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2 

Summary (155/150 words) 34 

Climate change is likely to exacerbate a range of determinants which drive tuberculosis, the 35 

world’s leading infectious disease killer. However, tuberculosis is often neglected in wider 36 

climate health discussions. 37 

 38 

Commissioned by the World Health Organization, we developed an analytical framework 39 

outlining potential causal relationships between climate change and tuberculosis. We drew on 40 

existing knowledge of tuberculosis determinants, identified which are likely to be sensitive to the 41 

effects of climate change, and conceptualised the mechanistic pathways through which this 42 

might occur. We collated evidence for these pathways through literature reviews. Our reviews 43 

found no studies directly linking climate change and tuberculosis, warranting research to build 44 

evidence for action.  45 

 46 

The available evidence supports the existence of plausible links between climate change and 47 

tuberculosis, and highlights the need to include tuberculosis in climate risk adaptation and 48 

mitigation programmes, and climate-resilient funding and response mechanisms. Further 49 

evidence is urgently needed to quantify the effects of climate change on tuberculosis. 50 
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Introduction 51 

The health effects of climate change operate through complex and interconnected pathways, as 52 

outlined in the World Health Organization (WHO) Framework on Climate Change and Health, 53 

and further characterised in the Sixth Assessment Report of the Intergovernmental Panel on 54 

Climate Change (IPCC) and Lancet Countdown on climate change and health(1–3). Briefly, the 55 

WHO Framework postulates that climate-related hazards (e.g. extreme weather events, sea 56 

level rise) interact with vulnerabilities (e.g. gender, comorbidities) and exposures (e.g. food and 57 

health systems) leading to direct and indirect health effects. These include injuries and mortality; 58 

increases in zoonoses, food-, water- and vector-borne diseases, non-communicable diseases; 59 

and mental ill health(4). Climate change is also already affecting determinants of health by 60 

driving poverty, causing migration and displacement, worsening food and water insecurity, and 61 

disrupting access to healthcare and support systems(1–3). Importantly, many of the effects of 62 

climate change are cascading and compounding, and disproportionately affect populations in 63 

low- and middle-income countries where resilience and ability to adapt are lower(1–3).  64 

 65 

These climate-sensitive determinants of health significantly overlap with key determinants of the 66 

global tuberculosis (TB) epidemic(5). Despite progress, TB continues to rank among the world’s 67 

leading causes of death(6). In 2023 alone, an estimated 10.8 million people fell ill from TB, and 68 

1.25 million lost their lives to the disease(6). Determinants which heighten exposure to 69 

Mycobacterium tuberculosis, the causative agent of TB, such as overcrowding and poor living 70 

conditions, increase the risk of transmission and subsequent infection (hereafter referred to as 71 

TB infection). Meanwhile, determinants more specifically linked to health, which principally 72 

impair the immune system, such as undernutrition, HIV, alcohol use disorders, smoking, and 73 

diabetes, increase the risk of progressing to symptomatic and/or infectious disease (referred to 74 

here as TB disease, to distinguish it from TB infection)(6) and may worsen health outcomes. 75 

Many of these determinants can further exacerbate the known financial and psychosocial 76 

burden associated with TB, pushing TB-affected households deeper into poverty.  77 

 78 

Notably, many countries with a high TB burden, including India, Indonesia and the 79 

Philippines(6), are also highly vulnerable to the effects of climate change, as measured by 80 

several recognised indices(7–9)(Figure 1). Positioning TB in the context of climate change has, 81 

however, been overlooked due to insufficient research. A recent scoping review suggested that 82 

climate change increases TB infection and disease risk, particularly among vulnerable 83 
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populations(10), while a second review described the potential effects of climate change on 84 

several of the TB determinants described above(11). Despite these findings, the available 85 

evidence has not been systematically mapped against a comprehensive framework describing 86 

the potential pathways linking climate change and TB. Although some frameworks have been 87 

proposed (12,13), further work is needed to establish a global, consensus-based framework on 88 

the basis of evidence. Consequently, the current and potential future effects of climate change 89 

on TB are often overlooked in the wider climate and health discussion(14,15), and no coherent 90 

strategy exists to support countries to mitigate these effects. Developing a framework is 91 

therefore an urgent priority to guide effective policy and action.  92 

 93 

In response to this gap, the WHO Global TB Programme commissioned the creation of an 94 

analytical framework outlining potential causal relationships between climate change and the TB 95 

epidemic, and research gaps to facilitate evidence-building for action. Here, we describe the 96 

creation of this framework and its comparison to existing evidence, identify research domains in 97 

the area of climate change and TB critically lacking in evidence, and suggest example entry 98 

points for intervention. 99 

Methodology 100 

Development of this framework followed an iterative review process. We first convened an 101 

internal working group of TB and climate researchers to develop key questions informing the 102 

creation of a preliminary analytical framework, drawing on existing literature, systematic reviews 103 

and WHO publications on TB determinants, and wider discussions with key informants and 104 

experts. WHO then convened a multi-stakeholder consultation, bringing together 105 

representatives of countries, civil society, researchers  and public health practitioners, on the 106 

Impact of Climate Change on the TB response, where attendees reviewed the analytical 107 

framework, supporting evidence, and research gaps. The framework was updated and refined 108 

following this consultation meeting. 109 

 110 

Our internal working group first identified the principal social and health determinants of TB and 111 

conceptualised how these affect different aspects of the TB epidemic and response. We then 112 

selected which of these were likely to be sensitive to the effects of climate change, based on 113 

previous reviews(10,11), and hypothesised the causal mechanisms through which this might 114 

occur. This included identifying relevant climate factors (e.g. changing rainfall patterns or land 115 
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degradation), the pathway of influence (e.g. socioeconomic changes or migration), and how this 116 

might affect TB (e.g. increasing transmission or worsening health outcomes). 117 

 118 

After developing and visualizing these hypothesized causal relationships in a preliminary 119 

analytical framework, we undertook a narrative literature review. This gathered and synthesized 120 

the best available evidence to support, reject, or refine our hypotheses, focusing on three 121 

examples of critical pathways: i) migration and displacement, ii) food and water insecurity; and 122 

iii) health system disruptions. These example pathways, which are described further below and 123 

are termed climate/health links from hereon, were selected based upon: 124 

1. the plausibility of their relationship to climate change, i.e., to what extent a particular 125 

pathway was hypothesized to be sensitive to the effects of climate change; 126 

2. their plausibility and importance for TB, informed by their relevance to key WHO End TB 127 

Strategy(16) indicators and social and health determinants of TB emphasized by WHO; 128 

and 129 

3. the likely availability of existing data and other types of evidence, as well as their 130 

amenability for future analysis. 131 

 132 

Although each climate/health link could potentially influence multiple consequences for TB, 133 

including TB infection, TB disease and TB outcomes, we tested the framework by focusing our 134 

literature review on a single TB-related consequence for each climate/health link. For example, 135 

we reviewed the effect of health system disruptions on TB outcomes, but did not conduct a 136 

comprehensive review of other potential consequences associated with the same climate/health 137 

link, such as an increase in transmission due to delayed diagnoses, or higher TB disease rates 138 

resulting from reduced preventive treatment coverage. 139 

Search strategy and selection criteria 140 

We undertook six searches of the MEDLINE database: three investigating the effect of climate 141 

change on each climate/health link; and three investigating the effect of each climate/health link 142 

on the consequence for TB hypothesized as the primary pathway for that link. Our search 143 

strategy (Annex 1) combined searching abstracts and titles for key words with Medical Subject 144 

Heading (MeSH) terms. For example, to generate evidence linking climate change to changing 145 

TB infection because of migration and displacement, one search combined the concepts: 1) 146 

Climate change with 2) Migration and displacement, and 9) Study type; and a second combined 147 
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2) Migration and displacement with 5) TB, 6) Infection, and 9) Study type. We further increased 148 

our body of evidence by checking references of included articles, citation forward searching 149 

(checking for articles that cited included articles), and consulting key experts to obtain 150 

information on recent or ongoing studies not captured in our searches. Given the broad scope, 151 

our search strategy was refined iteratively, including by identifying MeSH terms and key words 152 

for relevant articles and adding them to our search terms if not already included.  153 

 154 

We screened titles and abstracts returned by the searches and accessed full-text versions for 155 

those potentially eligible for inclusion, including studies in human populations published since 156 

2000 in English. For pragmatic reasons, only evidence from modelling studies or pre-existing 157 

reviews (including systematic reviews, meta-analyses, scoping reviews, and narrative reviews) 158 

was included. Individual studies, case reports, and perspectives were considered only when no 159 

reviews or modelling studies could be found, or where they provided a novel perspective. Key 160 

data from included articles were extracted into a standardised form. We then conducted a 161 

narrative synthesis to summarise key findings relevant to each topic and used this to adjust and 162 

refine the analytical framework towards its final state, including highlighting key areas critically 163 

lacking in evidence. This was an iterative process, further informed by discussion with other 164 

experts and key stakeholders. 165 

Role of the funding source 166 

Members of the funding body participated as authors on the study and critically reviewed the 167 

framework, reviewed and revised the manuscript, and approved the final manuscript as 168 

submitted.  169 

Analytical framework 170 

The resulting framework is presented in Figure 2. At the highest level, elements are captured 171 

describing changing climate factors. These cover key examples, which are not exhaustive, 172 

such as changing temperatures and rainfall (leading to, for example, increased duration and 173 

frequency of droughts or extreme heat), rising sea levels and warming of oceans, and extreme 174 

weather events (such as flooding, storms, fires, droughts and extreme heat). Factors are 175 

incorporated at a range of timescales, including whether the effects are expected to be visible in 176 

the near or longer-term future, as well as how long a given effect might last. For example, 177 
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extreme weather events have already been widely recorded, and generally result in an 178 

immediate but (per event) shorter-term effect. In contrast, sea level rises may currently be a 179 

more distal prospect, but one which will likely have a longer-term effect.  180 

 181 

As a direct result of these climate factors, a variety of structural and environmental 182 

determinants of TB are potentially affected. These cover examples such as levels of poverty 183 

and inequality (both within and between countries); resource crises (such as fuel, housing, 184 

materials and other resources); humanitarian crises, conflict and violence over resource 185 

competition; ecosystem change (including changes in seasonality, and in the living and 186 

nonliving components of ecosystems); land degradation and availability (including changes to 187 

vegetation and available farmland); and air quality. 188 

 189 

Changing structural and environmental determinants are then linked to health via a series of 190 

climate/health links. Three prioritised examples of links are outlined in the sections below and 191 

in Table 1; migration and displacement, food and water insecurity, and health system disruption. 192 

Each link completes a direct causal pathway through which changes in structural and 193 

environmental determinants drive changes in exposure to social and health determinants.  194 

 195 

Social and health determinants cover examples such as living conditions and housing 196 

(affecting factors such as overcrowding and ventilation); changing social contact as individuals 197 

move within and between countries; and changes in prevalence and management of 198 

comorbidities including (but not limited to) HIV and diabetes, changes in nutritional status, 199 

mental ill health and stigma, and provision of and access to TB prevention and care services. 200 

 201 

Lastly, social and health determinants are explicitly linked to TB consequences, where they 202 

affect; 203 

1. the likelihood of exposure to and susceptibility to TB infection;  204 

2. the risk of progression to TB disease; and  205 

3. the extent of vulnerability to TB outcomes (including short- and long-term morbidity, 206 

disabilities, mortality, acquisition of drug-resistance, and psychological and financial 207 

consequences).  208 

 209 

These elements can impact progress towards the goals and targets of the WHO End TB 210 

strategy. Increased TB exposure and susceptibility may drive higher transmission, leading to 211 
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greater infection rates, disease burden, and associated health and social costs. Similarly, TB 212 

disease progression influences health outcomes, onward transmission and incidence, and TB-213 

related socio-economic consequences. Moreover, worsening inequalities can exacerbate health 214 

disparities, including mortality and TB-related catastrophic costs. 215 

 216 

TB care and prevention programmes may also contribute to climate change, creating a 217 

feedback loop within the framework. The healthcare sector more generally is estimated to 218 

account for approximately 5% of global emissions(17), and, when specifically considering TB, 219 

there are multiple sources of emissions across the TB care cascade(18,19). These include the 220 

energy and material inputs required for TB diagnostics and treatment, transportation emissions 221 

from patient visits and sample transport, and the medical and biological waste generated as part 222 

of providing care.  223 

 224 

Due to the interconnectedness of potential pathways, many of which are cyclic or mutually 225 

reinforcing, the framework is not intended to be exhaustive, but seeks to capture the pathways 226 

with significant implications for the TB epidemic and response, and those that are amenable to 227 

analysis and actionable from a policy perspective. As part of this work, the pathways for the 228 

three climate/health links described above were reviewed in detail (Table 1). Two other potential 229 

pathways, not reviewed in detail for pragmatic reasons, but which merit further attention, are air 230 

pollution and meteorological factors (Panels 1 and 2).    231 

 232 

Importantly, these pathways often create compounding vulnerabilities. For example, displaced 233 

populations frequently have reduced access to adequate nutrition and healthcare; those living in 234 

poverty who are experiencing food insecurity often concurrently have limited access to 235 

healthcare and higher displacement risks; and when extreme weather events cause disruptions 236 

to health systems, they typically also cause displacement and disruptions to food security.  237 

Migration and displacement 238 

Evidence on climate change and migration and displacement 239 

Climate change and migration and displacement has an extensive history of research(3), with 240 

multiple existent frameworks(20–23) and a wealth of examples of how climate change might 241 

drive population movement both between and, more commonly, within countries(24–34). In 242 
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2023, approximately 20.3 million people were internally displaced as a result of weather-related 243 

hazards, while by 2050 that number could increase to 216 million due to slow-onset climate 244 

change impacts(35). Several reviews cover circumstances encompassing natural hazards and 245 

socioeconomic changes(36–43), including reviews comparing different climate migration 246 

models(44–48). Models projecting future migration due to climate change are also numerous. 247 

Multiple examples focus on sea level rise and flooding(49–56); although some consider 248 

meteorological(57–63), macroeconomic(64,65), and agricultural changes(66,67) and more 249 

general frameworks exist(68–72). Given this the IPCC states with high confidence that extreme 250 

weather events and variability act as direct drivers of involuntary migration and displacement, 251 

and as indirect drivers through deteriorating economic conditions and livelihoods(3). However, 252 

patterns of migration due to climate change are likely to be highly context specific and are 253 

difficult to project because of the multicausal nature of migration, migration policies, and the 254 

scale and nature of any future adaptations. Nevertheless, it is striking that the IPCC states that 255 

under all global warming levels there are areas of the world which will become 256 

unsafe/uninhabitable, many of which are currently densely populated and have a high TB 257 

burden(3).  258 

Evidence on migration and displacement and TB infection 259 

There is also a large body of evidence linking migration (particularly forced migration and 260 

displacement) to TB risk(73,74). While no routine estimates of burden are published, reviews 261 

suggest a multi-fold increased risk of TB for displaced persons(75,76). The literature focuses 262 

principally on the additional TB disease burden and poor treatment outcomes (partly because of 263 

reduced access to care) experienced by displaced people or those in crisis situations(75–79), or 264 

on TB disease screening in migrants from high to low TB burden settings(73,80–89). This 265 

makes it difficult to establish whether any increase in TB disease in migrants compared to non-266 

migrants from the same region is driven by an increase in transmission and infection resulting 267 

from changing living conditions and social contact during transit, in camps and asylum settings, 268 

or due to progression to TB disease due to poor nutrition or poor access to preventive care 269 

because of barriers such as language, legal status, low resources, stigma, or a combination of 270 

all of these. While we focus here on TB infection, it is important to highlight  that a combination 271 

of several factors described above, including underlying health vulnerabilities, play a role in 272 

increasing disease risk throughout the migration and displacement journey(79). In the context of 273 

human mobility and TB infection, a review of the impact of conflict on infectious disease found 274 

an increase in TB transmission due to displacement(90). A separate review of migrants to low 275 
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TB burden settings identified case studies where transmission during transit led to 276 

geographically widespread clusters(73). Another review comparing transmission in foreign- and 277 

native-born communities(91), found that TB in foreign-born populations did not have a 278 

significant impact on TB among native populations in Europe. One individual study compared 279 

TB infection prevalence, finding no evidence for a link to living in a disaster area but some 280 

evidence for a link to overcrowded living conditions(92), while a modelling study considering 281 

rural-urban migration in China identified the important role of migration in transmission(93). 282 

While multiple reviews identify a high risk of TB infection among migrants across a range of 283 

settings, they frequently do not provide direct comparisons with populations of origin to assess 284 

changes in transmission risk(78,94–97).  285 

Food and water insecurity 286 

Evidence on climate change and food and water insecurity 287 

Climate change and food and water insecurity likewise have long been known to be intrinsically 288 

linked(3), and were the focus of a recent special IPCC report(98). Approximately 733 million 289 

people faced hunger in 2023, equivalent to one in eleven people globally and one in five in 290 

Africa, and if current trends continue 582 million will still be chronically undernourished by 291 

2030(99). Short-term disruptions to food systems due to climate-driven extreme weather events 292 

or other disasters such as earthquakes and conflict have been shown to have a direct effect on 293 

food and water security as well as nutritional status(99–113), with exposure to such acute 294 

events potentially leading to lasting consequences(114,115). Meanwhile, longer-term effects of 295 

changing temperatures and precipitation on crop yields, grassland quality, and oceans (through 296 

warming and acidification) have already been observed to negatively impact agricultural and 297 

aquaculture productivity, with significant future impacts on food security expected(3,116–123). 298 

Furthermore, a large body of literature exists reviewing the effects of climate change directly on 299 

nutritional status and associated health outcomes(124–131), as well as projecting longer-term 300 

effects due to changing calorific availability and diets (132–153), including because of increased 301 

food costs. The focus of many of these studies is on malnutrition in children, including stunting 302 

and wasting, or on obesity and overweight in adults. Several studies were also found on the 303 

effect of climate-induced food insecurity on birth weight, which were not included here. 304 

Importantly, although the effects of climate change on food and water insecurity are likely to 305 
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affect everyone to some extent, they are likely to disproportionately affect high TB burden 306 

countries with underlying vulnerabilities in their food systems(3). 307 

Evidence on food and water insecurity and TB disease 308 

Abundant evidence exists linking food and water insecurity to TB via the pathway of 309 

undernutrition. Undernutrition doubles the risk of TB disease, and nearly 10% of TB cases 310 

globally are attributable to undernutrition(6), although this proportion is likely higher in many 311 

high TB burden countries(154). Most studies use body mass index (BMI), a widely- and easily-312 

used indicator of nutritional status which has been demonstrated to have a log-linear 313 

relationship with TB incidence in a range of settings and populations(155,156). Several other 314 

systematic reviews and meta-analyses further confirm the association between increased TB 315 

disease risk and undernutrition, including in people living with HIV or people with diabetes (157–316 

160). The reverse has also been shown to be true; interventions addressing food insecurity 317 

such as provision of food baskets have been shown to reduce TB disease risk(161), In addition, 318 

modelling studies have project large reductions in TB burden if undernutrition is addressed(162–319 

164), and the reverse if it worsens(165). Other important pathways exist by which food and 320 

water insecurity affect TB consequences. Chief amongst these is an increase in poor TB 321 

treatment outcomes associated with undernutrition(166–169), whereas improvements in 322 

nutritional status likely improve outcomes(170). 323 

Health system disruptions 324 

Evidence on climate change and health system disruptions 325 

Around 3.5 billion people live in areas highly vulnerable to climate change, with direct 326 

consequences for their access to healthcare services(171). There is a substantial body of 327 

evidence linking climate change and health systems disruptions(3,79,171–173), demonstrating 328 

how climate events compromise healthcare infrastructure, disrupt service provision, and strain 329 

the health workforce. Existing literature on health system disruptions predominantly examines 330 

the impact of extreme weather events (particularly flooding and storms) on healthcare service 331 

delivery, with several reviews emphasizing disruptions to chronic disease management(174–332 

180). One review focuses specifically on challenges faced by the healthcare workforce and how 333 

to mitigate these(181), while another evaluated preparedness of hospitals for disasters(182). 334 

Further studies from oncology and maternal health highlight how extreme weather events affect 335 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 20, 2025. ; https://doi.org/10.1101/2025.02.18.25322451doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.18.25322451
http://creativecommons.org/licenses/by/4.0/


 

12 

access to health services, particularly for vulnerable populations(183–186). These studies 336 

provide lessons on changes in healthcare utilization between affected and unaffected 337 

communities, and by socioeconomic position(187–190). Studies concerning other natural 338 

disasters such as earthquakes and volcanic eruptions were not included in our review but may 339 

still provide relevant insight. Beyond natural disasters, emerging evidence highlights additional 340 

climate-related disruptions to healthcare. For example, a modelling study demonstrated how 341 

emergency department visits may change due to increasing temperatures(191), while another 342 

review evaluated the effects of economic recessions (not necessarily climate-induced) on 343 

healthcare(192). 344 

Evidence on health system disruptions and TB outcomes 345 

Much of the evidence on the effects of health system disruption on TB focuses on the recent 346 

COVID-19 pandemic, with a strong emphasis on reductions in TB case notifications, a proxy 347 

indicator for the number of people reported to have accessed care. These disruptions alone are 348 

estimated to have led to nearly 700,000 excess TB deaths between 2020 and 2023(6). Several 349 

reviews have collated evidence on the effects of disruptions associated with the pandemic on 350 

the TB care cascade(193–197), with some explicitly considering TB treatment and 351 

outcomes(6,194,197–200). Meanwhile, modelling studies projected the possible consequences 352 

for multiple settings, finding significant increases in incidence and mortality(6,201–206). Due to 353 

the nature of the disruptions, most studies combined the effects of disruptions to service 354 

delivery and human resources together with disrupted supply chains, with little evidence 355 

characterising the effect of disruptions to infrastructure and technologies, energy or sanitation. 356 

There is also little evidence on the effect of disruptions on other outcomes, such as disease 357 

severity or catastrophic costs. Outside of the pandemic, two recent reviews of the effect of 358 

conflict on TB also identified studies from a range of settings, again focused primarily on 359 

diagnostic delay and treatment interruption(79,90). Meanwhile, an earlier modelling study 360 

evaluated the effect of an Ebola outbreak, finding a reduction in TB diagnosis and treatment 361 

success (207). 362 

Discussion 363 

Through the development of this analytical framework and by undertaking comprehensive 364 

literature reviews, we have demonstrated that the effects of climate change on the TB epidemic 365 
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are likely to be mediated through multiple pathways, and have the potential to be highly 366 

consequential. Specific effects will vary by the magnitude of the climate hazard(s), the 367 

vulnerability of communities to their effects (e.g. due to differences in underlying TB 368 

determinants), and the capacity of communities to adapt (determined by factors including 369 

income, living conditions, and access to healthcare and social protection). Importantly, people 370 

affected by TB are particularly vulnerable to the effects of climate change because they are 371 

already disproportionately poor, undernourished, and may have comorbidities such as HIV. This 372 

hinders their ability to adapt effectively, perpetuating inequality and injustice. 373 

 374 

Outlined in Table 2 are a number of research gaps evident from the literature review and a 375 

consultation meeting on the Impact of Climate Change on the TB Response convened by WHO, 376 

which focus specifically on the three climate/health links described previously. Overall, whilst 377 

evidence exists demonstrating the relationship between climate change and each climate/health 378 

link (e.g. climate change and food and water insecurity); and between each climate/health link 379 

and TB (e.g. food and water insecurity and TB disease), there were no studies directly 380 

quantitatively linking climate change and TB, via any of the described climate/health links or 381 

otherwise. 382 

 383 

The available evidence demonstrates that efforts to mitigate the effects of climate change on the 384 

TB epidemic must adopt a multisectoral approach that addresses underlying TB determinants, 385 

and is also responsive to the unique needs of vulnerable populations, especially migrants and 386 

displaced populations. Immediate actions should include meeting core obligations under the 387 

right to health by ensuring universal health coverage and establishing a social protection floor 388 

for all individuals. This requires mobilizing adequate investment to build resilient health systems 389 

and to mitigate adverse economic and non-economic fallouts for vulnerable populations. Using 390 

the framework to identify relevant entry points for the three climate/health links discussed here, 391 

Table 3 outlines some examples of specific measures, which can be mapped to where in the 392 

pathway they intervene. Further research is urgently required to develop a prioritised set of 393 

feasible, practical and impactful interventions ultimately aiming to address both the short- and 394 

long-term effects of climate change.  395 

 396 

To achieve these objectives, States must first recognize the interlinkages between TB and 397 

climate change, and ensure the End TB Strategy is implemented synergistically with other 398 

global agreements, including the Paris Agreement, the Sendai Framework for Disaster Risk 399 
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Reduction 2015–2030, the 2030 Agenda for Sustainable Development, and the Global 400 

Compacts for Migration and Refugees(208–212). National TB programmes can serve as entry 401 

points by monitoring the effects of climate change to build evidence and support decision-402 

making, and foster cooperation with national adaptation policies and institutions. Civil society 403 

organizations, particularly those representing TB-affected communities, play an important role in 404 

amplifying the voices of those affected by TB within climate mitigation and adaptation initiatives, 405 

advocating for equitable policies, and mobilizing resources. These local efforts must be 406 

supported by international institutions and collaborative mechanisms to exchange best 407 

practices, share data, strengthen evidence, and propose effective mitigation strategies, drawing 408 

insights from other health contexts where applicable. Lastly, the effect of the End TB Strategy 409 

on climate should also consider how to mitigate the environmental impacts for all the inputs 410 

required to ensure and deliver person-centered prevention, treatment and care, ultimately 411 

aiming to encourage TB programmes to adopt less carbon-intensive measures and move 412 

forward carbon-neutral TB programmes. 413 

 414 

In conclusion, we have shown how evidence supports the existence of causal links between 415 

climate change and TB, and how further evidence is urgently needed to quantify the extent of 416 

impact on TB. Furthermore, TB needs to be included in climate risk adaptation and mitigation 417 

programmes, and climate-resilient funding and response mechanisms. As our work shows, 418 

climate change is already hindering progress in the fight against TB, and only through 419 

comprehensive action can we prevent it becoming a  barrier to ending the global TB epidemic.  420 
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Figures and tables 1118 

Table 1. Examples of prioritised climate/health links. 1119 

Climate/health 

link 

Postulated 

principle climate 

factors 

Postulated 

structural/ 

environmental 

determinant 

pathway of 

influence 

Postulated 

social/ health 

determinant 

pathway of 

influence 

Primary 

postulated 

consequence for 

TB 

Migration and 

displacement 

Changing 

temperature and 

rainfall, extreme 

weather events, 

sea level rise and 

warming oceans 

Poverty and 

inequality, 

resource crises, 

humanitarian 

crises, conflict and 

violence, 

ecosystem 

change, land 

degradation and 

availability 

Changing social 

contact and living 

conditions 

Increased risk of 

TB infection, via 

increased 

exposure and 

susceptibility 

Food and water 

insecurity 

Changing 

temperature and 

rainfall, extreme 

weather events, 

sea level rise and 

warming oceans 

Poverty and 

inequality, 

resource crises, 

humanitarian 

crises, conflict and 

violence, 

ecosystem 

change, land 

degradation and 

availability 

Changing 

nutritional status 

Increased risk of 

TB disease, via 

increased 

likelihood of TB 

progression 

Health system 

disruptions 

Extreme weather 

events 

Humanitarian 

crises, conflict and 

violence 

Changing access 

to TB services 

Poorer outcomes, 

via increased 

vulnerability to TB 

and reduced 

diagnosis and 
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care 

 1120 

Table 2. Example research domains and questions to more effectively and comprehensively 1121 

characterise the effects of climate change on TB, and how to mitigate these effects and adapt 1122 

and build resilience to them. 1123 

Research domain Specific example questions 

Climate change and TB 

No evidence exists directly linking 

climate change to TB. There is an 

urgent need to generate such 

evidence, as well as to identify 

prioritised adaptation and mitigation 

measures for climate-resilient TB 

services with a minimal environmental 

footprint. 

Are the effects of climate change on TB likely to be similar in 

high and low burden settings, and to what extent could climate 

change impact the global epidemiology and distribution of TB 

(e.g. could the effects change a country from a low burden to 

a high burden setting?) 

How do the effects of climate change on TB vary among 

different population groups (e.g. by gender, or people in 

extreme poverty)? 

Which other climate/health links (e.g. air quality and extreme 

heat) might have significant causal effects on TB, beyond 

those currently explored? 

How does the environmental footprint of TB prevention and 

care (e.g. diagnostics and the treatment process) contribute to 

climate change, and what sustainable practices can be 

introduced to minimize this impact? 

What adaptation and mitigation measures (e.g., improved 

housing, social protection, resilient healthcare systems) 

should be prioritized to build climate-resilient TB services, 

particularly in resource-constrained settings? 

Climate change, migration and 

displacement, and TB infection 

 

Evidence linking climate change to 

migration and displacement has 

focused on population movement in 

Do existing theoretical and operational frameworks adequately 

capture the complex, multifaceted effects of climate change on 

migration, including acute displacement and longer-term 

population shifts? 

How will overcrowding, poor living conditions and increasing 

urbanization driven by climate change affect TB transmission 
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the longer term, particularly due to sea 

level rise, with less evidence on when 

this is likely to lead to overcrowding, 

increases in urbanization, or poorer 

living conditions.  

 

Evidence linking migration and 

displacement to TB infection has 

focused on TB disease among 

migrants in low-burden settings, with 

limited data on how infection risk 

changes and the effect on refugees, 

asylum seekers, and internally 

displaced people. 

risks and health outcomes (including mental health) in 

displaced populations? 

What are the barriers to healthcare access for displaced 

populations affected by climate change, and how do these 

barriers influence TB detection, treatment adherence, and 

outcomes? 

What social and economic determinants related to climate 

change and displacement (e.g., unemployment, poverty, food 

insecurity) most strongly influence TB risk in displaced 

populations? 

How does migration type and experience (e.g. internal 

displacement or asylum seeker etc.) alter transmission 

dynamics, risk of exposure, and health outcomes? 

Can studies quantify the effect of different forms of climate-

induced migration and displacement on TB transmission risk, 

particularly in high-burden and climate-vulnerable areas? 

Climate change, food and water 

insecurity, and TB disease 

 

Evidence linking climate change to 

food and water insecurity has focused 

on children and the overweight, 

particularly due to changing food 

availability and diets, with more limited 

data on undernutrition in adults and the 

effects of extreme weather events and 

acute nutritional shocks. 

 

Evidence linking food and water 

insecurity to TB disease has focused 

on BMI as an indicator, with more 

limited data from high TB burden 

settings, in populations with a 

How will the growing frequency and intensity of extreme 

weather events and their effects on food and water insecurity 

subsequently affect susceptibility to TB infection, disease 

progression and TB outcomes, and what are the most 

effective forms of nutritional support and anthropometric 

markers to deploy in these settings, both in the short and long 

term? 

How does the relationship between BMI and TB incidence 

vary across different populations, including children and older 

people and those with comorbidities such as HIV infection, 

alcohol use disorders, or end-stage renal disease; and does 

the type of weight loss (acute vs. chronic) or BMI distribution 

in a setting influence TB risk, even in the absence of 

malnutrition?  

Can additional nutritional indicators—such as hemoglobin 

levels, body composition (via bioelectrical impedance 
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particularly high prevalence of severe 

underweight, for children and 

adolescents, or for other nutritional 

indicators. 

analysis), point-of-care micronutrient testing, and measures of 

dietary diversity and quality—offer more precise evidence of 

vulnerability to TB disease, beyond BMI alone, and what are 

the most appropriate nutritional metrics for different contexts? 

Can models quantify the added impact of increased food and 

water insecurity driven by climate change on people 

vulnerable to TB? 

Climate change, health system 

disruptions, and TB outcomes 

 

Evidence linking climate change to 

health system disruptions has focused 

on extreme weather events and 

service delivery/access, with little 

evidence on more gradual 

disturbances from repeated shocks or 

climate-driven economic slowdowns, or 

the effect on supply chain disruptions, 

infrastructure, energy, and sanitation.  

 

Evidence linking health system 

disruptions to TB outcomes has 

focused on the COVID-19 pandemic 

and case notification, with limited 

evidence from other forms of 

disruptions, or for a wider range of 

health and socio-economic outcomes. 

How will factors beyond extreme weather events, such as 

prolonged economic crises or extreme heat, contribute to 

health system disruptions, and how will these affect TB 

service delivery? 

In what ways will climate change impact essential health 

service functions (e.g., supply chains, infrastructure, energy 

availability, health workforce, sanitation) critical to effective TB 

response? 

What are the long-term consequences of health system 

disruptions caused by climate change on TB-related health 

outcomes, including the risks of chronic lung damage, the 

acquisition of drug-resistant TB strains, and financial burden 

on affected populations? 

Can experience from previous disruptions be used to quantify 

the effects of acute climate events (e.g., floods, droughts) on 

TB outcomes as a result of disrupted service delivery, 

including disruptions to TB diagnostics, supply chains, and 

treatment delivery? 

 1124 

Table 3. Examples of cross-sectoral intervention entry points. 1125 

Climate/health link Examples of interventions Potential sectors 

involved in intervention 

Migration and 

displacement 

Migration-sensitive TB screening programmes; 

infection control and prevention measures; housing 

programmes; equitable and affordable access to 

Health, migration, 

housing/social protection 
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health care services 

Food and water 

insecurity 

Sustainable agriculture and water resource 

management interventions; strengthened food 

supply chains to ensure accessibility and 

affordability; social protection programs targeting 

vulnerable populations; cash and in-kind transfers; 

targeted nutritional interventions to address 

malnutrition and micronutrient deficiencies;  

Health, agriculture, 

finance/social protection 

Health system 

disruptions 

Health system and supply chain strengthening; 

mobile care and digital health systems ensuring 

continuity of TB services and treatment support; 

decentralisation of care and training health 

professionals to manage climate-sensitive health 

challenges 

Health, environment 

Planning and 

coordination in 

countries most 

affected by TB 

Integration of TB prevention and care into national 

plans of action for climate mitigation and adaptation; 

participation of people affected by TB, particularly 

those most vulnerable to climate impacts, in policy-

making processes related to climate mitigation and 

adaptation 

Health 

 1126 

Figure 1. Comparison of TB burden and vulnerability to climate change across 215 countries 1127 

and territories for different indices. A higher index value represents a poorer performance, 1128 

where indices include (a) INFORM, measuring the risk of humanitarian crises that could require 1129 

international assistance, (b) World Risk Index, assessing the risk of humanitarian disaster 1130 

caused by extreme natural events and the negative effects of climate change, and (c) ND-GAIN, 1131 

combining both readiness and vulnerability to climate change. Colors indicate World Health 1132 

Organization regions;  blue= African Region, light green= Region of the Americas, dark green= 1133 

Eastern Mediterranean Region, yellow= European Region, orange= South-East Asian Region, 1134 

gray= Western Pacific Region. ISO3 codes indicate the top 10 TB burden countries by number 1135 

of incident TB cases. 1136 

 1137 
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Figure 2. (a) Analytical framework linking climate change to consequences for TB via a range of 1138 

climate/health links. Example climate/health links considered here include (b) migration and 1139 

displacement, (c) food and water insecurity, and (d) health system disruptions. Blue arrows 1140 

indicate pathways included in literature reviews. 1141 

 1142 

Panel 1. Air pollution 

Air pollution is an important climate/health link that is not reviewed in detail in this document 

but may have particular relevance for respiratory diseases such as TB.  

 

Nearly the entire global population breathes air that contains pollutants exceeding the levels 

recommended by WHO guidelines(213). These pollutants, including particulate matter (PM2.5 

and PM10) and sulphur dioxide, are a known cause of major cardiovascular and respiratory 

diseases, including cancer. Because they also impair lung defence mechanisms and may 

modulate the immune response, chronic exposure to these pollutants may increase 

susceptibility to TB infection, progression to TB disease, and risk of adverse TB outcomes. 

Indeed, the association between exposure to household (indoor) air pollution (from burning 

solid fuels for heating or cooking) and TB incidence has been established for some time(214). 

For ambient (outdoor) air pollution, a recent systematic review demonstrated an association 

with increased TB incidence(215), but not with hospital admission or mortality, and highlighted 

the low availability and quality of evidence. Further research is therefore required in this area, 

including research to establish the exact causal pathways (i.e. whether air pollution increases 

susceptibility to TB infection, progression to TB disease, or both). 

 

Importantly, ambient air pollution and climate change are strongly interconnected. Many of the 

causes are the same, principally the burning of fossil fuels and deforestation/agricultural 

practices, and there are also multiple feedback loops(216). Drier and hotter conditions can 

increase ambient air pollution directly through increased photochemical production and air 

stagnation events, and indirectly through wildfires(217). Many air pollutants (especially black 

carbon) directly contribute to global warming by absorbing solar radiation and trapping heat in 

the atmosphere(218). Climate change may also increase exposure to household air pollution 

if extreme heat or weather drives people to spend long periods indoors. These 

interconnections mean that interventions to address either air pollution or climate change will 

generally, although not universally, have beneficial effects on the other.  
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 1143 

Panel 2. Meteorological factors 

The associations between specific, measurable meteorological factors such as temperature, 

humidity, and precipitation and TB have been the subject of some research, primarily in Asia, 

and these factors have been proposed as potential indicators that could be used to predict 

future changes in TB incidence(219–221). Results, however, may be inconsistent. For 

example, some studies suggest that increases in average temperature are associated with 

increased TB incidence(222–224), whilst others report that increased temperatures are 

protective(225–228). A recent systematic review and meta-analysis of meteorological factors 

and TB found that TB risk was positively correlated with precipitation exposures but not 

average temperature, humidity, air pressure, or sunshine duration(229). Another meta-

analysis on ecological-level factors and TB found higher humidity and precipitation were 

associated with increased TB incidence, whilst higher wind speed was associated with 

reduced TB incidence(230). It has also been posited that antimicrobial resistance may 

independently increase as temperature increases(231). 

 

Importantly, these associations alone provide little insight into the pathways through which 

such meteorological factors might impact TB. Relatedly, seasonal variations in TB case 

notifications have been demonstrated in multiple settings(232–235), with explanations 

proposed ranging from seasonal-related migration (mostly for economic opportunities); to 

indoor crowding (because of cold weather or extreme heat); and vitamin D deficiency in winter 

manifesting as a spring peak in notifications. Ultimately, the relationship between 

meteorological factors and TB is likely to be highly context-specific, varying by geographical 

region, local climate patterns, and socioeconomic conditions, and further research is required 

in this area.  

  1144 
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Annex 1145 

Table 1. Search strategy terms 1146 

Concept  Search terms for Ovid Medline 

1) Climate change 1 (climate change OR global warming OR 

climate OR weather OR extreme events OR 

disaster* OR drought OR flood* OR storm OR 

wildfire OR extreme heat).ti,ab. 

2 exp Climatic Processes/ 

3 exp Climate/ 

4 exp Weather/ 

 or/1-4 

Climate/health link 2) Migration and 

displacement  

1 (migra* OR displac* OR refugee OR 

asylum).ti,ab. 

2 exp Human Migration/ 

3 Refugees/ 

4 “Transients and Migrants”/ 

 or/1-4 

3) Food and water security 1 (undernutr* OR malnutr* OR underweight OR 

nutri* OR weight OR wasting OR thin OR 

thinness OR body mass index OR bmi).ti,ab. 

2 Malnutrition/ 

3 Thinness/ 

4 Wasting syndrome/ 

5 Nutrition disorders/ 

6 body weight/ or weight loss/ 
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7 body mass index/ 

 or/1-8 

4) Health system disruptions 1 (disrupt* OR interrupt* OR access OR provi* 

OR reduc* OR usage OR stockout OR 

coverage).ti,ab 

2 (health system OR facility OR clinic OR 

hospital OR healthcare).ti,ab. 

3 exp Health Facilities/ 

4 1 AND (or/2-3) 

Consequences for 

TB 

5) TB 1 (tb OR tuberc*).ti,ab. 

2 exp tuberculosis/ 

3 mycobacterium tuberculosis/ 

4 or/1-3 

6) Infection 4 (exposure OR conversion OR latent OR ltbi 

OR infect* OR mix* OR contact OR transmi* 

OR risk OR ratio).ti,ab. 

7) Disease 5 (progress* OR disease OR active OR burden 

OR develop* OR inciden* OR risk OR 

rate).ti,ab. 

8) Outcomes 6 (therapy OR treatment OR outcome OR 

success OR failure OR relapse OR diagnos* 

OR death OR mortality OR adher* OR cost* 

OR stigma OR notification*).ti,ab. 

9) Study type 1 (modeling OR modelling OR predict* OR 

project* OR systematic review OR literature 

review OR narrative review OR scoping 

review OR meta-analysis).ti,ab. 

2 systematic review/ 

3 meta-analysis/ 

4 exp models, statistical/ 

 or/1-4 

 1147 
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Table 2. Number of records returned by searches 1148 

Search Number of articles 

Climate change AND migration and 

displacement 

2,324 

Migration and displacement AND TB infection 356 

Climate change AND food/water insecurity 6,515 

Food/water insecurity AND TB disease 1,412 

Climate change AND health system 

disruptions 

2,574 

Health system disruptions AND TB outcomes 1,459 

 1149 
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