2 =

0.607, also after 𝑁𝑓2 = 64 𝑑𝑎𝑦𝑠,  with 𝜇𝑓2=10. The changes in the accumulated and 

instantaneous reported and unreported cases are shown in Figure 9. The predicted number 

of unreported infectious cases is now reaching after 150 days around 471,320 individuals, 
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while the reported cases should reach 287,360 individuals, with a total of 758,680 

infectious symptomatic cases, less than 1% increase with respect to the base case. The 

predicted evolution of the daily reported infectious cases would then show a peak at 

around t=78 days. Again, though this peak value is higher than for the base case, before 

the public health improvements, a number of these are of mild symptomatic cases that 

were moved from the unreported to the reported cases evolution, thus moved to monitored 

isolation earlier, and not necessarily requiring hospitalization. In overall terms, the results 

for scenario (v) are not markedly different from those for the base scenario (i), thus 

offering a perspective of combining the social distancing relaxation measures with more 

intensive testing to reach a similar final effect.  

 

 

Figure 9 – Scenario (v) predictions for CR(t) (black dashed curve), CU(t) (red dashed 

curve), R(t) (cyan solid curve) and U(t) (blue solid curve) with the five estimated 

parameter values from the available dataset for Brazil from February 25th up to March 

29th. (red dots show available data of CR(t) up to April 23rd). 

 

 Figures 10.a,b combine the data on accumulated reported and unreported 

infectious symptomatic individuals, respectively, for the predictions provided through the 

five scenarios here considered. Clearly, scenario (ii), which involves further restrictions 

on social distancing and sanitary habits, and scenario (iv) which involves more intensive 

testing while maintaining the present public health actions, lead to the smaller 
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accumulated values of symptomatic individuals in the long term, while the plain 

relaxation of social distancing, without any other intervention, would result in the largest 

number of infected symptomatic cases, either reported or unreported. On the other hand, 

when examining the curves for scenarios 1 and 5, it is clear that the proper combination 

of public health interventions, which would involve relaxation of social distancing and 

intensification of testing, could result in similar results as a more strict quarantine process. 

 

(a) CR(t)  

 

(b) CU(t)  

Figures 10.a,b – Comparative predictions for a) CR(t), and b) CU(t), for the five 

scenarios (i) to (v). (red dots in (a) show available data of CR(t) up to April 23rd). 
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CONCLUSIONS 

 

The present work implements a mixed analytical-statistical inverse problem analysis to 

the prediction of epidemics evolution, with focus on the COVID-19 progression in Brazil. 

A SIRU-type model is implemented for the direct problem solution, while a mixture of 

an analytical parametric estimation for the early phase epidemic exponential behavior 

with a Bayesian inference approach for a wider period, that encompasses the initial public 

health interventions to control the epidemics, are considered for the inverse problem 

analysis. The evolution of the COVID-19 epidemy in China is considered for validation 

purposes, by taking the first part of the dataset of accumulated reported infectious 

individuals to estimate parameters, and retaining the rest of the evolution data for direct 

comparison with the predicted results, with excellent agreement. Then, the same approach 

is applied to the Brazilian case, this time employing an initial portion of the available time 

series so far for the parametric estimates, and then offering a validation of the evolution 

prediction through the remaining dataset up to the date available at conclusion of this 

study (April 23rd). Also, some public health intervention measures are critically 

examined through five different scenarios, in addition to those already implemented, 

permitting the inspection of their impact on the overall dynamics of the disease 

proliferation. It was observed that a combination of social distancing and sanitary habits 

with a more intensive testing for isolation of symptomatic cases, could lead to the same 

overall control of the disease than a more strict social distancing intervention. Further 

improvement on the modelling is envisioned by enriching the model with latency effects, 

age structure discrimination, spatial demographic distribution dependence, and recovery 

factor differentiation among isolated and non-isolated patients. 
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APPENDIX 

 

Table A.1 - Data for Brazil - accumulated reported cases, CR(t), and casualties. 

 

DATE Day  Death Infected  DATE Day Death Infected 

24/02/2020 1  0 0  30/03/2020 36  163 4630 

25/02/2020 2  0 1  31/03/2020 37  201 5717 

26/02/2020 3  0 1  01/04/2020 38  242 6880 

27/02/2020 4  0 1  02/04/2020 39  324 8044 

28/02/2020 5  0 1  03/04/2020 40  363 9194 

29/02/2020 6  0 2  04/04/2020 41  445 10360 

01/03/2020 7  0 2  05/04/2020 42  486 11254 

02/03/2020 8  0 2  06/04/2020 43  564 12183 

03/03/2020 9  0 2  07/04/2020 44  686 14034 

04/03/2020 10  0 3  08/04/2020 45  820 16188 

05/03/2020 11  0 8  09/04/2020 46  954 18145 

06/03/2020 12  0 13  10/04/2020 47  1068 19789 

07/03/2020 13  0 19  11/04/2020 48  1140 20962 

08/03/2020 14  0 25  12/04/2020 49  1223 22192 

09/03/2020 15  0 25  13/04/2020 50  1328 23430 

10/03/2020 16  0 34  14/04/2020 51  1532 25262 

11/03/2020 17  0 52  15/04/2020 52  1757 28610 

12/03/2020 18  0 77  16/04/2020 53  1947 30683 

13/03/2020 19  0 151  17/04/2020 54  2141 33682 

14/03/2020 20  0 151  18/04/2020 55  2347 36599 

15/03/2020 21  0 200  19/04/2020 56  2462 38654 

16/03/2020 22  0 234  20/04/2020 57  2575 40581 

17/03/2020 23  1 346  21/04/2020 58  2741 43079 

18/03/2020 24  4 529  22/04/2020 59  2906 45757 

19/03/2020 25  7 640  23/04/2020 60 3313 49492 

20/03/2020 26  11 970  

21/03/2020 27  18 1178  

22/03/2020 28  25 1546  

23/03/2020 29  34 1924  

24/03/2020 30  46 2247  

25/03/2020 31  57 2433  

26/03/2020 32  77 2985  

27/03/2020 33  92 3417  

28/03/2020 34  111 3904  

29/03/2020 35  136 4256  
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