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ABSTRACT 19 

Background 20 

Viet Nam, a high-burden tuberculosis (TB) country, observed marked declines in TB notifications 21 

during the COVID-19 pandemic. We sought to determine whether and how COVID-19-related 22 

factors have influenced TB transmission and control, as well as their long-term effects, aiming to 23 

inform and enhance TB control strategies. 24 

Methods 25 

We developed a compartmental TB transmission model to estimate COVID-19's impact on TB 26 

detection and transmission in Vietnam. We simulated future scenarios to evaluate the potential 27 

benefits of enhanced TB case detection. 28 

Results 29 

The COVID-19 pandemic significantly impacted TB control in Viet Nam, leading to a sharp decline 30 

in case detection in 2021. This resulted in approximately 1,900 new TB episodes (95% credible 31 

interval [CrI]: 200 - 5,100) and 1,100 TB-related deaths (95% CrI: 100 - 2,700) in that year. 32 

Projections suggest that by 2035, these disruptions could contribute to 22,000 additional TB 33 

episodes (95% CrI: 1,900 - 63,000) and 5,900 more deaths (95% CrI: 600 - 16,600). We predicted 34 

two hypothetical scenarios of enhancing TB case detection. Under the ambitious scenario, 35 

enhancing TB case detection could mitigate these potential impacts by preventing 17.8% of new TB 36 

episodes (95%CrI: 13.1% - 21.9%) and 34.2% (95%CrI: 31.5% - 37.0%) of TB-related deaths by 37 

2035, compared to no enhancement. 38 

Conclusions 39 

COVID-19 disruptions have created a backlog of undiagnosed TB cases, increasing transmission 40 

and mortality. Sustained investment in diagnostics, healthcare resilience, and proactive policies is 41 

essential to mitigate long-term consequences. 42 

Keywords: Mycobacterium tuberculosis, COVID-19 pandemic, Case detection, Transmission 43 

dynamic model, compartmental model. 44 
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INTRODUCTION 45 

Tuberculosis (TB), the disease caused by the bacterium Mycobacterium tuberculosis (M.tb), 46 

remains a critical global public health challenge [1]. Viet Nam, as a high-burden country, exemplifies 47 

the difficulties in controlling TB [1]. Its continuing high burden highlights the urgent need for 48 

improved public health strategies, and understanding its epidemic drivers may offer valuable 49 

insights for addressing TB in similar settings globally. 50 

The COVID-19 pandemic severely disrupted global TB control, causing significant declines in TB 51 

notifications in high-burden countries like India, South Africa, Brazil, and Indonesia [2–4]. Prior 52 

research identified an 8% decrease in TB notifications in Viet Nam attributable to pandemic effects 53 

[5]. The World Health Organization (WHO) reported an 18% global decline in TB notifications in 54 

2020, with an estimated 200,000–400,000 additional TB deaths [2, 6]. WHO’s assessments rely on 55 

national TB program reports [7], which may underestimate the true burden due to undiagnosed 56 

cases and limited surveillance capacity. Initial projections were based on notification trends rather 57 

than dynamic transmission models, which may not be the optimal approach to predicting long-term 58 

TB impact estimates. The reduction in TB notifications may be attributable to healthcare disruptions, 59 

resource diversion, reduced healthcare-seeking behavior or some combination of these factors. 60 

However, COVID-19 measures like mask-wearing and social distancing may have reduced TB 61 

transmission, which are not accounted for in WHO's early estimates [6].  62 

To address these challenges, we developed a deterministic compartmental model to simulate the 63 

transmission dynamics of M.tb in Viet Nam. Through this model, we aimed to quantify the long-term 64 

impacts of COVID-19 on TB control over the next decade. 65 

METHODS: 66 

1. Model structure 67 
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We developed a deterministic compartmental model comprising six compartment types - 68 

Susceptible (S), Early latent (E), Late latent (L), Active TB or infectious (I), Treatment (T), and 69 

recovered (R) - to represent different TB-related infection and disease states, using a similar 70 

conceptual approach and assumptions as our previously published model [8]. A detailed description 71 

of the model structure and all associated methods are provided in the Supplemental Material. 72 

We stratified these base compartments into six age groups (0–4, 5–14, 15–34, 35–49, 50–69, and 73 

70+ years) to capture demographic processes of birth, aging, and death, as well as age-specific 74 

contact patterns informed by a contact survey performed in Viet Nam [9]. Model compartments were 75 

further stratified by pulmonary/smear status into smear-positive, smear-negative and 76 

extrapulmonary forms of TB (SPTB, SNTB and EPTB) to account for differences in infectiousness, 77 

detection, and fatality risks. 78 

The reduction in TB notifications during the COVID-19 pandemic could plausibly be attributable to 79 

reduced case detection, decreased transmission, or both. To model these effects, we considered 80 

four candidate assumptions: Assumption 1, the COVID-19 pandemic had no impact on either TB 81 

case detection or transmission; Assumption 2, only case detection was reduced, reflecting the 82 

decline in healthcare access, while TB transmission remained unaffected; Assumption 3, only TB 83 

transmission was reduced, with PHSMs limiting transmission, but case detection continued 84 

unaffected; Assumption 4, both case detection and TB transmission were reduced, incorporating the 85 

effects of both PHSMs and healthcare disruptions. 86 

2. Parameterization and calibration 87 

Table S6 (Supplementary Material) presents all model parameters. Table S7 88 

(Supplementary Material) specifies the prior distributions for the model parameters that were varied 89 

through our calibration algorithm, including contact rate, natural history-related, and latency-related 90 

parameters. 91 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 6, 2025. ; https://doi.org/10.1101/2025.02.27.25323053doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.27.25323053
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

One of the key parameters in our model was rate of commencing treatment of active TB, the rate at 92 

which individuals with active TB (I) transition to the treatment compartment (T). This rate is the 93 

reciprocal of the average time from developing active TB to first presentation and treatment initiation 94 

under the NTP and the diagnostic algorithm's sensitivity, accounting for the relative difficulty 95 

diagnosing SNTB and EPTB compared to SPTB. The average time from developing active TB to 96 

first presentation and treatment initiation reflects the delays attributable to the patient, provider, and 97 

health system factors, which can lead to delayed diagnoses. We used a smooth transition function 98 

that gradually increased with the historical improvements in the availability of TB diagnostics and 99 

treatments. More details are provided in the Supplementary Material. 100 

In our model, the impacts of COVID-19 on TB transmission and case detection were incorporated 101 

through the use of reduction factors with minimally informative priors from 0.01 to 0.9. Specifically, 102 

under Assumptions 2 and 4, these reduction factors are applied to the rate of treatment 103 

commencement, while under Assumptions 3 and 4, they are applied to the contact rate. These 104 

factors were varied under the calibration process to capture the possible impact. 105 

We calibrated our model to align with local data, including total national population size (2019 106 

Vietnam Population and Housing Census [10]), TB notifications (reported to WHO [11]), and the 107 

prevalence of bacteriologically-confirmed and of SPTB among adults (the second national TB 108 

prevalence survey [12]) (Table S8, Supplementary Materials). The best assumption regarding 109 

COVID-19 impacts on TB dynamics was identified by comparing the expected log pointwise 110 

predictive density Watanabe-Akaike Information Criterion (EPLD-WAIC) values across four 111 

scenarios, with less negative values indicating better predictive performance [13]. 112 

3. Future projections 113 

Using the best candidate assumption, we assessed the impact of the COVID-19 pandemic 114 

on TB control by projecting new TB episodes and TB-related deaths from 2025 to 2035. We 115 

compared a baseline scenario, reflecting ongoing TB control challenges including pandemic 116 
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disruptions, with a counterfactual scenario where COVID-19 had no impact on TB detection. Finally, 117 

we evaluated the potential impact of future interventions to enhance case detection activities 118 

between 2025 and 2035. We considered a 2-fold and 5-fold increase in the rate of commencing 119 

treatment by 2035. For each scenario, we estimated the total number of new TB episodes and TB-120 

related deaths averted. 121 

4. Software 122 

We used summer, a Python-based epidemiological modelling framework [14], and the 123 

estival package for facilitating optimization and calibration, along with the external libraries 124 

nevergrad [15] and the DEMetropolisZ [16] algorithm from PyMC. Our model development, 125 

optimization, and calibration followed a pipeline equivalent to that detailed in [17]. The code used 126 

for the analyses are accessible in a GitHub repository at: https://github.com/vlbui/tbdynamics. 127 

RESULTS 128 

1. Calibration results 129 

Candidate model comparison 130 

All four assumptions closely matched the total population size and the prevalence of TB 131 

among adults, as shown in Figures S3 and S4. However, the fit varied when comparing the actual 132 

number of TB case notifications to the equivalent model output. Figure 2 shows this comparison 133 

under our four candidate assumptions regarding the effect of COVID-19 on M.tb dynamics. Among 134 

the assumptions, Assumption 2 provided the best fit to the observed sharp decline in TB 135 

notifications in 2021, slightly outperforming Assumption 4 based on our assessment with the EPLD-136 

WAIC (see Table S6). In contrast, Assumption 1 and Assumption 3 (COVID-19 only reduced 137 

transmission) showed a poorer fit to the data. 138 

Based on this preceding analysis, we selected Assumption 2 as our primary model for the following 139 

in-depth examination of M.tb dynamics in Viet Nam. Figure 3 illustrates the comparison between 140 
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accepted model runs, each calibration target, and other epidemiological estimates not included in 141 

our calibration algorithm that we considered for model validation. Figure S5 presents model outputs 142 

derived from the 50 randomly accepted model runs. 143 

Table S7 (Supplementary Material) details the posterior estimates and calibration metrics for the 144 

calibrated parameters of our preferred candidate model. The algorithm demonstrated highly 145 

satisfactory chain convergence, as evidenced by each parameter’s Gelman-Rubin statistic (��) being 146 

below 1.05 and all effective sample sizes exceeding 150. Figure S6 shows the trace plots for each 147 

parameter, illustrating their convergence and stability throughout the execution of the calibration 148 

algorithm. Figure S7 (Supplementary Material) overlays posterior distributions on the corresponding 149 

priors of the calibrated parameters. The posterior estimate for the reduction of COVID-19 on case 150 

detection was 0.33 with 94% high density interval ranging from 0.01 to 0.677. Figure S8 151 

(Supplementary Material) shows how the posterior distributions for the natural history parameters 152 

translate into the more epidemiologically intuitive quantities of disease duration and case fatality 153 

rate for SPTB and SNTB. 154 

Given the lack of historical data, the first 200 years of the simulation exhibited significant uncertainty, 155 

which progressively diminished in later years (Figure S10). Our calibration algorithm simulated a 156 

peak in adult pulmonary TB prevalence that began to decline from around 1986, coinciding with the 157 

establishment of the NTP. By 2017, the model predicted an adult pulmonary TB prevalence of 328 158 

cases per 100,000 populations (95% CrI: 269–399), closely matching our prevalence survey target, 159 

which estimated bacteriologically-confirmed TB among adults at 322 (confidence interval – CI: 260–160 

399) per 100,000 in 2017 [12]. 161 

We estimated TB incidence in 2022 at 153 cases per 100,000 population (95% CrI: 117 - 202), 162 

which closely matches the WHO's 2022 estimate of 176 cases per 100,000 (95% CI: 121 - 251) [11]. 163 

We estimated that approximately 18,000 people have died from TB each year since 2010, or about 164 

18 deaths per 100,000 population. Our modelled prevalence of adult SPTB aligned closely with the 165 
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results of the 2007 national prevalence survey (95 per 100,000, 95% CrI: 72 - 127, compared to 99 166 

per 100,000, 95% CI: 78 - 125) [18], but was somewhat higher than the 2017 survey results (73 167 

cases per 100,000, 95% CrI: 59 - 88, compared to 46 cases per 100,000, 95% CI: 32 - 68) [12]. 168 

Figure S9 (Supplementary Material) illustrates the proportion of active TB cases originating from the 169 

early latent phase, highlighting that 50% or more of these cases were due to early progression and 170 

therefore recent transmission throughout most of the recent simulation period. A minor increase in 171 

the proportional contribution of recent transmission was observed in 2021 during the COVID-19 172 

pandemic. The modelled prevalence of LTBI in 2019 was 45% of the total population (95%CrI: 39% 173 

- 51%). This aligns closely with the estimate from Ding et al. [19], which places the LTBI prevalence 174 

at around 44% of the population, also within our CrI. Figure S109 (Supplementary Material) shows 175 

the proportions of the population by compartment based on results from the maximum likelihood run. 176 

Figure S11 (Supplementary Material) shows the estimated increasing profile of the rate of 177 

commencing treatment over time, with the increase beginning from around 1986, which coincides 178 

with the establishment of the Viet Nam NTP [20]. The modelled rate shows a steep inflection, 179 

accelerating most rapidly through the late 1990s, six years after the implementation of the DOTS 180 

strategy [20]. The median case detection proportion stabilized at around 0.6 from 2010 onwards, 181 

which can be interpreted as meaning that about 60% of incident cases were successfully detected 182 

and commenced treatment. Specifically, we estimated a 33% reduction in the rate of commencing 183 

treatment, during COVID-19, resulting in a 0.43-year (equivalent to 23 weeks) increase in the time 184 

to active TB onset to detection and treatment. 185 

2. Future projection 186 

Long-term impacts of COVID-19 on TB incidence and TB deaths 187 

Figure 4 illustrates how the COVID-19-related health system effects may contribute to impeding 188 

future TB control efforts under Assumption 2, in comparison with a counterfactual scenario that 189 

COVID-19 had no effect on TB notifications. In 2021, we estimated 1,900 additional TB episodes 190 
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(95% CrI: 200 – 5,100) and 1100 additional TB deaths associated with the effects of COVID-19 191 

(95% CrI: 100 – 2,700).  By 2035, the cumulative annual burden could rise 22,000 more TB 192 

episodes (95% CrI: 1,900 – 63,000) and 5,900 more deaths (95% CrI: 600 – 16,600).  193 

In 2024, we estimated the average delay to diagnosing and treating an active TB case at 1.80 years, 194 

such that our scenarios are equivalent to reducing the delay time to 0.9 years (approximately 47 195 

weeks) with a 2-fold increase, and to 0.36 years (approximately 19 weeks) with 5-fold in rate of 196 

commencing care. Our projections of the results of these scenarios are presented in Figure 5. 197 

Compared to a ‘status quo’ projection, enhanced case detection by increasing the rate of 198 

commencing care 5-fold may prevent approximately 433,500 (95%CrI: 249,400 – 692,200) new TB 199 

episodes, representing a 17.8% reduction (95%CrI: 13.1% - 21.9%). Additionally, this scenario may 200 

avert 109,900 (95%CrI: 68,500 – 169,900) TB-related deaths, equivalent to 34.2% (95%CrI: 31.5% 201 

- 37.0%) of all TB-related dêaths over the coming decade. Notably, enhancing TB case detection 202 

may have an even greater impact on reducing TB-related mortality. 203 

DISCUSSION 204 

Our results show that the decline in TB detection during COVID-19 was primarily responsible for the 205 

sharp drop in TB notifications in Viet Nam in 2021. This disruption has likely contributed to a 206 

backlog of undiagnosed cases, sustaining TB transmission and potentially leading to long-term 207 

increases in incidence and mortality. Our methodological approach, developed using open-source 208 

packages, supports data input manipulation, compartmental model construction, execution, and 209 

calibration, providing a flexible and efficient tool for developing, optimizing, and calibrating complex 210 

epidemiological models while promoting reproducibility and adaptability. [17].  211 

he close alignment between the model-simulated indicators, including the population size, TB 212 

notifications and pulmonary TB prevalence demonstrates our model's capacity to capture multiple 213 

key observations reflecting TB burden. We found that COVID-19 was associated with significant 214 

reductions in TB case detection, which poses a serious threat to long-term TB control efforts, which 215 
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aligns with findings of other studies [20, 21]. However, Viet Nam has gained lessons from the 216 

COVID-19 pandemic to enhance TB case detection, focusing on decentralized services and 217 

proactive case-finding efforts. The "Double X" (2X) strategy, which utilizes chest radiography and 218 

GeneXpert rapid diagnostic testing, has improved early TB detection, particularly in vulnerable 219 

populations [5, 22, 23]. Continuing and expanding these programs may further strengthen TB 220 

surveillance, improve case detection rates, and mitigate long-term disruptions to TB control efforts. 221 

The model configuration incorporating both reduced case detection and transmission reduction 222 

performed almost as well as that with reduced case detection only. However, the configuration that 223 

incorporated a reduction in case detection aligned most closely with observed trends, showing how 224 

COVID-19-related healthcare disruptions likely delayed diagnosis and treatment, leading to fewer 225 

reported cases. The detection process is obviously crucial for timely treatment commencement, and 226 

any disruption creates a backlog of undiagnosed cases, sustaining transmission within communities. 227 

Under the assumption that COVID-19 reduced case detection, our model found a small increase in 228 

the relative importance of recent transmission to driving the epidemic during this period. Over time, 229 

this accumulated backlog continues to exacerbate transmission as more cases remain undetected. 230 

Thus, while we cannot exclude that contact reduction due to COVID-19 measures like social 231 

distancing and lockdowns had a small impact on transmission, the steep decline in case detection 232 

likely played the predominant role in influencing TB notification numbers during the pandemic 233 

period. The wide credible intervals for the additional future TB cases and deaths likely reflect the 234 

uncertainty in estimating the impact of COVID-19, the compounding effects of increased 235 

transmission over time and the general uncertainty associated with our long-term projections 236 

Nevertheless, the possibility of a major adverse effect on the epidemic emphasizes the importance 237 

of restoring and strengthening TB case detection efforts to mitigate the pandemic's lasting impact 238 

on TB control. This proactive approach not only manages the immediate effects of disruptions like 239 

those experienced during COVID-19 but also reduces long-term disease burden, saving more lives 240 

by ensuring that fewer cases go unnoticed and untreated. However, achieving this requires 241 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 6, 2025. ; https://doi.org/10.1101/2025.02.27.25323053doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.27.25323053
http://creativecommons.org/licenses/by-nc/4.0/


11 
 

substantial efforts, increased investment, and strong commitment. Any major disruption now or into 242 

the future - whether due to another pandemic, other public health crises - could further exacerbate 243 

TB control challenges. 244 

The modelled delay from active TB to diagnosis and treatment can be interpreted as being 245 

exponentially distributed with an average time to diagnosis of approximately 1.80 years, implying 246 

that many cases remain undetected. This delay may appear higher than prior studies which 247 

reported median diagnostic delays of 28 days in low- and lower-middle-income countries and 10 248 

days in upper-middle-income countries [24]. In high-endemic areas, delays often exceeded 120 249 

days, influenced by gender, rural residence, and health system inefficiencies [24, 25]. Variation in 250 

the definition of first healthcare-seeking behavior further complicates comparisons, with definitions 251 

ranging from visits to qualified providers to any contact with the NTP [24]. Additionally, 252 

asymptomatic TB constitutes a substantial proportion of cases, with 27.7 – 82.7% depending on 253 

symptom criteria [26, 27]. Similar prevalence is reported in subgroups like children and people with 254 

diabetes [28].  255 

Our study has limitations stemming from uncertainties in TB epidemiology and natural history. While 256 

recent research provides estimates for progression rates from LTBI to active TB, LTBI reactivation 257 

remains difficult to observe [29, 30], and we relied on several estimates from low-burden settings or 258 

from pre-chemotherapy era, that may not be fully applicable to the context of Viet Nam.  The 259 

difficulty in conducting longitudinal studies in high-burden areas further complicates the precision of 260 

these estimates, potentially affecting the generalizability of our findings [31]. Despite this, these 261 

estimates aligned well with observed data, offering a more accurate foundation than broad 262 

assumptions like a 5 - 10% lifetime risk [30]. Uncertainties in input parameters likely contributed to 263 

the wide range of future projections. Although we assumed that the average delay in diagnosis and 264 

treatment start would not change over the next ten years in our "status-quo" scenario, future NTP 265 

capacity expansion may reduce this delay and increase the case detection rate. Furthermore, our 266 

model implemented a synthetic social contact matrix from 2007, and an updated matrix would more 267 
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accurately reflect current transmission dynamics, considering changes in social behavior, contact 268 

patterns, and demographics. While important, addressing drug-resistant (DR)-TB was beyond the 269 

scope of this study. 270 

The major community-wide active case finding trial in Ca Mau province [32] provides opportunities 271 

for better understanding TB epidemiology in Vietnam and our modelling analysis can be considered 272 

in this context. The significant prevalence reduction observed during the trial period may suggest 273 

early progression may contribute more to TB cases than late reactivation, compared to our model 274 

estimates. However, we emphasize that our calibration process incorporated multiple 275 

epidemiological indicators, and our latency parameters - specifically early progression and late 276 

reactivation - were empirically derived, although all such estimates have their limitations. 277 

Additionally, we varied our latency parameters to some extent during calibration, and our 278 

supplementary materials indicate that early progression accounts for more than half of all cases in 279 

our model. While this discrepancy warrants further investigation, it presents a key opportunity for 280 

future research to refine our understanding of TB dynamics. Given the robustness of ACT3 as an 281 

epidemiological study, reconciling these differences could enhance the accuracy and applicability of 282 

our model to Viet Nam’s TB landscape. 283 

Our study's strengths include our optimization and calibration approach, which harnessed state-of-284 

the-art publicly available software tools and successfully captured key indicators of the epidemic 285 

while also reflecting uncertainty around key input parameters. The model was informed by multiple 286 

relevant data streams, including results from the recent TB national survey. This allowed us to 287 

replicate the local TB burden and ensure that historical trends in case detection were properly 288 

reflected through TB notification data. Our pipeline, which was also applied to COVID-19 [17], can 289 

simulate a broad range of directly transmitted pathogens, and so is particularly applicable to TB. 290 

Combining domain-specific syntax with other libraries from the data science ecosystem, our 291 

framework ensures accuracy, transparency, and efficiency while supporting detailed calibration and 292 

uncertainty analysis. 293 
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CONCLUSIONS 294 

Our study underscores the significant impact of COVID-19-related disruptions on TB case detection 295 

in Vietnam, leading to a backlog of undiagnosed cases that could sustain transmission for years. 296 

However, these impacts may be mitigated by enhancing case detection activities, which can 297 

improve early detection and reduce transmission risks. Any major disruption now or into the future - 298 

whether due to another pandemic, other public health crises - could further exacerbate TB control 299 

challenges. Addressing these risks requires sustained investment in diagnostic capacity, healthcare 300 

system resilience, and proactive policies to mitigate the long-term consequences of such 301 

disruptions on TB control. 302 
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 425 

 426 

 427 

 428 

429 

Figure 1. Model structure. Boxes represent different compartment types: Susceptible (S),  430 

Early latent infection (E), Late latent (L), Active TB (I), Treatment (T) and Recovered (R). Subscripts 431 

indicate stratification by age (a) and pulmonary/smear status (f). 432 

Alt text: The image depicts a compartmental model structure used in epidemiology. It consists of 433 

several boxes representing different disease states, including Susceptible (S), Early latent Infection 434 

(E), Late latent (L), Active TB (I), Treatment (T), and Recovered (R). Each box is further stratified by 435 

age (indicated by subscript 'a') and pulmonary/smear status (indicated by subscript 'f'), illustrating 436 

the transitions and interactions between these different states in the model. 437 
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 443 

 444 

 445 

446 
Figure 2. Model fits to the historical profile of case notifications under our four candidate 447 

assumptions regarding the effect of COVID-19 on M.tb dynamics. Solid lines represent median 448 

model estimates. Shaded areas show corresponding interquartile ranges (dark shade) and 95% 449 

credible intervals (light shade). Assumption 1: The COVID-19 pandemic had no impact on TB case 450 

detection or transmission. Assumption 2: Only case detection was reduced. Assumption 3: Only 451 
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TB transmission was reduced. Assumption 4: Both case detection and TB transmission were 452 

reduced, incorporating effects from both social distancing and healthcare disruption. 453 

Alt text: Figure 2 shows the model's fit to historical case notifications under four different 454 

assumptions about COVID-19's impact on tuberculosis dynamics. The model's median estimates 455 

are shown by solid lines, while the 95% credible intervals and interquartile ranges are shown by 456 

shaded areas (dark and light, respectively). Assumption 1, neither TB case detection nor 457 

transmission was impacted by the COVID-19 pandemic; Assumption 2, only case detection was 458 

decreased; Assumption 3, only TB transmission was decreased; and Assumption 4, decreases in 459 

both case detection and TB transmission. 460 
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 474 

 475 

Figure 3. Comparison between outputs and empiric observation targets other than annual 476 

case notifications for Viet Nam, under the best-fitting candidate model configuration 477 

(Assumption 2). Model predictions are represented as median (solid line), interquartile credible 478 

interval (dark blue shade) and 95% central credible interval (light blue shade). Red points and 479 

vertical line (where available) show the point estimates and confidence interval for each calibration 480 

target, while purple points indicate estimates from literature that are presented for comparison but 481 

were not used as calibration targets. Legends indicate the data source for each target. 482 

Alt text: Figure 3 illustrates a comparison between model outputs and empirical observation targets 483 
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for Vietnam, excluding annual case notifications, under the best-fitting candidate model 484 

configuration (Assumption 2). The median is represented by a solid line, the interquartile credible 485 

interval by a dark blue line, and the 95% central credible interval (CrI) by a light blue line. Red 486 

points with vertical lines that, when available, display CrIs are used to indicate calibration targets. 487 

Estimates from the literature that are utilised for comparison but not as calibration objectives are 488 

shown by purple points. The legend provides specifics about each target's data source. 489 
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 505 

Figure 4. Impact of the COVID-19 pandemic on the cumulative number of TB episodes and 506 

TB-related deaths from 2021 to 2035 compared to a counterfactual scenario that COVID-19 507 

had no effect on TB notifications. Projections made under Assumption 2, values are presented 508 

on a logarithmic scale. Cumulative diseased: cumulative new TB cases, Cumulative deaths: 509 

cumulative number of deaths due to TB. Lines indicate the 95% credible intervals of the estimates. 510 

Alt text: Figure 4 displays the impact of the COVID-19 pandemic on the cumulative number of 511 

tuberculosis (TB) episodes and TB-related deaths from 2021 to 2035, compared to a counterfactual 512 

scenario where COVID-19 had no effect on TB notifications. Assumption 2 is used to make the 513 

projections, and a logarithmic scale is used to display the data. The graph labels "Cumulative 514 

deaths" and "Cumulative diseased" denote the total number of TB-related deaths and cumulative 515 

new TB cases, respectively. The graph's lines show the estimations' 95% confidence intervals. 516 
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 521 

Figure 5. Number of cumulative new TB episodes and TB-related deaths averted under two 522 

scenarios of enhancing case detection comparing to ‘status quo scenario’. Projections made 523 

under Assumption 2, values are presented on a logarithmic scale. The ‘status quo’ scenario 524 

assumes case detection remains unchanged. Scenario 1 models a 2-fold increase and Scenario 2 525 

models a 5-fold increase in the rate at which persons with active TB commence care. Lines indicate 526 

the 95% credible intervals of the estimates. 527 

Alt text: The number of cumulative new TB episodes and TB-related deaths prevented under two 528 

scenarios that improve case detection in comparison to a "status quo scenario" is displayed in 529 

Figure 5. The results are displayed on a logarithmic scale, and the projections are made under 530 

Assumption 2. In the 'status quo' scenario, case detection is assumed to stay constant. The rate at 531 

which people with active TB start receiving care is predicted to increase by two times in Scenario 1 532 

and five times in Scenario 2. The graph's lines show the estimations' 95% confidence intervals. 533 
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