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Linköping University, Linköping, Sweden
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Abstract

The mechanisms underlying Post COVID-19 condition (PCC), with its range of long-lasting symptoms,
remain unclear. This study investigates DNA methylation patterns over one year in a subset of non-
hospitalized COVID-19 patients with persistent symptoms and reduced quality of life, termed PCC+
(Post COVID-19 condition plus). In a cohort of 22 PCC+ individuals and 22 matched COVID-19
convalescents (PCC-), we identified distinct DNA methylation differences between the groups that
diminish over time. Methylation changes in the TXNRD1 gene were significantly associated with
cognitive symptoms and fatigue, implicating redox imbalance in PCC pathology. Pathway analysis
revealed enrichment in PI3K-Akt and AMPK signaling pathways, potentially underlying the observed
efficacy of metformin in reducing PCC incidence. While we found no differences in epigenetic age
acceleration between the groups, we observed longitudinal changes in the methylation of the RAS and
RAP1 signaling pathways. These findings provide crucial insights into PCC+ mechanisms and suggest
oxidative stress pathways as promising targets for therapeutic interventions.

1 Introduction

A growing body of research has documented the long-lasting clinical effects following COVID-19
infection, observed in both hospitalized and non-hospitalized patients [1]. These sequelae following
COVID-19 infection are referred to by various terms, including long COVID, Post-Acute COVID-19
Syndrome (PACS), and chronic COVID. The persistence of symptoms beyond three months, defined
by the WHO as Post COVID-19 Condition (PCC) [2], varies significantly in presentation and severity
among affected individuals [3]. This symptom-based definition poses challenges for research, as many
COVID-19 patients experience some degree of persisting symptoms. No established outcome criteria
or measures exist to predict PCC prognosis, track disease progression, assess long-term outcomes, or
address its lasting impacts.

Among individuals with persistent symptoms, a distinct subset also suffers from reduced health-
related quality of life after infection [4]. Referred to as Post COVID-19 condition plus (PCC+), this
subset highlights the complex spectrum of outcomes following COVID-19. The refined definition ad-
dresses limitations in the broader WHO definition of PCC, which is often too nonspecific to effectively
identify patients requiring assistance. However, the biological mechanisms that distinguish PCC+
from other post-viral conditions and COVID-19 convalescents (PCC-) remain unclear.

To better understand these mechanisms, efforts have focused on identifying biological signatures
that differentiate individuals with various persistent sequelae from those who fully recover [5, 6]. Epi-
genetic modifications through DNA methylation (DNAm) offer a promising avenue for understanding
these long-term effects, as they reflect both genetic predispositions and environmental influences, in-
cluding viral infections [7, 8]. Analysis of epigenetic biosignatures in peripheral blood mononuclear
cells suggested a unique DNAm signature in patients with PCC, differentiating them from both healthy
COVID-19 convalescents and controls [9]. Other studies have identified changes in the innate immune
response to viral infections [10], disruptions in circadian rhythm-regulating pathways [11], and evi-
dence of accelerated biological aging in individuals with PCC [12]. However, the focus on single time
points and lack of longitudinal design in these studies limits their ability to capture the progression
and dynamics of these changes over time.

We analyzed longitudinal DNAm changes in blood immune cells to investigate potential epigenetic
contributions to post-viral sequelae in non-hospitalized individuals following COVID-19 infection. We
found specific DNAm patterns in peripheral blood mononuclear cells (PBMCs) that distinguish PCC+
individuals from COVID-19 convalescents. These methylation differences, associated with redox im-
balance, diminished over time, reflecting gradual symptom improvement in many PCC+ patients.
Enriched pathways suggest potential therapeutic targets and provide insights into mechanisms that
may help reduce PCC incidence.

*shared first authorship
$shared last authorship
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2 Results

2.1 Characteristics of the study population and symptoms at follow-up

Individuals with initial mild COVID-19 infection and PCC+ at follow-up were selected and COVID-
19 convalescents (PCC-) as matched controls based on initial infection severity, age, sex, and, BMI.
PCC- was defined as individuals who did not fulfil the criteria for PCC+ with persistent symptoms
and reduced health-related quality of life. We included 22 individuals with PCC+ and 22 PCC-
(Fig. 1). There were no significant differences in comorbidities, education, or smoking status between
the PCC+ and PCC- (Table 1). At follow-up, there were five missing samples at 3 months, one
at 6 months and no missing samples at 12 months. The missing samples introduced no significant
differences in baseline characteristics between the groups.

To account for potential variations in infection severity among non-hospitalized individuals, we
analyzed clinical chemistry data from the first 30 days after infection onset using principal compo-
nent analysis. No significant differences were observed between individuals with PCC+ and PCC-
(Supplementary Fig. A1).

The PCC+ group showed a high prevalence of persisting symptoms at follow-ups. The most
common were neurological and psychiatric symptoms such as difficulties finding words, mental fatigue,
concentration difficulties, and memory difficulties. The number of symptoms decreased over time as
PCC+ individuals gradually recovered. An additional follow-up at 24 months showed even further
improvement. The prevalence of symptoms in each group is presented in Table 2.

Infection 3 months 6 months 1 year

Data collection

Blood samples

Symptoms and
quality of life

579 individuals included in the
CoVUm cohort

22
matched

PCC-

22
with PCC+

Figure 1: Study design. Individuals with initial mild COVID-19 infection and post COVID-19 condi-
tion plus (PCC+, N = 22) were selected for methylation analysis. COVID-19 convalescents (PCC-)
were matched by age, sex, and BMI (N = 22).

2.2 Thioredoxin reductase 1 (TXNRD1) is differentially methylated in individuals
with PCC+ and is associated with cognitive symptoms and fatigue

We sought to identify relevant differentially methylated CpG sites (DMCs), comparing PCC+ with
PCC- at each time point to better understand the pathology behind PCC+. At 3 months, we observed
16521 DMCs with a nominal p-value < 0.01. The number of DMCs decreased over time, with 6736
identified at 6 months and 4062 at 12 months (Fig. 2a). After annotating DMCs to genes (DMGs),
we identified 4017 DMGs separating PCC+ from PCC- at 3 months, 2019 at 6 months, and 928 at
1 year. KEGG pathway analysis of DMGs at each time point showed enrichment of several signaling
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Overall
n=44

PCC+
n=22

PCC-
n=22

p-valuea

Age - median (IQR) 44 (32, 55) 44 (35, 55) 44 (31, 54) 0.934
Female - n(%) 36 (82%) 18 (82%) 18 (82%) > 0.999
BMI (IQR) 24.3 (23.0, 27.0) 24.7 (23.3, 27.1) 24.2 (22.3, 25.4) 0.336
Comorbidities - n(%)
Diabetes 0 (0%) 0 (0%) 0 (0%)
Hypertension 5 (11%) 4 (18%) 1 (4.5%) 0.345
Cardiovascular disease1 0 (0%) 0 (0%) 0 (0%)
Chronic lung disease2 6 (14%) 4 (18%) 2 (9.1%) 0.664
Asthma 6 (14%) 4 (18%) 2 (9.1%) 0.664

Autoimmune disease3 1 (2.3%) 1 (4.5%) 0 (0%) > 0.999
Immunocompromised4 0 (0%) 0 (0%) 0(0%)
Malignancy5 0 (0%) 0 (0%) 0(0%)
Charslons Comorbidities
Index > 0 – n (%)

6 (14%) 4 (18%) 2 (9.1%) 0.664

Smoking status 0.719
Never smoker 32 (78%) 17 (81%) 15 (75%)
Previous smoker 9 (22%) 4 (19%) 5 (25%)
Missing values 3 1 2
Level of education6 - n(%) 0.347
Higher 28 (64%) 12 (55%) 16 (73%)
Lower 1 (2.3%) 1 (4.5%) 0 (0%)
Medium 15 (34%) 9 (41%) 6 (27%)
Highest infection
severity - n(%)
Mild 44 (100%) 22 (100%) 22 (100%)
1 Ischemic heart disease, congestive heart failure, arrhythmia, aortic disease, valvular heart disease,
or peripheral arterial insufficiency.
2 Chronic obstructive pulmonary disease and asthma.
3 Including rheumatic diseases.
4 Immune deficiency diseases or immunosuppressive/immunomodulatory medication.
5 Solid localized tumor, lymphoma, or leukemia.
6 Lower: Less than three years beyond Swedish compulsory school. Medium: Three years beyond Swedish
compulsory school, but no college or university degree. Higher: University or college degree.
a Wilcoxon rank sum test; Fisher’s exact test

Abbreviations: n, number of patients; BMI, Body Mass Index; IQR, interquartile range; PCC+,
Post COVID-19 condition plus; PCC-, COVID-19 convalescents.

Table 1: Demographics and baseline characteristics of the study cohort, divided into PCC+ and PCC-.
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Symptoms PCC+ PCC-
3 months 6 months 1 year 2 years 3 months 6 months 1 year 2 years
N = 22 N = 21 N = 22 N = 20 N = 22 N = 22 N = 22 N = 21

Respiratory - n(%)
Cough 9 (41%) 4 (19%) 4 (18%) 1 (5%) 2 (9%) 3 (14%) 2 (9%) 1 (5%)
Dyspnea (mMRC > 0) 9 (53%) 7 (41%) 9 (47%) 3 (15%) 2 (10%) 0 (0%) 0 (0%) 0 (0%)

Neurological - n(%)
Dizziness 10 (45%) 7 (33%) 5 (23%) 1 (5%) 2 (9%) 1 (5%) 1 (5%) 1 (5%)
Headache 10 (45%) 8 (38%) 6 (27%) 1 (5%) 2 (9%) 3 (14%) 2 (9%) 0 (0%)
Hyposmia/Dysgeusia 15 (68%) 12 (57%) 13 (59%) 6 (30%) 8 (36%) 4 (18%) 4 (18%) 4 (19%)
Impaired memory function 14 (64%) 13 (62%) 16 (73%) 8 (40%) 1 (5%) 1 (5%) 1 (5%) 2 (10%)
Difficulties finding words 10 (45%) 11 (52%) 12 (55%) 9 (45%) 2 (9%) 1 (5%) 0 (0%) 0 (0%)
Mental fatigue 12 (55%) 14 (67%) 14 (64%) 8 (40%) 4 (18%) 7 (32%) 2 (9%) 2 (10%)

Psychiatric - n(%)
Panic attacks 8 (36%) 6 (29%) 7 (32%) 4 (20%) 1 (5%) 0 (0%) 0 (0%) 0 (0%)
Concentrations difficulties 14 (64%) 14 (64%) 14 (64%) 7 (35%) 6 (27%) 2 (9%) 1 (5%) 2 (10%)
Sleeping difficulties 10 (45%) 9 (43%) 9 (41%) 5 (25%) 5 (23%) 5 (23%) 2 (9%) 0 (0%)
Nightmares 7 (32%) 4 (19%) 3 (14%) 2 (10%) 3 (14%) 2 (9%) 1 (5%) 1 (5%)

Other - n(%)
Myalgia 4 (18%) 6 (29%) 5 (23%) 2 (10%) 1 (5%) 2 (9%) 0 (0%) 0 (0%)
Physical fatigue 18 (82%) 14 (67%) 12 (55%) 7 (35%) 4 (18%) 3 (14%) 2 (9%) 1 (5%)
Restless legs 3 (14%) 3 (14%) 5 (23%) 1 (5%) 1 (5%) 1 (5%) 2 (9%) 0 (0%)
Upset stomach 5 (23%) 5 (24%) 3 (14%) 2 (10%) 4 (18%) 0 (0%) 0 (0%) 0 (0%)

Abbreviations: N, number of patients; mMRC, the modified Medical Research Counsil; PCC+, Post COVID-19
condition plus; PCC-, COVID-19 convalescents.

Table 2: Reported symptoms at follow-up, divided in PCC+ and PCC-.

pathways (Fig. 2c). The most enriched pathway was the PI3K-Akt signaling pathway at 3 months
with 167 enriched genes. Gene Ontology enrichment analysis revealed that multiple genes were linked
to the regulation of trans-synaptic signaling and modulation of chemical synaptic transmission at 3
months after infection (Fig. A3).

We complemented differential methylation analysis by identifying differential methylation regions
(DMRs). Figure 2b) shows that the number of unique genes covered by significant DMRs decreased
over time. KEGG pathway analysis of genes in DMRs at 3 months identified only one pathway; the
AMPK signaling pathway. No significant KEGG pathways were identified at later time points using
DMRs. Both in the analysis of DMCs and DMRs, we identified CPLX1, EID3, and TXNRD1 as
enriched across all time points.

During the first year after infection, regression analysis identified CpGs with significantly associated
with symptoms (Table 3). TXNRD1 was linked to neurological symptoms, specifically difficulties
finding words, impaired memory function, and fatigue.

Cell deconvolution applied to the DNAm data revealed no significant difference between PCC+
and PCC- (Supplementary Fig. A2). However, we observed a significant temporal decrease in the
fraction of neutrophils over time (p-value < 0.05, ANOVA).
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b)

a) c)

1 year
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p.adjust

3 months 6 months

PI3K-Akt signaling pathway

Regulation of actin cytoskeleton

Focal adhesion

Cytoskeleton in muscle cells

Hippo signaling pathway

Axon guidance

Endocytosis

Calcium signaling pathway

Phospholipase D signaling pathway

Thyroid hormone signaling pathway

Rap1 signaling pathway

Platelet activation
Arrhythmogenic right ventricular

cardiomyopathy
T cell receptor signaling pathway

Wnt signaling pathway

Adherens junction

Glutamatergic synapse

Aldosterone synthesis and secretion

Circadian entrainment

Insulin secretion

Amphetamine addiction

16611 6773

58

17

124

4087

3 months 6 months

1 year

138

1531 372

4

9

48

1 year

6 months3 months

91
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Figure 2: Differential methylation analysis. Venn diagrams showing the overlap of a) differentially
methylated CpGs (DMCs) and b) genes in differentially methylated regions (DMRs) between PCC+
and PCC- groups at 3 months, 6 months, and 12 months. The findings suggest that most DNA
methylation changes are short-term. However, CpGs and regions displaying consistent methylation
changes across all three time points are associated with the genes CPLX1, EID3, and TXNRD1. c)
KEGG pathway enrichment analysis of differentially methylated genes (DMGs) between PCC+ and
PCC- samples. The horizontal axis represents different time points, while the vertical axis lists the top
10 enriched KEGG pathways. Node size indicates the number of DMGs associated with each pathway,
and node color intensity corresponds to the adjusted p-value, with dark green colors reflecting more
significant enrichment.
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CpGs UCSC RefGene Name ∆R2
McF

Respiratory symptoms

Neurological symptoms

cg22332049

cg21940313 ETV4

cg02896355 ZNF226

cg12526474 SLC37A3

cg19336497 RRAS2

cg02022519

cg16189091

cg11210069 PCDHGA1-7;PCDHGB1-3

cg09477407 TXNRD1;EID3

cg00588621 TXNRD1;EID3

cg17265358 CPLX1

cg01786704 SNRPN

cg07475244 PSPC1

cg26614816 TXNRD1;EID3

cg03474889

cg06011587 VAV2

cg13546736 MPDU1

cg12011664 ZFAND4

cg17999639

cg16621855 ADCYAP1R1

Psychiatric symptoms

cg12526474 SLC37A3

cg17999639

cg16189091

cg13546736 MPDU1

Other symptoms

cg08065408

Table 3: CpGs significantly associated with the symptoms at each time point (3, 6, and 12 months).
The second column shows the names of genes associated with the CpGs. There are several CpGs
that lack annotated genes. The third column shows sparklines representing the temporal trends of
∆McFadden’s pseudo-R2 values (∆R2

McF ) at 3, 6, and 12 months for each CpG. Each sparkline has
three points corresponding to the ∆R2

McF at these time points. The shaded area indicates ∆R2
McF

between 5% and 10%.
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2.3 Differentially methylated regions undergo temporal changes in individuals
with PCC+, but not the PCC- group

To further investigate the progression of methylation patterns in individuals with PCC+, we analyzed
temporal changes over the first year post-infection. We identified 6697 DMGs that exhibited changes
between 3 months and 12 months in individuals with PCC+, compared to only 2568 DMGs in the
PCC- group. KEGG pathway analysis revealed several enriched pathways, with the Ras signaling
pathway being the most significantly affected in individuals with PCC+, containing 111 DMGs.

Additional analysis of longitudinal changes in DMRs between 3 months and 12 months revealed 739
DMR-covered genes in the PCC+ group, while the PCC- group showed no significant DMRs. KEGG
pathway enrichment analysis identified the PI3K-Akt signaling pathway and cytoskeleton regulation
in muscle cells as the most enriched pathways (Supplementary Fig. A4).

p.adjust

100

80

60

40

Count

0.01

0.02

0.03

0.04

PCC+ PCC-

Ras signaling pathway

Rap1 signaling pathway

Focal adhesion

Dopaminergic synapse

Axon guidance
Growth hormone synthesis,

secretion and action
AMPK signaling pathway

Sphingolipid signaling pathway

Glutamatergic synapse

Morphine addiction

Human cytomegalovirus infection

cGMP-PKG signaling pathway

Oxytocin signaling pathway

Yersinia infection

Bacterial invasion of epithelial cells

Figure 3: KEGG pathway enrichment analysis of differentially methylated genes (DMGs) between 3
and 12 months in individuals with PCC+ and PCC-. The horizontal axis represents different groups,
while the vertical axis lists the enriched KEGG pathways. Node size indicates the number of DMGs
associated with each pathway, and node color intensity corresponds to the adjusted p-value, with dark
green colors reflecting more significant enrichment.

2.4 No accelerated epigenetic aging in the PCC+ group relative to the PCC-
group

Epigenetic aging refers to the accumulation of molecular changes in the DNA that reflect biological
aging at the cellular level. Measuring the epigenetic age (EpiAge) acceleration, the deviation of
epigenetic age from chronological age, has become a key indicator of aging-related conditions. Recent
studies have reported accelerated EpiAge in individuals with COVID-19 and PCC compared to healthy
controls [12, 13]. To investigate whether individuals with PCC+ in our cohort exhibit similar epigenetic
aging patterns over time, we evaluated the differences between their EpiAge acceleration rates and
those estimated for the PCC- group.

First, we measured the biological age of every sample at every measured time point (3, 6, and
12 months) using six blood-based DNAm age clocks (Horvath [14], Hannum [15], Horvath Skin and
Blood [16], PhenoAge [17], Zhang [18], and NCAE-Age [19]), from which we calculated their EpiAge
acceleration. We observed no statistically significant differences in EpiAge acceleration rates between
the PCC+ and PCC- groups for any of the DNAm age clocks at any time point (Mann-Whitney U
test, p-value > 0.05) (Fig. 4). Similarly, EpiAge acceleration rates obtained from the averaged EpiAge
estimates between age clocks did not show significant differences between individuals with PCC+ and
PCC-.
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We expanded our analysis to investigate the correlation between the number of symptoms at each
time point and EpiAge acceleration, aiming to understand the potential impact of symptom burden on
biological aging. However, no significant correlation was found between symptom count and EpiAge
acceleration, suggesting that symptom burden may not directly influence EpiAge acceleration in this
context (Fig. A5).
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Figure 4: Epigenetic age acceleration of individuals with PCC+ and PCC- compared at 3, 6, and
12 months, from six DNA methylation age clocks plus their average estimation. Actual ages are
adjusted by adding the corresponding number of years since baseline. The abbreviation “ns” denotes
comparisons where no significant difference was observed (Mann-Whitney U test p-value > 0.05).

3 Discussion

PCC manifests as an extensive range of symptoms, including problems with cognitive processing
known as “brain-fog”, reduced lung function, autonomous nervous system impairment, chronic fatigue
or anxiety, chronic cough, heart palpitations, and more [20, 4]. Most current studies have primarily
studied hospitalized patients, and the duration of follow-up time has been relatively brief. Here, we
have focused on long-term symptoms that lead to reduced health-related quality of life in a cohort of
otherwise healthy adults monitored over one year after disease onset.

In this study, we identified distinct DNAm patterns that separate individuals with PCC+ and
PCC-. The differences in DNAm profile between the PCC+ and PCC- groups diminish with time.
We propose that this temporal change reflects the improvement many patients with PCC experience
over time, as indicated by the decreasing number of reported symptoms observed at each follow-up in
our study.

Common symptoms experienced by individuals with PCC include cognitive issues and fatigue. We
observed that TXNRD1, which encodes Thioredoxin Reductase 1, was differentially methylated at
each time point and showed an association with these symptoms. Thioredoxin Reductase 1 plays a
critical role in the thioredoxin system, which is essential for reducing oxidative stress. This system is
vital for maintaining cellular redox balance. Oxidative stress, along with mitochondrial dysfunction,
has been implicated in PCC in numerous studies, suggesting a potential mechanism underlying these
long-term symptoms [21, 22]. Al-Hakeim et al. (2023) reported that 32% of PCC patients in their
cohort exhibited increased oxidative toxicity and reduced antioxidant defenses. Their findings suggest
that neuropsychiatric symptoms following COVID-19 infection may have a neuro-oxidative origin [21].
We acknowledge that our results were obtained from PBMCs, while symptoms originate from other
tissues. Given that COVID-19 is a systemic infection, we propose that oxidative stress occurs across
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multiple tissues post-infection, contributing to symptom development. Furthermore, using PBMC,
we identify epigenetic modificaitons in pathways related to other organs (CNS, heart). As a matter
of fact, it is well established that DNAm patterns found in blood cells can be reliable biomarkers for
neurocognitive conditions [23]. The reason for these ubiquitous epigenetic changes remain enigmatic,
but a study addressed DNAm alterations linked to autism spectrum disorder (ASD) and identified
DNAm alterations that overlapped between blood and brain tissues of ASD patients [24].

Several mechanisms may contribute to a dysfunctional thioredoxin system and increased cellular
oxidative stress. First, the main protease of SARS-CoV-2 has been shown to target TXNRD1 [25].
From a mechanistic perspective, this could align with a viral strategy to suppress DNA synthesis
and conserve the ribonucleotide pool for enhanced virion production, which could lead to increased
oxidative stress. Second, TXNRD1 is a selenoprotein, highly dependent on selenium [26]. Selenium
deficiency has been linked to increased COVID-19 mortality and is proposed to elevate the risk of
developing PCC [27].

KEGG pathway analysis of DMGs and DMRs at each time point revealed enrichment in several
key signaling pathways. The most prominent pathways were AMPK (DMRs) and PI3K-Akt (DMGs).
These findings align well with previous results from Bramante et al. (2023), who demonstrated that
metformin reduces the incidence of PCC [28]. Metformin has previously been shown to reduce oxidative
stress via the PI3K-Akt signaling pathway [29], as well as lowering intracellular reactive oxygen species
levels and up-regulate thioredoxin expression through the AMPK signaling pathway [30]. Together,
these insights provide a plausible mechanism for how metformin may reduce PCC symptom severity
by modulating oxidative stress and key regulatory pathways involved in post-COVID recovery.

Recent research has explored additional roles of TXNRD1 besides its enzymatic role in cellular
redox regulation. Hao et al. (2023) proposed TXNRD1 as a regulator of age-associated inflammation
through its effects on the innate immune response [31]. Given the evidence of accelerated biological
aging in COVID-19 patients and individuals with PCC, we aimed to investigate this further [12, 13].
Using a well-matched cohort of individuals with initial mild COVID-19 infection and low comorbidity
burden, we applied various biological clocks based on DNAm data. However, we found no significant
differences in epigenetic age acceleration between the PCC+ and PCC- groups at any time point.

Longitudinal analysis of DMGs over the first year after infection revealed significant enrichment of
the RAS and RAP1 signaling pathways in KEGG pathway analysis, while DMR analysis highlighted
the PI3K-AKT signaling pathway and cytoskeleton regulation in muscle cells. Our results suggest
an early impact on these systems, as seen in the results from GO analysis at 3 months that reveal
enrichment in small GTPase-mediated signal transduction as well as regulation of trans-synaptic
signaling and modulation of chemical synaptic transmission. We also observed that genes associated
with these pathways, such as VAV2 (Ras-related GTPase) and RRAS2 (a Ras-like low-molecular-
weight GTPases), are associated at early time points with neurological symptoms but not as much
in later time points. These early enrichments is in line with our previous report on COVID-19-
induced DNAm changes mapping to the Ras-system [32] and suggest an early configuration of the
RAS signaling pathway following infection.

RAS and RAP1 signaling pathways have previously been identified as enriched in the brains of de-
ceased COVID-19 patients. Antunes et al. (2024) analyzed the brain proteome of fatal COVID-19 cases
and compared it to differentially regulated proteins in post-mortem schizophrenia brains [33]. They
reported that pathways specifically enriched after COVID-19 included Ras, Rap1, mitogen-activated
protein kinases (MAPK), and immunological processes such as T-cell receptor and chemokine signal-
ing pathways. Our findings further support the hypothesis that COVID-19 impacts these pathways
during infection.

Small GTPases in RAS and RAP1 signaling pathways are central in many fundamental cell pro-
cesses and connect multiple receptors and effectors inside cells throughout the body. RAS and RAP1
signaling pathways have previously been associated with multiple neurological disorders [34], and
many commonly expressed symptoms in PCC might be explained by pathways connected to the RAS
signaling pathway. For example, dysregulation of the RAP1-dependent, NO-mediated blood vessel
relaxation could explain vascular symptoms such as chilblains and Raynaud’s phenomena [35]. Sim-
ilarly, symptoms of sleep disturbance, nightmares, and cognitive symptoms in PCC may result from
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dysfunction of the NMDA receptor due to regulatory mechanisms of the RAS signaling pathway in
synaptic plasticity at the NMDAR complex [36]. Longitudinal changes in DMGs in the dopaminergic
and glutamatergic pathways support this hypothesis.

The precise connections and causal relationships between these pathways remain unclear based on
our results alone, highlighting the need for further in vitro studies to confirm these findings. SARS-
CoV-2 may disrupt redox homeostasis, potentially leading to dysfunction in small GTPase-regulated
pathways, such as the RAS signaling system, given their sensitivity to oxidative stress. Alternatively,
the virus might directly target these systems to facilitate cellular infection and replication, further
exacerbating the observed dysregulation [37].

This study’s prospective, longitudinal design enabled the tracking of DNAm changes and symptom
dynamics across multiple time points, offering insights into the mechanisms and progression of PCC+.
By using matched groups with low levels of comorbidities and only mild initial COVID-19 infection, we
reduced interfering factors in our analyses, enhancing our capacity to identify and analyze differentially
methylated pathways in this cellular compartment. This approach allowed us to focus more directly
on pathways potentially implicated in PCC without interference from unrelated comorbidities. The
study would have benefited from larger cohort sizes, which would enhance the generalizability of our
findings. Expanding the sample size could provide a more robust dataset, enabling stronger statistical
power and potentially uncovering additional insights into methylation changes in PCC+. While the
study suggests potential mechanisms behind PCC+, additional experimental or interventional studies
are needed for validation.

4 Conclusion

This longitudinal study reveals dynamic DNAm patterns and potential mechanisms underlying long-
term symptoms associated with PCC in PBMCs. By tracking methylation changes over one year in a
well-matched cohort with mild initial COVID-19 infection, we identified specific methylation patterns
that distinguished PCC+ individuals from COVID-19 convalescents. These differences in methylation
profiles diminished over time, reflecting the gradual symptom improvement reported by many PCC+
patients.

Our analysis linked PCC symptoms – particularly cognitive impairment and fatigue – to methy-
lation changes in TXNRD1, suggesting a connection to redox imbalance. Although we measured the
methylome fallout in peripheral lymphocytes, these alterations likely reflect a broader systemic re-
dox mismatch. Related pathways, such as PI3K-Akt and AMPK, were significantly enriched. These
findings offer a potential explanation for the mechanism by which metformin reduces the incidence of
PCC, shedding light on how it may influence key pathways involved in post-COVID symptoms.

While the study’s longitudinal design reduced the influence of confounding factors, larger cohort
sizes would strengthen the generalizability of our findings. Future research should aim to confirm
causality through experimental studies, potentially opening avenues for targeted therapeutic interven-
tions.

5 Methods

5.1 Study design and study cohort

The study cohort consisted of patients from a prospective multicenter cohort study (CoVUm, clinical-
trials.gov ID: NCT04368013), previously described in published papers [4]. PCR-confirmed, SARS-
Cov-2 positive individuals were enrolled between April 2020 and June 2021. Both hospitalized (≥ 18
years of age) and non-hospitalized (≥ 15 years) patients were eligible for enrolment. Individuals who
were unable to provide informed consent or unable to read or communicate in Swedish were excluded.

Out of the 579 included individuals, we selected a non-hospitalized sub-cohort of 22 individuals
with PCC+ and 22 COVID-19 convalescents (PCC-) from the same cohort, matched for sex, age, and
BMI. Narrow exclusion criteria were used to reduce the impact on epigenetic expression from other
variables. The individuals were selected without cardiovascular disease (not hypertonia), malignant
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disease, autoimmune diseases (not hypothyroidism), active smoking, COPD, liver disease, kidney
diseases, or HIV. All included individuals had a mild initial infection according to the WHO clinical
progression scale [38].

REDCap electronic data capture tools were used to enter participant data into electronic case
report forms hosted by Ume̊a University [39]. Baseline characteristics, disease severity, level of care,
and clinical parameters were collected at inclusion. The Charlson Comorbidities Index was used to
quantify comorbidity-based disease burden and mortality risk [40]. Wilcoxon rank sum test was used
to compare continuous variables between groups and Fisher´s exact test for categorical variables.

5.2 Outcome measures

A custom questionnaire including 15 symptoms was used to assess persistent symptoms at every
follow-up visit. The modified Medical Research Council scale was used to evaluate Self-experienced
dyspnoea, and the cut-off for dyspnoea was set at score ≥ 1 [41].

Health-related quality of life after COVID-19 infection was assessed with the EuroQol 5-dimension
5-level questionnaire (EQ-5D-5L) and the EuroQol Visual Analogue Scale (EQ-VAS). The results were
converted to an index value (EQ-5D Index) by using the United Kingdom as the reference population
[42].

5.3 Post COVID-19 condition plus (PCC+) definition

PCC+ was, as in previous papers, defined as the prevalence of ≥ 1 symptom after 6-month follow-up,
together with either moderate (score ≥ 3) difficulties in ≥ 2 dimensions of EQ-5D-5L and/or self-
assessed overall health ≤ 60 in EQ-VAS. Individuals included met the definition at the 6- or 12-month
follow-up or both [4].

5.4 Epigenome-wide DNAm analyses

PBMCs were isolated and DNA was prepared as described in [32]. Briefly, DNA was extracted from
PBMCs using QIAamp DNA Mini Kit on the QIAcube Connect platform (Qiagen, 51304, 9002864,
Germany). DNA quantity was measured with Qubit HS dsDNA (Q32851, invitrogen, USA) and the
quality was evaluated with NanoDrop Spectrophotometer (ND-1000, Thermo Fisher Scientific, USA).

The methylation array data was generated by Clinical Genomics Linköping, Linköping University,
Sweden. For each sample, 250 ng of DNA extracted from PBMCs was subjected to bisulfite conversion
using EZ DNA Methylation Kit (Zymo Research) and further processed according to the Illumina
Infinium MethylationEPIC v1.0 (850K) protocol. The BeadChip arrays were scanned on the NextSeq
550 (Illumina) instrument.

5.5 Data pre-processing

Samples collected at 3 and 12 months were DNAm profiled together, while those collected at 6 months
were profiled separately. To reduce technical variation without destroying the biological signal, we
pre-processed the data independently for each profiling batch.

We read raw intensity (IDAT) files containing the methylated (Meth) and unmethylated (Un-
meth) measurements using the R package minfi [43], and normalized the data using the R package
ENmix [44]. For the best possible consistency, we used the recommended ENmix methods out-of-band
(OOB) background estimation, REgression on Logarithm of Internal Control probes (RELIC) dye-
bias correction, no quantile normalization, and the Regression on Correlated Probes (RCP) probe-type
bias correction [45]. We represented the methylation level for each probe per sample by M-values,
calculated as M = log2

Meth+α
Unmeth+α .

Next, we filtered out non-CpG probes, probes associated with SNPs, multi-hit probes, and probes
located on the X or Y chromosomes using the R package ChAMP [46]. Additional batch corrections
using the R function ComBat addressed slide and array effects [47]. Finally, we inferred cell type
proportions in the samples using the R package EpiDISH [48].
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5.6 Differential methylation analysis

We identified differentially methylated CpGs between PCC+ and PCC- groups using the R package
limma [49], with age, sex, and cell type proportions included as covariates in the model. The longi-
tudinal analysis focused on changes between 3 and 12 months, as samples collected at 6 months were
DNAm profiled separately, making it challenging to distinguish technical noise from biological varia-
tion. To account for random effects in the longitudinal model, we included patient ID as a blocking
factor when fitting the linear model to the data.

We classified CpGs as differentially methylated (DMCs) when the p-value was less than 0.01. After
identifying DMCs, we mapped them to their corresponding differentially methylated genes (DMGs)
using the function getFlatAnnotation from the R package missMethyl [50]. We considered a gene
differentially methylated if it contained at least one DMC.

We identified differentially methylated regions (DMRs) using the R package DMRcate [51].

5.7 Disease pathways analysis

To analyze KEGG pathway enrichment, we mapped the identified DMGs to 334 KEGG pathways
using the function enrichKEGG from the R package clusterProfiler [52], and visualized the top 10
enriched KEGG pathways with a Benjamini-Hochberg FDR-adjusted p-value less than 0.05.

5.8 Modelling symptom outcome on DNAm

To investigate the association between the methylation levels of specific CpGs and symptom clusters
over the three time points (3, 6, and 12 months), we performed logistic regression using the R package
glm. To make the analysis computationally feasible, we focused on 155 CpGs that demonstrated
differential methylation consistently across the 3- and 6-month time points. This approach prioritized
CpGs that showed early, since persistent changes are likely to be biologically relevant to symptom
development. For each of these 155 CpGs, we constructed logistic models with symptom counts as
the outcome and CpG beta values as predictors, fitting separate models for respiratory, neurological,
psychiatric, and other symptom types.

Since symptoms can be influenced by the combined effects of multiple CpGs, we explored models
that included subsets of CpGs. Given the limited sample size, we restricted these models to a maximum
of two CpGs (referred to as saturated models) to minimize overfitting. All possible combinations of
CpG pairs were evaluated, Nmodels =

(
155
2

)
. For each model, we estimated the variance in symptom

occurrence explained by the included CpGs using McFadden’s pseudo-R2 (R2
McF ). To identify the

most explanatory CpGs, we used two criteria. First, we evaluated statistical evidence for each CpG
by comparing the Akaike Information Criterion corrected (AICc) between models. Specifically, a
focal CpG was considered supported if the AICc of the model with only that CpG was ≥ 10 units
higher than the AICc of the saturated model [53]. Second, we approximated the relative importance
of each CpG by calculating the difference in R2

McF between the saturated model and the model,
excluding the focal CpG. For each CpG, the median of these ∆R2

McF values was used to represent its
relative importance. To ensure consistency across time, we filtered CpGs using a minimum explanatory
threshold (∆R2

McF > 0.05) and included only those with significant associations at all three time points
in the summary table.

5.9 Analysis of epigenetic age acceleration

Estimates of biological or epigenetic age (EpiAge) for individuals with PCC+ and PCC- were calcu-
lated using six blood-based DNAm age clocks, namely Horvath [14], Hannum [15], Horvath Skin and
Blood [16], PhenoAge [17], Zhang [18], and NCAE-Age [19]. In addition, the mean predicted age across
clocks was included to provide a robust and comprehensive estimate of biological age, minimizing clock-
specific variability and sensitivity to outliers. DNAm age clocks were retrained, where applicable, for
improved generalizability using 17,726 whole blood samples from healthy controls publicly available
in the Gene Expression Omnibus (GEO) repository (accessed June 2023). EpiAge acceleration was
measured as the deviation between the biological and chronological age of an individual. Actual ages
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were adjusted by adding the corresponding number of years since baseline. The statistical significance
of the differences in EpiAge acceleration between PCC+ and PCC- individuals was assessed using the
Mann-Whitney U test implemented in the SciPy library.
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The study was approved by the Swedish Ethical Review Authority (approval number: 2020-01557)
and was carried out according to the declaration of Helsinki.
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Figure A1: Principal component analysis of clinical chemistry data from the first 30 days after in-
fection. Variables: Prothrombin time(INR), C-reactive protein, aspartate aminotransferase, alanine
aminotransferase, creatinine, erythrocyte sedimentation rate, leukocytes, hemoglobin, thrombocytes,
neutrophils, lymphocytes, monocytes, eosinophils, basophils, partial thromboplastin time test, D-
Dimer. Abbreviations: PCC+, Post COVID-19 condition plus; PCC-, Matched COVID-19 convales-
cents.
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Figure A2: EPIDISH cell type analysis of a) PCC+ and b) PCC- groups. X-axis showing cell types in-
cluding B-cells (B), CD4-positive T-cells (CD4T), CD8-positive T-cells (CD8T), eosinophils (Eosino),
monocytes (Mono), neutrophils (Neutro) and natural killer T-cells (NK). Y-axis showing estimated
cell-type fraction. PCC+ (Post COVID-19 condition plus), PCC- (Matched COVID-19 convalescents).
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Figure A3: Gene Ontology (GO) enrichment analysis of differentially methylated genes (DMGs) be-
tween PCC+ (Post COVID-19 condition plus) and PCC- (matched COVID-19 convalescents) samples.
The horizontal axis represents different time points, while the vertical axis lists the top 10 enriched
GO pathways. Node size indicates the number of DMGs associated with each pathway, and node color
intensity corresponds to the adjusted p-value, with red colors reflecting more significant enrichment.
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Figure A4: KEGG pathway enrichment analysis of differentially methylated regions (DMRs) between
3 and 12 months in individuals with PCC+ (Post COVID-19 condition plus). The vertical axis lists
the enriched KEGG pathways. Node size indicates the number of genes in DMRs associated with each
pathway, and node color intensity corresponds to the adjusted p-value, with red colors reflecting more
significant enrichment.
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Figure A5: Correlation between number of symptoms and epigenetic age (EpiAge) acceleration at 3,
6 and 12 months after COVID-19 infection.
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Månsson, Anders Magnuson, Ingela Marklund, Ida-Lisa Persson, Anna Kauppi, Clas Ahlm, Mat-
tias N. E. Forsell, Josefin Sundh, Anna Lange, Sara Cajander, and Johan Normark. High preva-
lence of persistent symptoms and reduced health-related quality of life 6 months after covid-19.
Frontiers in Public Health, 11, 2023.
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