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Abstract 

Motivation: The analysis of complex biomedical datasets is becoming central to understanding 

disease mechanisms, aiding risk stratification and guiding patient management. However, the 20 

utility of computational methods is often constrained by their lack of interpretability and 

accessibility for non-experts, which is particularly relevant in clinically critical areas where 

rapid initiation of targeted therapies is key. 

Results: To define diagnostically relevant immune signatures in peritoneal dialysis patients 

presenting with acute peritonitis, we analysed a comprehensive array of cellular and soluble 25 

parameters in cloudy peritoneal effluents. Utilising Tsetlin Machines (TMs), a logic-based 

machine learning approach, we identified pathogen-specific immune fingerprints for different 

bacterial groups, each characterised by unique biomarker combinations. Unlike traditional 

‘black box’ machine learning models such as artificial neural networks, TMs identified clear, 

logical rules in the dataset that pointed towards distinctly nuanced immune responses to 30 

different types of bacterial infection. This demonstrates unambiguously that even when 

infecting the same anatomical location and causing clinically indistinguishable symptoms, each 

type of pathogens interacts in a specific way with the body’s immune system. Importantly, 

these immune signatures could be easily visualised to facilitate their interpretation, thereby not 

only enhancing diagnostic accuracy but also potentially allowing for rapid, accurate and 35 

transparent decision-making based on the patient’s immune profile. This unique diagnostic 

capacity of TMs could help deliver clear and actionable insights such as early patient risk 

stratification and support early and informed treatment choices in advance of conventional 

microbiological culture results, thus guiding antibiotic stewardship and contributing to 

improved patient outcomes.  40 

Availability and implementation: All underlying tools for the present analysis are available 

at https://github.com/anatoliy-gorbenko/biomarkers-visualization. The anonymised patient 

data underlying this article will be shared on reasonable request to the corresponding authors. 

Contact: olga.tarasyuk@newcastle.ac.uk, eberlm@cf.ac.uk   
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1. Introduction  45 

Reliable, rapid and accurate diagnosis of infection remains an unmet clinical need. 

Microbiological culture can take several days to generate results and is often impacted by 

inadequate sample quality, contamination and problems with fastidious or slow-growing 

organisms (Chakera et al., 2018). Molecular techniques to detect pathogens such as mass 

spectrometry or polymerase chain reaction equally depend on sample quality, may yield 50 

negative results at low pathogen numbers and do not discriminate between live and dead 

organisms. Finally, host biomarkers in patients presenting with suspected infections are often 

relatively unspecific due to the highly dynamic and individual nature of the early immune 

response. Despite promising advances, no single biomarker is sufficiently specific or sensitive 

to accurately predict the presence of an infection or indeed the type or even species of causative 55 

pathogen (Chakera et al., 2018). Factors such as patient age and gender, comorbidities, 

infection severity, pathogen type and virulence can all influence biomarker expression patterns, 

as can medication. This creates a challenge for the accurate identification of robust immune 

signatures that could guide more rapid diagnosis and targeted antibiotic treatment (Aufricht et 

al., 2017). The complexity of biomarker profiles necessitates sophisticated multi-parameter 60 

analysis techniques, leading to an increased interest in applying machine learning (ML) 

methods to biomedical datasets, aiming to improve patient stratification and tailor therapies 

more effectively. 

ML models such as support vector machines, artificial neural networks (ANNs) and random 

forests have been successfully applied to biomedical datasets (Ahsan et al., 2022; Peiffer-65 

Smadja et al., 2020), including those from our own work in patients with urinary tract infection 

(Gadalla et al., 2019), peritoneal dialysis (PD)-related peritonitis (Zhang et al., 2017) and sepsis 

(Burton et al., 2024). However, the lack of explainability in most ML models – the lack of 

understanding and hence of confidence in what they show – is a major barrier to their wider 
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clinical adoption. Many ML methods, especially intricate ones like ANNs, often function as 70 

‘black boxes’ (Rudin, 2019), making it difficult for scientists, healthcare professionals and 

regulatory authorities to understand and trust the basis of ML-based predictions. 

New ML techniques that are better interpretable are being developed to bridge this gap, such 

as approaches using decision trees (Mienye & Jere, 2024), probabilistic and fuzzy logic (Zheng 

et al., 2024), or focusing on explainable artificial intelligence tools and post-hoc interpretability 75 

methods like SHapley Additive exPlanations (SHAP) (Burton et al., 2024; Salih et al., 2024). 

However, their computational demands, difficulty of standardisation and challenges in 

usability continue to hinder their widespread adoption. Indeed, current explainable artificial 

intelligence tools often provide explanations in technical or abstract terms that may not align 

with the clinical reasoning process. The creation of user-friendly interfaces and clinical 80 

decision-support systems that integrate seamlessly with existing workflows remains an area of 

active research. 

This paper aims at providing explainability in decision making via employing a relatively new 

logic-based ML algorithm called Tsetlin Machine (TM), for which explainability is an intrinsic 

feature. TMs rely on the collective behaviour of learning automata (Narendra & Thathachar, 85 

2012; Tsetlin, 1973; Varshavsky & Pospelov, 1988). As part of their training and inference, 

TMs generate a set of conjunctive logical statements (logical clauses that can be viewed as 

directly interpretable inference rules), which vote for or against each class, thus justifying the 

decision making. TMs have considerably fewer hyperparameters to tune than other ML 

methods. These are highly interpretable since their model prediction is carried out via 90 

proposition logic clauses. The logical rules can be naturally visualised, which further eases their 

understanding and interpretation by specialists. The fact that TMs use Boolean (i.e. semi-

quantitative) features as input data, unlike other ML methods that operate with continuous 

numerical values, makes them particularly attractive for deciphering biological processes. As a 
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consequence, for clinical use, they may allow easier translation of complex datasets generated 95 

using laborious techniques into the design of simpler methods such as lateral flow tests, while 

maintaining competitive accuracy.  

We describe the application of TM-based analysis techniques to a set of soluble and cellular 

biomarkers measured previously in individuals presenting with acute PD-related peritonitis 

(Zhang et al., 2017). PD is a life-saving renal replacement therapy used to manage end-stage 100 

kidney disease by removing waste products, excess fluid and toxins from the body, utilising 

the peritoneal membrane lining the abdominal cavity as a semipermeable filter. Despite its 

effectiveness and convenience for many patients, PD carries the risk of peritonitis, a severe 

infection of the peritoneal cavity (Li et al., 2022). Peritonitis is a significant complication that 

can arise from contamination during catheter handling, bowel leakage and other reasons, and 105 

is associated with significant morbidity, treatment failure and in some cases death (Cho et al., 

2024). Moreover, any inflammatory episode of peritonitis may cause scarring and thickening 

of the peritoneal membrane (Fielding et al., 2014) and potentially contribute to treatment 

failure. Timely diagnosis and antimicrobial intervention are thus key to successful treatment 

(Chakera et al., 2018). However, despite the recognition more than three decades ago that levels 110 

of inflammatory markers are elevated in the peritoneal effluent hours prior to the manifestation 

of overt clinical symptoms (Betjes et al., 1996), a simple biomarker-based lateral flow test for 

early peritonitis was only recently developed (Goodlad et al., 2020; Htay et al., 2024) and has 

not been widely adopted. 

It is well recognised that different classes (Gram-positive and Gram-negative bacteria) and 115 

species of micro-organisms result in different patient outcomes and that infections with them 

give rise to distinct sets of biomarkers (‘immune fingerprints’) (Liuzzi et al., 2016; Zhang et 

al., 2017). Immune fingerprints have shown promise for rapid point of care prediction of 

infection (Gadalla et al., 2019) and causative pathogen (Burton et al., 2024; Zhang et al., 2017) 
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in other infectious contexts, potentially allowing early risk stratification and targeted antibiotic 120 

treatment. By combining biomarker measurements during acute peritonitis and logic-based 

inference approaches as offered by TMs, we now demonstrate the power of interpretable ML 

models to analyse complex biomarker signatures. Our findings may have immediate diagnostic 

implications, potentially guiding appropriate antibiotic treatment before conventional 

microbiological culture results become available. 125 

 

 

2. Materials and Methods 

2.1 Patients 

The study cohort comprised 82 adults receiving peritoneal dialysis (PD) who were admitted 130 

between 2008 and 2016 to the University Hospital of Wales in Cardiff (UK) with acute 

peritonitis. Clinical diagnosis of peritonitis was based on the presence of abdominal pain and 

cloudy peritoneal effluent with >100 white blood cells per mm3 (Li et al., 2022). According to 

the microbiological analysis of the effluent, peritonitis episodes were defined as culture-

negative or as confirmed bacterial infections by a Gram-positive or Gram-negative organism 135 

(Supplemental Tables S1 and S2). Cases of fungal infection and mixed or unclear culture 

results were excluded. The study was approved by the South East Wales Local Ethics 

Committee (04WSE04/27) and registered on the UK Clinical Research Network Study 

Portfolio under reference number #11838 “Patient immune responses to infection in peritoneal 

dialysis” (PERIT-PD). All individuals provided written informed consent. 140 
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2.2 Machine learning with interpretable Tsetlin Machine 

TMs leverage the collective behaviour of learning automata and bases its inference on 

interpretable logic-based rules, specifically conjunctive clauses (Granmo, 2018; Lei et al., 

2020). These clauses logically link together input features, thereby creating distinct patterns 145 

that represent different classes, enabling TMs to make transparent and interpretable predictions 

of infecting organisms in peritoneal dialysis patients with acute peritonitis. TMs are an actively 

evolving field of research where novel architectures and training methods are being developed 

and becoming available via the GitHub repository (Centre for Artificial Intelligence Research, 

2018). Here, the Python implementation of the basic MulticlassTsetlinMachine from the 150 

pyTsetlinMachineParallel package was used. The source code is available at 

https://github.com/cair/pyTsetlinMachineParallel.  

A TM has three major hyperparameters affecting its performance and defining a balance 

between clauses generalisation and specialisation, namely: the number of clauses per class C 

(i.e. the number of logical rules used for inference), the voting threshold T and the learning 155 

sensitivity s. During the tuning of TM hyperparameters, the number of clauses C was set to 20 

in the present study, with ten positive clauses creating class patterns and ten negative clauses 

generating patterns for the counter-class(es). This provided a reasonable balance between 

achieving high classification accuracy and maintaining ease of comprehension and 

interpretation of the resulting logical rules. The voting threshold T and the learning sensitivity 160 

s were set to their optimum values as described (Tarasyuk, Rahman, et al., 2023). In particular, 

the global optimum of the voting threshold T for the given number of clauses C approximates 

to the square root of C/2, which maximises voting power of each clause according to 

Jagiellonian compromise for qualified majority in the Penrose’s square root voting system 

(Penrose, 1946). The optimal value of s scales as the logarithm of C and was chosen 165 

experimentally at each classification step (Figure 1). 
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Tsetlin automata (Narendra and Thathachar, 2012) in the TM serve as fundamental units for 

decision-making and learning, similar to artificial neurons in ANNs, although their roles and 

mechanisms differ significantly (Lei et al., 2020; Tarasyuk et al., 2023a). The ANNs used in 

our previous study (Zhang et al., 2017) were adopted here as reference ML model, configured 170 

with 40,000 neurons in the hidden layer for multi-class classification and 13,000 neurons for 

binary classification. This setup ensured comparable complexity to TMs configured with 20 

clauses per class, utilising up to 39,200 and 12,800 Tsetlin automata at maximum 

configuration, respectively. 

 175 

2.3 Data preprocessing 

2.3.1 Data imputation 

The original dataset had some missing biomarker values due to incomplete or failed 

measurements (Supplemental Table S4) (Zhang et al., 2017). Missing data were imputed to 

fit gaps by adopting Multivariate Imputation by Chained Equations (MICE) implemented in R 180 

(van Buuren & Groothuis-Oudshoorn, 2011), which imputes an incomplete feature by 

generating synthetic values considering their relationship with other biomarkers.  

 

2.3.2 Data Booleanisation 

TMs operate on Boolean input data where each input feature can take only one of two values, 185 

1 (i.e. True) or 0 (i.e. False). To Booleanise the input dataset and convert biomarker values 

from quantitative to semi-quantitative Boolean features we used a simple binning method. For 

each biomarker we determined its range as the difference between the measured maximum and 

minimum values, which was then divided into equal intervals (bins). These intervals were then 

encoded using ‘one-hot encoding’ method, so that each biomarker is represented by a unique 190 
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binary vector with the same length as the number of intervals. In this vector, only one element 

is set to 1 (True), indicating the presence of the biomarker value in that specific interval, and 

all other elements are set to 0 (False). For instance, using four semi-quantitative intervals per 

value, each of the 82 patient samples comprising 49 biomarkers was represented by 196 

Boolean features (four bits/Boolean features per biomarker) (Supplemental Figure S1).  195 

Booleanisation simplifies datasets by reducing their granularity, making it easier to analyse 

and interpret in certain applications, such as rule-based machine learning or visualisation. TM 

complexity, measured by the number of Tsetlin automata utilised, is directly proportional to 

the number of Boolean features. Each feature is linked via a dedicated Tsetlin automaton to 

each logical clause. Depending on the state of this automaton after the completion of training, 200 

a particular feature may either be included in or excluded from the certain logical clauses. Here, 

we experimented with two, three and four semi-quantitative intervals, revealing a trade-off 

between the complexity of the TM and its classification accuracy. 

 

2.3.3 Data balancing 205 

The peritonitis cohort contained an unequal distribution of patients across different classes 

(Figure 1), which resulted in an unbalanced dataset. This usually leads to biasing ML models 

toward the majority class(es) and poor performance on the minority class(es). It is also essential 

for TMs to support even clauses development by ensuring that TM learning automata of 

different classes receive equal reinforcements. Therefore, at each stage of the hierarchical 210 

classification we first divided the Booleanised dataset into train and test subsets with an 80% 

to 20% split in a stratified fashion using the train_test_split function from the sklearn Python 

package. This ensured that relative class frequences were preserved in training and validation 

subsets. Second, to address class imbalance within the training subset, a random over-sampling 

technique was applied to the minority classes by selecting samples at random with replacement 215 
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(this ensures the constant probability of selecting any specific sample) by employing 

RandomOverSampler from the imblearn Python package. This approach provided a balanced 

training dataset, facilitating equal reinforcement opportunities across classes.  

 

3. Results  220 

3.1 Hierarchical Classification 

To identify organism-specific immune fingerprints and predict the causative pathogen, a wide 

range of cellular and soluble immune biomarkers was measured in the cloudy effluent of PD 

patients presenting with acute peritonitis (Supplemental Tables S1 and S2). These biomarkers 

included frequencies and total numbers of infiltrating leukocyte populations as well as levels 225 

of inflammatory mediators and tissue damage-associated molecules, covering the breadth and 

complexity of the local immune response to infection (Zhang et al., 2017) (Supplemental 

Table S3).  

An initial attempt to define immune fingerprints that would simultaneously discriminate 

patients with all major groups of infecting organisms showed relatively low validation 230 

performance for different ML techniques such as support vector machines, random forests and 

artificial neural networks, despite high training accuracy (Zhang et al., 2017). Such overfitting 

could be explained by an insufficient size of the training dataset and complex relationships 

between different biomarkers. Reassuringly, TMs demonstrated considerable improvement in 

multiclass classification and allowed to reach 65% of test accuracy while maintaining 100% 235 

train accuracy on the whole dataset. For comparison, ANNs of a comparative complexity with 

40,000 hidden nodes achieved a peak test accuracy of 53% (Table 1). 

Whilst providing encouraging proof of concept for the validity of a TM based approach, 

such an accuracy would not be satisfactory for clinical use. Thus, we adopted a binary 
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classification approach that focussed on discriminating between a certain class of bacterial 240 

infection and other cases of peritonitis, and which had already returned promising results for 

support vector machines (Zhang et al., 2017). We improved it further by structuring it in a 

hierarchical stepwise manner, resembling a binary decision tree attempting to predict the 

causative organism in the following order (Figure 1): 

1) Discrimination between episodes of peritonitis that yielded no microbiological culture 245 

result (‘no growth’; n=19) and episodes where a bacterial pathogen was identified 

(‘culture-positive’; n=63); 

2) Within the culture-positive group, discrimination between episodes caused by Gram-

negative bacteria (Acinetobacter baumannii, Enterobacter spp., Escherichia coli, 

Morganella morganii, Proteus vulgaris, Pseudomonas aeruginosa and others; n=17) 250 

and episodes caused by Gram-positive bacteria (n=46); 

3) Within the confirmed infections caused by Gram-positive bacteria, discrimination 

between episodes caused by streptococcal organisms (Streptococcus spp. and 

Enterococcus spp.; n=15) and episodes caused by other, non-streptococcal Gram-

positive bacteria (n=31); 255 

4) Within the confirmed infections caused by non-streptococcal Gram-positive bacteria, 

discrimination between episodes caused by coagulase-negative Staphylococcus (CNS; 

n=21) and episodes caused by other Gram-positive bacteria (Staphylococcus aureus, 

Corynebacterium spp. and others; n=10). 

 260 

Employing specialised TMs at each step of this hierarchical classification process allowed to 

achieve remarkable 100% accuracy on both train and test datasets, with only twenty logical 

clauses (rules) used to support decision-making in favour of one or another type of bacterial 
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infection. Three quantitative ranges per biomarker at each classification step were usually 

sufficient to reliably distinguish between different types of bacterial infection; using only two 265 

ranges failed to ensure 100% train and test accuracy, while employing more than four ranges 

added unnecessary redundancy and data/computational overheads (Table 2). As before, TMs 

consistently outperformed ANNs. 

 

3.2 Interpretability and Visualisation of Tsetlin Machine Clauses 270 

The major advantage of TMs as compared to other ML algorithms is their natural 

interpretability and explainability. TMs make predictions based on a set of logical rules 

(clauses) generated during training, which explain the decision making and can be verified by 

specialists. A fragment of such rules created by the TMs to predict the presence of Gram-

negative bacteria in patients presenting with acute peritonitis is shown as example in 275 

Supplemental Figure S2. These rules are represented in the form of conjunctive statements 

that include specific input features or their negations, thus creating a set of persistent sub-

patterns (immune fingerprints) of the target class. 

Although these rules were machine readable and easily interpretable, in their raw form they 

might still be difficult for humans to comprehend and explain, especially if the number of 280 

clauses and Boolean features involved was large. To solve this issue, we proposed a clause 

visualisation framework, which represented each clause as a biomarker-wise mask or stencil 

(Supplemental Figure S3). Each row of this stencil corresponded to a certain biomarker, while 

each biomarker was represented by a group of bits/pixels corresponding to different value 

ranges or concentration levels. These ranges were identified for each biomarker during the 285 

Booleanisation step as part of data pre-processing. A blue pixel meant that the biomarker value 

must be within that specific range to match the clause rule. Red meant that the biomarker value 
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must not be in that range. Finally, white meant ‘ambivalent’, i.e. the biomarker value may or 

may not be in that range. An individual clause could thus be seen as a class template 

generalising certain common features of class samples from the training dataset. Each clause 290 

formulated a rule by identifying general patterns shared among a subset of patient samples 

within the same class, for which the clause would output True (Supplemental Figure S3). 

Collectively, the team of TM clauses determined the type of bacterial infection by evaluating 

the number of clauses that supported each classification hypothesis. 

 295 

3.3 Tsetlin Machine Inference and Decision-Making 

During TM inference, the input data sample was matched against all clauses of all classes. If a 

data sample perfectly aligned with the clause stencil, the clause would output True, indicating 

that the clause cast a vote suggesting the sample belonged to the designated class. Otherwise, 

the clause would output False, which means it abstained from voting. The class with the 300 

maximum sum of clause votes was returned as TM prediction. In this sense, TM inference 

based on clauses voting for and against each class fostered collaborative decision-making and 

ensured a thorough and holistic assessment. As example, Figures 2 and 3 illustrate the 

inference process that enabled differentiation between Gram-negative and Gram-positive 

bacterial infections. 305 

Figure 2 shows how the data sample from patient 005-2 was matched against ten positive 

TM clauses trained to recognise and vote for Class-0 (Gram-positive bacteria). In this particular 

example, there was no match with any of these ten positive clauses. Biomarkers whose values 

lay outside the target range specified by the clauses were labelled ‘F’, indicating that the 

corresponding conjunct was False. Consequently, all ten clauses abstained from supporting the 310 

decision that patient 005-2 was infected with Gram-positive bacteria. The results of matching 
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the same patient sample against positive clauses of Class-1 (Gram-negative bacteria) are shown 

in Figure 3. The data sample matched three clauses (C0, C1 and C3) out of ten. Ultimately, 

with three votes to zero, the patient 005-2 was classified as having a Gram-negative bacterial 

infection. Voting margin could be seen as an additional measure of confidence offered by TMs 315 

in decision making. TMs thus offered a useful mechanism of logical clauses which justified 

decision-making and could be easily interpreted, visualised and verified. 

 

3.4 Identification of Key Biomarkers and Clause Minimisation 

TMs facilitate the identification and ranking of key features (in this case, biomarkers) based on 320 

their impact on decision-making, whilst preserving logical relations between them. The initial 

step involves calculating the frequency with which each feature appears in the positive clauses 

of each class and negative clauses of the opposing class(es). Features that appear in clauses of 

both classes are the least significant for distinguishing them. The most significant are those that 

are unique to each class.  325 

Here, the importance of each feature (a feature rank) was calculated by taking the absolute 

difference between the sum of occurrences of the feature in logical clauses that predicted the 

target class, and the sum of appearance of the feature in clauses in clauses that predicted the 

opposing class. A higher feature rank indicated that the feature had a strong association with 

one class over the other, making it highly influential in distinguishing between the two classes. 330 

Since each feature xi encoded a certain semi-quantitative interval for a particular biomarker, 

once the key features were identified, they were mapped back to their corresponding 

biomarkers. In the final step, the least significant biomarkers were removed from TM clauses 

one by one until the accuracy remained higher than the target threshold.  
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Figure 4 presents the minimal sets of all biomarkers that achieved prediction accuracies of 335 

90%, 95% and 100%, respectively, at different classification steps where each biomarker value 

was encoded using four semi-quantitative intervals. Perhaps not surprisingly, achieving higher 

accuracy required more biomarkers to be taken into consideration. For example, distinguishing 

between culture-positive infections and cases of no microbiological growth could be done with 

90% accuracy using only 11 biomarkers. Achieving 95% required 13 biomarkers, while 340 

considering 21 biomarkers allowed 100% accuracy. At the same time, the later stages of 

hierarchical binary classifications required progressively fewer biomarkers. Taken together, 

these findings demonstrated that each type of microbiologically confirmed infection was 

associated with a distinct set of biomarkers that set it apart from infections with other 

organisms. For instance, accurate prediction of culture-positive episodes of peritonitis required 345 

cellular parameters such as the total cell count (TotalCellCount), the proportion of neutrophils 

amongst infiltrating immune cells (CD15+live(%)) and the proportion of Vδ2+ T cells amongst 

T cells (d2T/CD3), as well as a distinct set of cytokines and chemokines (Figure 4). 

 

3.5 Focus on Soluble Biomarkers for Better Clinical Applicability 350 

To enhance the clinical applicability of our research, we next attempted to streamline the 

dataset by reducing the number of semi-quantitative ranges used to quantize biomarker values, 

and by considering only soluble immune mediators, i,e. biomarkers that can easily be 

quantified using ELISA-based techniques. We therefore excluded the measurement of matrix 

metalloproteinase (MMP)-9 activity using gelatin zymography (Zym) as well as all flow 355 

cytometric characterisations of immune cell subsets, methods which would be too complex for 

routine diagnostic application (Supplemental Table S3). As only cellular biomarker, we did 

keep the total cell count in the ‘soluble’ dataset (TotalCellCount) as this parameter is 

determined routinely in the clinic and thus readily accessible to guide treatment decisions. 
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Importantly, using this reduced set of biomarkers, correct classification was still possible 360 

(Figure 5). However, distinguishing between culture-positive infections and cases of no 

growth with 90%, 95% and 100% accuracy now required more individual biomarkers than 

before – 12, 15 and 25, respectively. Overall, our calculations demonstrated that reducing the 

number of semi-quantitative ranges lowered the dimensionality of the input space, enhanced 

clause interpretability and might simplify future biomarker tests. However, this simultaneously 365 

increased the number of biomarkers required to achieve the desired target accuracy. As such, 

these findings underscored the importance of cellular biomarkers that contributed key 

information needed for accurate classification using the smallest possible biomarker 

combination. Table 3 summarises the minimal number of biomarkers for both the full original 

dataset versus the reduced but clinically more tractable dataset consisting of only soluble 370 

biomarkers, in relation to the numbers of semi-quantitative intervals used to Booleanise and 

discretise continuous biomarker values (Figure 4; Supplemental Figures S4 and S5).  

 

3.6. Minimisation and Pruning  

In addition to minimisation of the number of biomarkers used in a logical clause, the set of 375 

clauses can also be minimised, or pruned (Liu et al., 2021), based on clause efficiency and their 

contribution to the accurate inference. Efficiency can be estimated as a ratio between True and 

False predictions made by each individual clause (i.e. logical inference rule), which is 

supported by the TM and can be done by the end of training and/or testing. This ratio is shown 

at the top of each clause in Figures 2 and 3. Clauses with the minimal contribution to the true 380 

predictions (e.g. clauses C7 and C9 in Figure 2) or with a considerable portion of false 

predictions (e.g. clause C5 in Figure 2 and clause C9 in Figure 3) could be pruned from the 

TMs. This process was repeated as long as TM performance remained higher than the target 

accuracy. 
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Figures 6-9 present the optimised sets of TM clauses used at each classification step after 385 

minimising the number of biomarkers and removing less efficient clauses. For example, the 

number of soluble biomarkers was reduced from 40 to 8, followed by further pruning of the 

clauses from 20 per class to just 6 clauses for detecting Gram-positive bacteria and 10 clauses 

for identifying Gram-negative bacteria (Figure 7). Despite considerable minimisation, the 

pruned model could still successfully distinguish between Gram-positive and Gram-negative 390 

bacteria with 95% accuracy. Similar TM optimisation could be applied to all other steps of the 

hierarchical classification approach used in this study (Figure 6-9), yielding a comprehensive 

and overlapping set of biomarkers that defined immunologically distinct local responses during 

early peritonitis in patients presenting with acute symptoms (Figure 10). 

 395 

4. Discussion 

In this study, we demonstrate the potential of TMs as an effective ML model for analysing 

local immune responses in patients with life-threatening bacterial infection. By leveraging the 

logic-based framework of TMs, we successfully identified pathogen-specific immune 

fingerprints, represented as logical clauses, which are both easily interpretable and actionable 400 

for clinical decision-making. These logical rules provide insights into the distinctive biomarker 

profiles associated with different types of bacterial infections, enabling rapid and precise 

classification even before conventional microbiological results are available. 

At the core, our study reaffirms the notion that different pathogens elicit qualitatively and 

quantitatively distinct immune responses, even when infecting the same anatomical location 405 

and causing indistinguishable clinical symptoms (Lin et al., 2013; Zhang et al., 2017). This 

might not come as a surprise considering that each bacterium expresses a unique set of 

pathogen-associated molecular patterns, antigens and virulence factors interacting with a 
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myriad of pattern recognition factors and antigen receptors of the immune system (Kroemer et 

al., 2024; Medzhitov & Iwasaki, 2024). For instance, the outer membrane of Gram-negative 410 

bacteria contains lipopolysaccharides, highly immunogenic molecules that trigger 

inflammatory responses via Toll-like receptor 4 (TLR4) expressed on monocytes, 

macrophages, dendritic cell, other immune cells and many tissues. Gram-positive bacteria are 

free of lipopolysaccharides but can be sensed via TLR2 (Colmont et al., 2011), thus defining a 

clear mechanism how the body discriminates between the two main groups of bacteria. 415 

Similarly, TLR5 recognises flagellin, a principal component of flagella carried by bacteria such 

as Salmonella spp., Pseudomonas aeruginosa, Listeria monocytogenes and some strains of E. 

coli but not others (Liuzzi et al., 2015). Many microbial organisms also express the highly 

potent metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), which 

specifically activates a small subset of T lymphocytes expressing a Vγ9/Vδ2 T cell receptor; 420 

notable HMB-PP deficient pathogens of clinical relevance in PD include streptococcal and 

staphylococcal bacteria (Liuzzi et al., 2015). Together, the unique combination of such 

immunogenic molecules defines each microorganism and is likely to result in immunologically 

distinct activation pathways.  

We believe that the presence of pathogen-specific immune responses has never been 425 

documented in infected patients as clearly as in the current study, demonstrating distinct local 

immune responses in patients with severe infection. Of note, some of these features were 

particularly relevant for predicting the presence of microbiologically confirmed bacterial 

organisms versus cases of no growth, including the total cell count, MMP activity (MMPsubstr) 

and levels of human neutrophil elastase (HNE), IL-4, IL-6 and IL-10 in the peritoneal effluent. 430 

Others were found to play a role in predicting specific types of bacteria, such as levels of IL-

18 and surfactant protein D for the discrimination between Gram-negative and Gram-positive 

infections; levels of IL-7, IL-12p70, IL-17A and CCL2 for the discrimination between 
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streptococcal and non-streptococcal Gram-positive infection; and levels of calprotectin, GM-

CSF, TGF- β and CCL13 for the prediction of coagulase-negative Staphylococcus infections 435 

versus other types of Gram-positive infections. Several biomarkers featured in immune 

fingerprints associated with more than one type of peritonitis, suggesting a particularly useful 

role for the differential diagnosis of PD patients, namely HNE activity (HNEsubstr) and 

effluent levels of IFN-γ, TNF-α, IL-22, sIL-6R, MMP-8, CCL4, CCL11, CCL22 and CXCL10. 

Reassuringly, despite using entirely different statistical methodologies, these patterns were 440 

remarkably similar to our earlier analyses associating TNF-α with culture-positive episodes 

and IL-22 and CXCL10 with Gram-positive infections (Lin et al., 2013), as well as the 

importance of the total cell count for culture-positive episodes, IFN-γ and IL-17A for non-

streptococcal Gram-positive infections, and sIL-6R for staphylococcal infections (Zhang et al., 

2017). Differences with regard to other biomarkers may in part be due to the fact that TMs 445 

work with Booleanised semi-quantitative input values rather than precise measurements as 

used in previous studies, and that we here used a stepwise classification of patients. 

Our findings highlight the capability of TMs to address critical challenges in biomedical 

ML, such as interpretability and efficiency. Unlike traditional ‘black boxes’ models, TMs offer 

a transparent decision-making process, which is essential in clinical settings where 450 

understanding and trust in predictive models are paramount. Additionally, the ability of TMs 

to operate on Booleanised, semi-quantitative data underscores their suitability for mass clinical 

use, particularly in combination with rapid, accessible testing methods like lateral flow tests. 

Recent advances in lateral flow technology have already demonstrated the ability to determine 

multiple levels of analyte concentration (Hu et al., 2017; You et al., 2018), rather than simply 455 

detect the presence (or absence) of an individual biomarker. In this respect, a recently 

developed lateral flow test for diagnosis of peritonitis may not only be useful for the detection 

of early infection based on elevated levels of IL-6 and MMP-8 in PD effluent (Goodlad et al., 
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2020) but in a more quantitative way even contribute to the distinction between culture-positive 

episodes and cases of no growth, as suggested in the present study. 460 

The hierarchical classification methodology employed in this study achieved high accuracy 

with minimal biomarker input, emphasising the strength of TMs in feature reduction and 

efficient data utilisation. This approach not only enhances diagnostic precision but also 

minimises the overall number of tests required, reducing both costs and time-to-diagnosis. In 

conclusion, TMs present a robust framework for decoding and visualising complex immune 465 

responses, offering a promising avenue for real-time, interpretable diagnostics in infectious 

disease management. Future work will focus on expanding the application of TMs to larger 

datasets and diverse infectious agents, potentially broadening its utility in clinical diagnostics 

and personalised medicine. 

  470 
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Tables 

 
 
Table 1. Multi-class classification train and test accuracy of TMs. The table shows the 630 

accuracy of a single TM trained to discriminate between five classes (No growth, Gram-
negative, streptococcal, coagulase-negative Staphylococcus, and other Gram-positive bacteria) 
at once, using the whole biomarkers dataset and a subset of soluble biomarkers (excluding Zym 
and including TotalCellCount). TM accuracy was determined for 20 clauses across 4 ranges 
and a total of 39,200 learning automata. The rightmost column shows the peak accuracy 635 

achieved by an artificial neural network (ANN) of comparable complexity using 40,000 
neurons, which is used as a benchmark value. 

 

 

Dataset Data split 
TM accuracy 

(%) 
ANN accuracy 

(%) 

Full biomarker dataset  
(40 soluble, 9 cellular biomarkers) 

train 100 100 

test 64.7 52.9 

Soluble biomarkers  
(excl. Zym, incl. TotalCellCount) 

train 99.4 100 

test 58.8 47.1 

 640 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 5, 2025. ; https://doi.org/10.1101/2025.03.03.25323096doi: medRxiv preprint 

https://doi.org/10.1101/2025.03.03.25323096
http://creativecommons.org/licenses/by/4.0/


  

 

— 29 — 

Table 2. Train and test accuracy of TMs at different stages of the hierarchical binary 
classification. The table shows how TM accuracy (with 20 clauses) depends on the number of 
semi-quantitative intervals used to quantise values of soluble biomarkers (excluding Zym and 
including TotalCellCount). The rightmost column reports the peak accuracy achieved by an 645 

artificial neural network (ANN) of comparable complexity (13,000 neurons), which is used as 
a benchmark value. TAs, Tsetlin automata. 

 
 

# Classification step 
Data 
split 

TM accuracy (%) ANN 
accuracy 

(%) 
2 ranges 

(6,400 TAs) 
 3 ranges 

(9,600 TAs)
 ≥4 ranges 

(12,800 TAs) 

1 
No growth  

vs Culture-positive cases 

train 98.0  100  100 100 

test 94.1  100  100 82.4 

2 
Gram-positive  

vs Gram-negative bacteria 

train 98.6  100  100 100 

test 92.3  100  100 76.9 

3 
Gram-pos. streptococcal 

vs non-streptococcal bacteria 

train 100  100  100 100 

test 90  100  100 80 

4 
Coag.-neg. Staphylococcus 
vs other Gram-pos. bacteria 

train 100  100  100 100 

test 100  100  100 85.7 

 650 
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Table 3. Minimal number of biomarkers required to achieve the target classification accuracy for different datasets and numbers of semi-
quantitative ranges of biomarker values. The table reveals a trade-off between the biomarker values granularity (i.e. the number of semi-
quantitative ranges used to quantise biomarkers) and the number of biomarkers needed to achieve the target accuracy. The exact identify of the 
corresponding biomarkers is shown in Figures 4 and 5 as well as in Supplemental Figures S4 and S5. 
 
 

# 
Classification  

step 

Overall 
classification 

accuracy 

Full dataset  
(40 soluble + 9 cellular 

biomarkers) 
  

Soluble biomarkers  
(excl. Zym, incl. TotalCellCount) 

4 ranges   4 ranges   3 ranges   2 ranges 

1 
No growth  

vs Culture-positive cases 

≥ 90% 11 (9 soluble + 3 cellular) 
 

12 
 

12 
 

19 

≥ 95% 13 (10 soluble + 3 cellular) 
 

15 
 

16 
 

24 

100% 21 (16 soluble + 5 cellular) 
 

25 
 

33 
 

33 (96.3% max. accuracy) 

2 
Gram-positive  

vs Gram-negative bacteria 

≥ 90% 6 (6 soluble) 
 

6 
 

12 
 

17 

≥ 95% 8 (6 soluble + 2 cellular) 
 

8 
 

16 
 

20 

100% 16 (11 soluble + 5 cellular) 
 

17 
 

22 
 

20 (96.8% max. accuracy) 

3 
Gram-positive streptococcal  
vs non-streptococcal bacteria 

≥ 90% 5 (3 soluble + 2 cellular) 
 

6 
 

10 
 

11 

≥ 95% 9 (7 soluble + 2 cellular) 
 

9 
 

13 
 

13 

100% 12 (9 soluble + 3 cellular) 
 

13 
 

18 
 

15 (97.8% max. accuracy) 

4 
Coag.-neg. Staphylococcus 

vs other Gram-positive bacteria 

≥ 90% 3 (3 soluble incl. Zym)  5  6  8 

≥ 95% 6 (4 soluble + 2 cellular)  7  7  16 

100% 7 (4 soluble + 3 cellular)  8  8  21 
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Figures 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 1. Hierarchical classification methodology to identify local immune fingerprints 
associated with peritonitis caused by different types of bacteria. A binary decision tree 
attempts to predict the causative organism in the following order: 1) discrimination between 
episodes of peritonitis that yielded no microbiological growth versus culture-positive episodes; 
2) discrimination between episodes caused by Gram-negative bacteria within the culture-
positive group of patients; 3) discrimination between episodes caused by streptococcal 
organisms versus episodes caused by non-streptococcal Gram-positive bacteria; 
4) discrimination between episodes caused by coagulase-negative Staphylococcus versus 
episodes caused by other Gram-positive bacteria. 
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Figure 2. Example of TM inference supporting decision making in favour of Gram-
positive bacterial infection. The figure shows the inference process using TM2 clauses 
trained to recognise Gram-positive (Class-0) bacterial infection by matching the patient 
sample against clause stencils followed by clause output summation and voting. Here, none 
of the clauses supported the hypothesis. F, biomarkers whose values lay outside the target 
range specified by the clauses, indicating the corresponding conjunct was False. Accuracy 
labels above each clause show the percentage of True Positive (TP) and False Positive (FP) 
predictions of individual clauses. 
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Figure 3. Example of TM inference supporting decision making in favour of Gram-
negative bacteria infection. The figure shows the inference process using TM2 clauses 
trained to recognise Gram-negative (Class-1) bacteria by matching the patient sample against 
clause stencils followed by clause output summation and voting. Here, three out of ten clauses 
supported the hypothesis. F, biomarkers whose values lay outside the target range specified 
by the clauses, indicating the corresponding conjunct was False. Accuracy labels under each 
clause show the percentage of True Positive (TP) and False Positive (FP) predictions of 
individual clauses. 
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Figure 4. Minimised sets of soluble and cellular immune biomarkers for the case where 
each biomarker value was Booleanised by four semi-quantitative ranges. Figure shows the 
minimised set of soluble and cellular immune biomarkers needed to make predictions at 
different classification stages with the target accuracies of 90%, 95% and 100%, respectively. 
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Figure 5. Minimised sets of soluble biomarkers (excluding Zym and including 
TotalCellCount). Figure shows the minimised set of soluble biomarkers needed to make 
predictions at different classification stages with the target accuracies of 90%, 95%, and 100% 
for the case where each biomarker value is represented by four semi-quantitative ranges. 
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Figure 6. Minimised set of TM clauses and soluble biomarkers used to discriminate 
between episodes of peritonitis that yielded no microbiological growth versus culture-
positive episodes with 95.12% accuracy for the case where each biomarker value was 
represented by four semi-quantitative ranges. Accuracy labels under each clause show the 
percentage of True Positive (TP) and False Positive (FP) predictions of individual clauses. A 
balance between clause generalisation and specialisation, which defines a ratio between True 
and False predictions made by each clause is controlled by TM hyper-parameters (Tarasyuk, 
Rahman, et al., 2023) and affects the overall classification accuracy. 
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Figure 7. Minimised set of TM clauses and soluble biomarkers used to discriminate 
between episodes caused by Gram-negative bacteria within the culture-positive group of 
patients with 95.24% accuracy for the case where each biomarker value was represented 
by four semi-quantitative ranges. Accuracy labels under each clause define the percentage 
of True Positive (TP) and False Positive (FP) predictions of individual clauses. 
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Figure 8. Minimised set of TM clauses and soluble biomarkers used to discriminate 
between episodes caused by streptococcal organisms versus episodes caused by non-
streptococcal Gram-positive bacteria with 95.65% accuracy for the case where each 
biomarker value was represented by four semi-quantitative ranges. Accuracy labels under 
each clause define the percentage of True Positive (TP) and False Positive (FP) predictions of 
individual clauses. 
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Figure 9. Minimised set of TM clauses and soluble biomarkers used to discriminate 
between episodes caused by coagulase-negative Staphylococcus versus episodes caused by 
other Gram-positive bacteria with 96.77% accuracy for the case where each biomarker 
value was represented by four semi-quantitative ranges. Accuracy labels under each clause 
define the percentage of True Positive (TP) and False Positive (FP) predictions of individual 
clauses. 
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Figure 10. Minimised set of biomarkers defining immune fingerprints associated with 
peritonitis caused by different types of bacteria with an accuracy ≥95%. 1) discrimination 
between episodes of peritonitis that yielded no microbiological growth versus culture-positive 
episodes; 2) discrimination between episodes caused by Gram-negative bacteria within the 
culture-positive group of patients; 3) discrimination between episodes caused by streptococcal 
organisms versus episodes caused by non-streptococcal Gram-positive bacteria; 
4) discrimination between episodes caused by coagulase-negative Staphylococcus versus 
episodes caused by other Gram-positive bacteria. 
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