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Abstract

Background: Understanding the spatiotemporal variation of COVID-19
transmission and its determinants is crucial for gaining deeper insights into
the dynamics of disease spread. Regional and temporal differences in demo-
graphics, socioeconomic conditions, and environmental factors shaped the
trajectory of the COVID-19 pandemic, underscoring the importance of ad-
vanced spatio-temporal modelling. This research aims to construct a spa-
tiotemporal model to examine the relationship between age groups, poverty,
population density, precipitation, and COVID-19 risk, as well as to pinpoint
high-risk areas.

Methods: Here we present a spatiotemporal statistical analysis using COVID-
19 case data from Malawi recorded from 2 April 2020 to 27 March 2022.
Bayesian spatiotemporal models were fitted, with weekly confirmed cases as
the response variable and demographic, socioeconomic, and environmental
factors as predictors.

Results: The findings reveal that spatial and temporal factors, along with
age, population density, and poverty, significantly affect observed COVID-19
incidence in Malawi, whereas precipitation does not. The greatest risk was
observed during colder months (June–July), December’s festive season, and
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January. Urban centres and lake-shore districts were disproportionately im-
pacted, with individuals aged 40− 49 at particularly high risk.

Conclusions: These results emphasise the need to prioritise vaccinations
for working-age populations in urban and tourist areas during high-risk peri-
ods. Moreover, ensuring adherence to public health guidelines and enhancing
healthcare services in these districts is critical.

Keywords:
Spatiotemporal modelling, Malawi COVID-19 transmission, COVID-19
hotspot identification, Spatial and temporal random effects.

Key Messages

• The age group 40–49 faced a significantly higher risk of COVID-19
compared to all other age groups.

• COVID-19 risk is generally low across Malawi during the study period,
with Blantyre being a notable exception.

• Positive associations were identified between COVID-19 risk and fac-
tors such as age, poverty levels, and population density.

• Both spatial and temporal dynamics were found to have substantial
impacts on COVID-19 transmission risk.

1. Introduction1

Infectious diseases remain a significant global concern and leading cause2

of death [1]. Over the past two decades, respiratory infectious diseases caused3

by coronaviruses like the Severe Acute Respiratory Syndrome Coronavirus4

(SARS-CoV), the Middle East Respiratory Syndrome Coronavirus (MERS-5

CoV), and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-6

2) have posed major threats to global health [2, 3]. SARS-CoV-2, responsible7

for COVID-19, emerged in Wuhan, China, in December 2019 and spread8

worldwide within three months [4, 5]. Declared a Public Health Emergency9

of International Concern (PHEIC) by the WHO on January 30, 2020 [6], it10

had infected over 100 million people and caused two million deaths within a11

year [7]. Africa reported its first case on February 14, 2020, with the virus12

spreading continent-wide in three months [7]. In Malawi, the first confirmed13
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COVID-19 case was reported in Lilongwe on April 2, 2020, two weeks after14

the president pre-emptively declared a state of national disaster on March15

20 [8, 9, 10].16

A range of demographic, socioeconomic, and environmental factors influ-17

ence SARS-CoV-2 dynamics [11, 12, 13]. Key drivers include age [14], with18

older individuals (particularly those aged 60 and over) at higher risk [15],19

and poverty, which is linked to increased risk due to reduced adherence to20

interventions by low-income populations prioritising daily survival [16, 17].21

In the USA, poverty was positively associated with infection risk early in22

the pandemic however, the association later changed to negative assumably23

due to case under-ascertainment among the less privileged individuals, when24

the testing resources became scarce [18]. Population density has also been25

claimed to impact SARS-CoV-2 risk [13, 15, 16], though some studies found26

it not significant [19]. Tourism correlates with case surges, as imported cases27

often contribute to the spread [13]. COVID-19 transmission occurs through28

respiratory fluids [4, 5, 20], with low temperatures, precipitation and humid-29

ity enhancing spread [11, 21, 22, 23]. Air pollution has been linked to higher30

mortality, with studies reporting increased COVID-19 deaths in heavily pol-31

luted areas [12].32

Studies on spatial and spatiotemporal modelling of COVID-19 have been33

conducted in many parts of the world, including Africa. Researchers use34

geographical information systems (GIS) and / or Bayesian statistical models35

for analysis [24]. Some studies in Africa include Gayawan et al. (2020) [25],36

who used a two-parameter hurdle Poisson model; Tong et al. (2022) [26]37

who employed GIS; Adekunle et al. (2020) [27], who applied generalised38

additive models; and Abdul (2020) [28], who utilised an endemic-epidemic39

multivariate time-series model.40

At the time of this study, two spatiotemporal modelling studies on SARS-41

CoV-2 in Malawi had been conducted. One, by Chinkaka et al. (2023)[15],42

covered the period from April 2020 to May 2021 using GIS and found signifi-43

cant effects of age (particularly being 60+ years old) and population density44

on disease risk. The other, by Ngwira et al. (2021)[16], focused on the early45

phase of the pandemic, when there was only one wave. Conducted from April46

to October 2020, it used semiparametric spatiotemporal models and found a47

higher risk of COVID-19 in major cities compared to rural areas, attributing48

this to higher population density in urban settings. The study also identified49

significant effects of location, time, and space-time interaction on COVID-19.50

During this phase, the pandemic peaked in August 2020, with a positive and51
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significant correlation between risk and age (here being 65+ years old).52

This study aims to develop a multi-variable spatiotemporal model for53

SARS-CoV-2 cases in Malawi, incorporating spatial, temporal, age and their54

interactions. Using data collected from April 2, 2020, to March 27, 2022 –55

covering four major waves – the study has three primary objectives: (1) to56

identify the combination of demographic, socioeconomic, and environmental57

factors driving the spatial variation in SARS-CoV-2 cases across Malawian58

districts; (2) to map the spatial heterogeneity in the relative risk of SARS-59

CoV-2; and (3) to identify hotspot districts over time across different age60

groups.61

2. Methods62

2.1. Study area63

Malawi is a landlocked country bordered by Mozambique to the east,64

south, and southwest; Tanzania to the north and northeast; and Zambia to65

the west and northwest. Geographically, it lies between latitudes 9◦ 22' S and66

17◦ 03' S, and longitudes 33◦ 40' E and 35◦ 55' E. With a total surface area of67

around 120,000 km2 [29], Malawi has an estimated population of just over 1868

million [30]. The country is divided into three regions—Northern, Central,69

and Southern—which are further subdivided into 28 districts. According to70

the 2018 Population and Housing Census, the capital city, Lilongwe, located71

in the Central Region, has the highest population proportion at 9.3%. Over72

80% of the population resides in rural areas, with 16% in urban centres.73

Notably, half of Malawi’s population is aged 17 years or younger [30]. Fig.1A74

illustrates a map of Malawi, highlighting its 27 districts on the mainland.75

2.2. Data and data sources76

Line list data on confirmed COVID-19 cases collected from 2 April 2020,77

to 27 March 2022 was obtained from the Ministry of Health (MoH) through78

the Public Health Institute of Malawi (PHIM) [31]. This dataset includes79

information on all individuals who tested positive for COVID-19, detailing80

variables such as case ID, report date, date of birth, age, gender, district,81

and other relevant attributes. Population totals and population density for82

the districts were sourced from reports by the National Statistical Office of83

Malawi (NSO) available at https://malawi.unfpa.org/en/publications/84

malawi-2018-population-and-housing-census-main-report [30]. Data85
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on the proportion of the population living on $1.25 or less per day, mea-86

sured per grid square (1 km by 1 km at the equator), was obtained from87

the WorldPop website https://hub.worldpop.org/doi/10.5258/SOTON/88

WP00290 [32]. The poverty proportion for each district was subsequently89

calculated using a population-weighted average across the district. Environ-90

mental data was also considered in this study. In particular, precipitation91

and humidity data were obtained from NASA POWER Project Team (2024)92

[33] and temperature data was obtained from WorldClim Team (2024) [34].93

2.3. Outcome variable94

The outcome variable is the weekly number of confirmed COVID-19 cases,95

starting from the date of the first recorded case on April 2, 2020, to March96

27, 2022, encompassing the first four waves over 105 epidemiological weeks.97

Data from April 2022 onward was excluded from the analysis, as almost all98

districts reported zero cases, rendering the data unsuitable for modelling.99

Case data was collected by the Ministry of Health through polymerase chain100

reaction (PCR) tests conducted on nasal samples from individuals presenting101

symptoms of the infection and those identified as close contacts of confirmed102

cases.103

2.4. Covariates104

The variables considered in the model are age, population density, poverty,105

precipitation, humidity and temperature, as these factors have been shown to106

influence the risk of COVID-19. Population density is included as a covariate107

because it has been identified as a factor that might impact on the spread108

of SARS-CoV-2, given the role of social mixing in transmission [13, 35].109

Similarly, poverty is considered due to its reported impact on SARS-CoV-2110

transmission [16, 18], though studies differ on the nature of this association.111

This study seeks to determine whether poverty has a significant effect on112

COVID-19 risk and to explore whether the correlation is positive or nega-113

tive. Fig.1B illustrates the total population across districts, while Fig.2A114

and Fig.2B depict the spatial distribution of key geospatial covariates.115

It is widely recognized that there is a direct association between COVID-116

19 incidence and old age. While the older age group was included as a117

predictor in this study, the research was extended also to examine the young118

and middle-aged groups. We used quantile-based grouping to create five age119

groups of roughly equal number of cases and this was done for the follow-120

ing reasons: balanced representation, model stability, help reduce noise and121
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facilitate Comparability among groups leading to more interpretable results.122

The age groups include: 0 − 1, 20 − 29, 30 − 39, 40 − 49 and 50+. Fig. 1123

in the Supplementary Material 3.2 shows an age histogram. The mean and124

median ages are 36.24 and 34, respectively. Additionally, 25% of the study125

population is 46 years old or above.126

Table 1 presents the description and spatial and temporal resolution of127

the variables used in this study.128
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Table 1: Data sources, description and properties of the variables

Category Variable Variable description and pre-
processing

Temporal
resolu-
tion
(weeks)

Temporal
coverage

Spatial
resolu-
tion

Outcome COVID-19
cases

Weekly number of confirmed COVID-19
cases for the first four waves over 105 epi-
demiological weeks for each district.

1 2 April
2020 to
27 March
2022.

District
level

Demographic
and socioe-
conomic
covariates

Age Age group of the confirmed cases; 0-19,
20-29, 30-39, 40-49 and 50+. The age
brackets were determined using quantiles
and demographic data on the age distri-
bution of the total population.

None 2018 District
level

Population
density

Number of people per km2. None 2018 District
level

Poverty The proportion of the population living in
poverty, defined as living on under $1.25
per day, was extracted from a tagged im-
age file (TIF). This data was read into R

as a stars object, and then aggregated to
calculate the poverty proportion for each
district.

None 2010 1km by
1km at
the equa-
tor

Environmental
covariates

Temperature The quantitative measure of heat present
in an environment, influencing physi-
cal and biological processes population-
weighted averaged over the districts and
measured in degrees celsius.

1 April
2020 to
March
2022

1km by
1km

Relative
Humidity

A percentage of the maximum amount of
moisture the air can hold at a given tem-
perature, population-weighted averaged
over the districts.

1 April
2020 to
March
2022

55.6 km
by 55.6
km.

Precipitation Any type of water that forms in the
Earth’s atmosphere and then drops onto
the surface of the Earth population-
weighted averaged over the districts and
measured in millimeters.

1 April
2020 to
March
2022

55.6 km
by 55.6
km.
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2.5. Model formulation129

We used Bayesian hierarchical spatio-temporal framework to model the130

weekly observed counts of COVID- 19 cases. Let i = 1, 2, . . . , 28 denote131

the index for the spatial areas (districts), j = 1, 2, . . . , 105 denotes the time132

points in weeks from 2 April 2020 to 31 December 2022 and k = 1, 2, ..., 5133

denotes the index for age groups 0-19, 20-29, 30-39, 40-49, and 50+. Let Yijk134

denote the random variable of the number of SARS-CoV-2 confirmed cases135

in district i, week j and age category k. Then we model Yijk as follows:136

Yijk ∼ Poisson(Eijkθijk), (1)

where Eijk is the expected number of cases in the absence of any heterogeneity
in individual risk and θijk is the relative risk (RR) in district i, week j and
age group k. Eijk is therefore calculated as,

Eijk = Nijk × r̂,

where Nijk is the population in district i, week j and age group k and

r̂ =

∑
ijk Yijk∑
ijkNijk

is the global observed disease rate. The log-relative risk is modelled as137

log(θijk) = ηijk, (2)

where ηijk is a linear predictor. This linear predictor is modelled as a linear138

combination of fixed and random effects and ten candidate models were ex-139

amined as shown in Table 2, with prior specification in the Table caption.140

141
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Table 2: Random effects models for district i, time j and age k. βl ∼ N(0, σ2
βl
), αj ∼

N(0, σ2
αj
), ωj ∼ N(ωj−1, σ

2
ω), δj ∼ N(δj−1, σ

2
δ ), ui + vi ∼ BYM2(σ2

u, ϕ), three structures

for linear time trend uj ∼ N(βt, σ2
t ), Random walk 1 uj ∼ N(uj−1, σ

2
u), Random walk

2 uj ∼ N(2uj−1 + uj−2, σ
2
u), vj ∼ N(0, σ2

v), ϕij ∼ TYPE I, II, III, IV [36] and ψijk ∼
N(0, σ2

ψ).

Model Linear predictor ηijk
I β0 + αk + β1PREijk + ωj + δj
II β0 + αk + β1PREijk + ωj + δj + ui + vi
III β0 + αk + β1PREijk + ωj + δj + ui + vi + uj + vj
IV β0 + αk + β1PREijk + ωj + δj + ui + vi + uj + vj
V β0 + αk + β1PREijk + ωj + δj + ui + vi + uj + vj
VI β0 + αk + β1PREijk + ωj + δj + ui + vi + uj + vj + ϕij

VII β0 + αk + β1PREijk + ωj + δj + ui + vi + uj + vj + ϕij

VIII β0 + αk + β1PREijk + ωj + δj + ui + vi + uj + vj + ϕij

IX β0 + αk + β1PREijk + ωj + δj + ui + vi + uj + vj + ϕij

X β0 + αk + β1PREijk + ωj + δj + ui + vi + uj + vj + ϕij + ψijk

9
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The model specification for the fixed effects is as follows: β0 is the global142

intercept; αk is the age categories specific intercept for category k; β1 is the143

effect of precipitation (PRE); ωj is the time-varying effect of poverty; δj is144

the time-varying effect of population density. The spatial random effects,145

represented as ui + vi, are modelled using the BYM2 framework [37], an al-146

ternative parameterization of the BYM (Besag, York and Mollie) model [38].147

This formulation introduces a mixing parameter, ϕ, to effectively balance the148

contributions of ui (structured spatial effects) and vi (unstructured spatial149

effects). ui is modelled using a conditional autoregressive (CAR) structure150

[39] and accounts for the spatial dependence between relative risks. This151

structure assumes that neighbouring areas are more likely to show similar152

risks than areas that are far apart. On the other hand, vi models unstruc-153

tured spatial effects accounting for independent noise, as neighbouring areas154

can be independent. To capture temporal random effects, the term uj + vj155

is added, where uj accounts for the correlated temporal random effects, as-156

suming similar risks at close time points, and vj models temporal effects157

that are independent. In the model, ϕij is the space-time interaction term158

to account for variation that can not be explained by space and time [40].159

As shown in Table 2, four types of interactions, resulting from all possible160

combinations of structured and unstructured spatial and temporal effects,161

are considered [36], including: Type I interaction, which has an identically162

independent distribution and represents the interaction of unstructured spa-163

tial and unstructured temporal random effects; Type II interaction, which164

assumes structured temporal effects for each area, independent of all other165

areas; Type III interaction, which accounts for structured spatial effects for166

each time unit, independent of all other time points; and Type IV interac-167

tion, which captures correlated spatial and temporal effects. Finally, ψijk,168

representing a space-time-age interaction, is added to extend the four types169

of space-time interaction. The full priors specification for the models are170

presented in the Supplementary Material.171

2.6. Inference and model selection172

Analysis was done in R using the INLA package [41]. INLA provides an173

approximate Bayesian inference framework for latent Gaussian models. It174

was chosen over Markov Chain Monte Carlo (MCMC) due to its faster com-175

putation and ability to efficiently handle large datasets. This approach uses176

analytical approximations and numerical integration to estimate posterior177

distributions for model parameters. Model selection was based on the scores178
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of Deviance Information Criterion (DIC), Watanabe-Akaike Information Cri-179

terion (WAIC) and the effective number of parameters.180

3. Results181

3.1. Understanding case trends in the districts182

Nationwide and district-level trends for confirmed cases over the study183

period are depicted in Fig. 1C. Higher case counts were observed in major184

urban centres, including Blantyre, Lilongwe, Mzimba/Mzuzu, and Zomba,185

as well as in Neno and Mangochi. A sharp rise in cases occurred in Blantyre186

during the fourth wave, likely linked to the characteristics of the Omicron187

variant, which dominated this wave. Previous studies on the epidemiological188

and phylogenetic analyses of SARS-CoV-2 indicated that Omicron preva-189

lence was notably higher in southern Malawi, where Blantyre is located. For190

improved comparison across districts, the data were standardized, with the191

results presented in Fig. S2 of the Supplementary Material 3.2. Standardised192

case numbers were exceptionally high in Neno during the second wave and193

in Blantyre during the fourth wave. Additionally, Zomba, Lilongwe, Mzuzu,194

and Mangochi experienced elevated risks at various points compared to other195

districts not explicitly highlighted.196
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Figure 1: (A) The study area (Malawi). Map was created using QGIS version 3.40.0− 1
available at https://qgis.org/. (B) Population proportion map. The blue-shaded area
is Lake Malawi. The shapefiles for the districts were obtained from https://gadm.org/

data.html while the Lake Malawi shapefile was obtained from the Natural Earth website,
https://www.naturalearthdata.com/. (C) National and district curves for raw data.
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3.2. Model fitting197

Before fitting spatiotemporal models, a Poisson generalised linear model198

(GLM) with explanatory variables age, poverty, population density, pre-199

cipitation, humidity, and temperature, was fitted to the data. Interest-200

ingly, the summary for the GLM showed that risk was high in the age201

group 40-49, followed by the age group 50+. The minimal risk was ob-202

served in age group 0-19. Additionally, we found population density (δ =203

0.0019, 95% CRI (0.0018, 0.0019)) and poverty (ω = 0.0325, 95% CRI (0.0209, 0.0440))204

to be significant. Furthermore, we found that out of the environmental vari-205

ables, precipitation was significant, therefore in subsequent models, we only206

use precipitation in our model.207

Then we fitted models I to X as summarized in Table 2 and the model208

with the least DIC and WAIC scores as well as the moderate effective number209

of parameters was selected as the best fit (see Table 3).210
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Table 3: Table showing the result of the model selection criteria (DIC, WAIC and effective number of
parameters for WAIC) for the ten models considered.

Model Description DIC WAIC PWAIC

I Age, poverty, population density
and precipitation

118, 000 518, 000 209, 000

II Age, poverty, population density,
precipitation and convolution

138, 000 798, 000 338, 000

III Age, poverty, population density,
precipitation, convolution and gen-
eral time trend

136, 000 699, 000 289, 000

IV Age, poverty, population density,
precipitation, convolution and rw1

59, 800 123, 000 30, 600

V Age, poverty, population density,
precipitation, convolution and rw2

59, 800 123, 000 30, 600

VI Age, poverty, population density,
precipitation, convolution, rw1 and
space-time interaction type 1

33, 200 46, 000 6, 080

VII Age, poverty, population density,
precipitation, convolution, rw1 and
space-time interaction type 2

33, 200 46, 300 6, 080

VIII Age, poverty, population density,
precipitation, convolution, rw1 and
space-time interaction type 3

−15, 600, 000 1, 090, 000 529, 000

IX Age, poverty, population density,
precipitation, convolution, rw1 and
space-time interaction type 4

33, 300 46, 100 5, 900

X Age, poverty, population density,
precipitation, convolution, rw1,
space-time interaction type 4 and
space-time-age interaction

32,500 36,200 5,730
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Model VIII has an extremely large negative DIC and a high WAIC, in-211

dicating poor data fit or excessive model complexity, which renders its esti-212

mates unreliable. The analysis proceeded with the best-fitting model, Model213

X, which includes age and precipitation as fixed effects, along with poverty214

and population density as random effects. The model also incorporates spa-215

tial, temporal, and spatiotemporal interaction of type 4, as well as an in-216

dependent space-time-age interaction. As shown in Table 4, for the fixed217

effects, individuals aged 40-49 are at the highest risk, followed by those in218

the oldest age group (50+). The elevated risk in the 40-49 age group is likely219

due to their status as the most productive and active working demographic.220

A positive correlation is observed between COVID-19 risk and precipitation;221

however, this relationship is not statistically significant as the confidence222

interval includes zero. All random effects, including poverty, population den-223

sity, spatial, temporal, and the interactions of space and time, as well as224

space, time, and age, show significant effects on COVID-19 risk, as indicated225

in Table 4.226

Table 4: Summary of the parameter estimate (posterior mean) of the fixed and random
effects for model X and their corresponding 95% credible interval (CRI)

Parameters Estimate 95% CRI
Fixed effects
Intercept −9.06 (−10.2,−8.79)
Age group 20-29 2.04 (1.98, 2.12)
Age group 30-39 2.33 (2.26, 2.40)
Age group 40-49 2.47 (2.40, 2.54)
Age group 50+ 2.43 (2.37, 2.51)
Precipitation 0.60 (−0.86, 2.07)
Random effects
Precision for Poverty 27, 900 (2, 070, 112, 000)
Precision for Population density 24, 000 (2, 910, 90, 500)
Precision for BYM2 50.8 (2.52, 262)
Mixing for BYM2 0.314 (0.058, 0.716)
Precision for corrected time 1.62 (1.17, 2.16)
Precision for independent time 22, 800 (4, 840, 56, 200)
Precision for space-time interaction 0.032 (0.028, 0.037)
Precision for space-time-age interaction 2.73 (2.53, 2.95)

Further analysis of the coefficients (log risks) for the age groups, illus-227
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trated in the forest plot in the Supplementary Material, reveals that the risk228

in all age groups is lower than the baseline assumed by the model, typically 1.229

Additionally, the credible intervals for all groups are narrow and do not cross230

the zero line, indicating high confidence in the reduced risk. The coefficient231

for the 0-19 age group is the furthest to the left, suggesting a significantly232

lower risk compared to the other groups.233

Population density and poverty were modelled as random effects. The234

results showed district-level variations in how population density influenced235

COVID-19 risk, attributed to unknown factors (see Fig. 2C). In the South-236

ern region, population density in Blantyre and the areas east of Blantyre237

excluding Thyolo and Zomba was found to contribute less to risk. Simi-238

larly, the high population density in Lilongwe city (central region) also had239

a minimal contribution to COVID-19 risk. These findings imply that other240

unmeasured factors may be driving risk patterns in these urban centers. No-241

tably, districts such as Zomba city and Thyolo (South), Salima and Ntchisi242

(Central), and Rumphi (North) displayed higher-than-expected COVID-19243

risk. This suggests that unknown factors associated with population density,244

such as mobility patterns, densely populated living spaces or compliance with245

risk prevention measures, could be influencing these variations. The analysis246

also revealed that poverty was less strongly associated with COVID-19 risk247

in certain districts of southern Malawi, as illustrated in Fig. 2D. Conversely,248

many central and northern districts exhibited higher COVID-19 risk than ex-249

pected, based solely on poverty, population density, age, and precipitation.250

Interestingly, high poverty levels were also observed in districts along Lake251

Malawi, suggesting that unmeasured factors such as inadequate sanitation252

or mobility patterns might be significant contributors to the elevated risk.253
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Figure 2: (A) Population density. (B) Poverty density. (C) Effect of population density
over space. (D) Effect of poverty over space. The blue-shaded area in the maps is Lake
Malawi. The shapefiles for the districts were obtained from https://gadm.org/data.

html while the Lake Malawi shapefile was obtained from the Natural Earth website, https:
//www.naturalearthdata.com/
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Wave one spanned from April to September 2020, wave two from Novem-254

ber 2020 to February 2021, wave three from May to September 2021, and the255

fourth wave from November 2021 to February 2022. Relative risks ranged256

between 8.8 × 10−8 and 1.0, with an overall mean of 0.015, with this huge257

variability reflecting the large differences in prevalence and incidence typical258

of waves of an infectious disease.259

For the 0-19 age group, the relative risk remained consistently low and260

nearly constant over time, except for an increase in Neno (southern region)261

between November 2020 and February 2021 (see Fig. S4 in the Supplementary262

Material). In contrast, other age groups showed significant variations in risk263

across districts and time periods.264

In the age group 20-29, elevated risk was noted in Salima during the265

second wave as shown in Fig. S5 in the Supplementary Material. Between266

November 2021 and February 2022 (fourth wave), individuals in this age267

group experienced heightened risk in Rumphi, Mzimba, Nkhotakota, Blan-268

tyre, and Zomba. Similarly, the 30-39 age group had an increased risk in269

Blantyre during this period, with additional clusters identified in northern270

Malawi (see Fig. S6 in the Supplementary Material).271

For those aged 40 and above, the highest risk occurred in Blantyre around272

December 2021, as illustrated in Fig. 3 and Fig. S7 in the Supplementary273

Material. Overall, elevated risks were most pronounced during the fourth274

peak (19-25 December, 2021) and, to a lesser extent, during the third peak275

(18-24 July, 2021). Districts with notable risks included Rumphi, Mzimba,276

and Nkhata Bay in the north; Nkhotakota, Lilongwe, and Salima in the277

central region; and Blantyre and Zomba in the south.278

18

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 18, 2025. ; https://doi.org/10.1101/2025.02.16.25322329doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.16.25322329
http://creativecommons.org/licenses/by/4.0/


Figure 3: Overall relative risk maps for age group 40 − 49 in selected weeks.
Highest risk was observed in Blantyre in 2021 when approaching the festive season of
Christmas. The blue-shaded area in the maps is Lake Malawi. The shapefiles used to create
the maps are openly available at https://data.humdata.org/dataset/cod-ab-mwi? and
the link to the data licence is https://data.humdata.org/faqs/licenses.
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Figure 4: Overall relative risk maps for all age groups between 19 and 25
December 2021. Maps for all age groups during this period show an increased
risk in the south, particularly in Blantyre city. The blue-shaded area in the maps
is Lake Malawi. The shapefiles used to create the maps are openly available at
https://data.humdata.org/dataset/cod-ab-mwi? and the link to the data licence is
https://data.humdata.org/faqs/licenses.
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Fig. S8 in the Supplementary Material illustrates the covariate-adjusted279

relative risk and the posterior spatial random effects across districts. The280

map emphasises significant unexplained effects, especially in southern dis-281

tricts such as Neno, Mwanza, Chikwawa, Nsanje, Blantyre, Thyolo, Chi-282

radzulu, Mulanje, and Zomba, in contrast to the central and northern re-283

gions. This indicates the presence of additional unidentified factors con-284

tributing to the disease risk in these areas. Cross-border interactions with285

Mozambique, particularly through the port city of Beira, could contribute to286

disease spillover. Additionally, localized outbreaks in trade hubs like Blan-287

tyre, which has high interaction levels, might be driven by superspreading288

events. The presence of the highly transmissible Omicron variant, which289

impacted the southern region severely, could further complicate the situa-290

tion. Omicron was first identified in South Africa, and the high cross-border291

mobility between Malawi and South Africa likely facilitated its spread into292

southern Malawi, where border post is located.293

Temporal effects (modelled using a random walk of order 1) with 95%294

intervals for the 40-49 age group were further examined. The results revealed295

the presence of unmeasured temporal influences in the data that could not296

be explained by known demographic or environmental factors, such as age297

or precipitation. A pattern of heightened risk was observed at the end and298

beginning of the year, as well as mid-year. These findings suggest underlying299

temporal dynamics that warrant further exploration. An illustration of these300

results is provided in Fig. S9 in the Supplementary Material.301

The variation in COVID-19 risk over time across districts for the 40-49302

age group was analysed and the results delineate the four distinct waves of303

infection, across nearly all districts. The relative risk remained below 1 in all304

districts throughout the study period, except for Blantyre, indicating that305

the observed infection rates were lower than the baseline expectation. This306

consistent pattern highlights spatial and temporal similarities in how the307

pandemic unfolded across the districts. For a visualisation of these results,308

refer to Fig. S10 and Fig. S11 in the Supplementary Material.309

Risk variation over time across all age groups was monitored in a few310

selected districts where risk was high, including the two cities, Blantyre and311

Lilongwe, as well as Neno. Results indicated that the 40-49 age group ex-312

perienced elevated risk in Blantyre between November 2021 and February313

2022. In Neno, the youngest age group was at higher risk from November314

2020 to February 2021, while the oldest age group was most affected be-315

tween May 2021 and February 2022. From November 2020 to February 2021316
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in Lilongwe, the age group 40-49 experienced the highest COVID-19 risk317

compared to other age groups. In contrast, from May to September 2021,318

the highest risk shifted to the oldest age group, 50 and above. These findings319

are visualised in Fig. S12 in the Supplementary Material.320

Exceedance probability was used to assess how frequently the estimated321

risk in districts surpassed a defined threshold, enabling the identification322

of disease clusters and hotspots. Weekly average risk values served as the323

thresholds. Results for selected weeks are presented in Fig. 5. The findings324

revealed that risk was consistently high in the cities of Blantyre and Lilongwe.325

Occasionally, elevated risk was observed in Mzuzu/Mzimba and Zomba, as326

well as in several lakeshore districts and other areas, including Dowa, Mchinji,327

and Ntcheu in the central region, and Phalombe in the southern region.

Figure 5: Exceedance probability for the age group 40 − 49 in selected weeks.
The blue-shaded area in the maps is Lake Malawi. The shapefiles used to create the maps
are openly available at https://data.humdata.org/dataset/cod-ab-mwi? and the link
to the data licence is https://data.humdata.org/faqs/licenses.

328

Discussion329

Here we have presented a spatiotemporal model of Malawi to explore the330

association between age groups, poverty, population density, precipitation,331
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and COVID-19 risk, and to identify hotspot areas. The analysis utilized332

data collected from 22 April 2020 to 27 March 2022. Spatiotemporal models333

incorporating fixed effects, spatial and temporal random effects, and interac-334

tion terms (space-time and space-time-age) were applied. Among the various335

models tested, the model that demonstrated superior performance, with the336

lowest Deviance Information Criterion (DIC) and Watanabe-Akaike Infor-337

mation Criterion (WAIC) scores, included covariates such as age, poverty338

proportion, population density, and precipitation, along with spatial effects,339

temporal effects, a Type 4 spatiotemporal interaction, and an independent340

interaction term for space, time, and age.341

This study identifies significant effects of age on COVID-19 incidence,342

consistent with findings by Ngwira et al. (2021) [16] and Chinkaka et al.343

(2023) [15], although Chinkaka et al. (2023) [15] reported these effects as344

not statistically significant (p = 0.176). The inclusion of multiple age groups345

in this study reveals an interesting result: the risk is higher in the 40–49346

age group than in the 50+ age group. This finding contrasts with much of347

the literature, where COVID-19 risk is generally associated with the oldest348

age groups. The elevated risk observed in the 40-49 age group may be at-349

tributed, but not limited, to several factors. Individuals in this age group350

may have weaker immune systems compared to younger populations (un-351

der 30), increasing their susceptibility to infection. Additionally, the 40–49352

age group is often more active in the workforce, engaging in activities that353

may expose them to higher contact rates and transmission risks. By contrast,354

many individuals over 50 years may be retired and spend more time at home,355

potentially reducing their exposure to the virus.356

This study finds a positive correlation between population density and357

COVID-19 risk, consistent with findings by Chinkaka et al. (2023) [15] and358

other studies conducted in Africa and abroad, including Md Iderus et al.359

(2022) [42], Nguimkeu and Tadadjeu (2021) [43], and Wong and Li (2020)360

[44]. However, further analysis suggests that the impact is not solely at-361

tributable to population density, age, poverty, or precipitation. Unmeasured362

factors, such as mobility patterns and compliance with public health mea-363

sures, likely play a significant role. In contrast to Ngwira et al. (2021) [16],364

this study reveals a positive association between poverty and SARS-CoV-2365

risk. This association is likely influenced by overcrowded living conditions,366

limited access to healthcare, and poor hygiene. Additionally, high mobility367

and reliance on informal work may exacerbate risk. Many individuals liv-368

ing in poverty depend on daily wages or informal employment, which often369
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requires frequent travel and interactions in crowded markets or workplaces.370

Furthermore, poverty can limit adherence to stay-at-home orders or lockdown371

measures, as daily income is essential for survival. These findings highlight372

the multifaceted relationship between socioeconomic factors and COVID-19373

risk, emphasising the need to address structural inequities and support vul-374

nerable populations to reduce transmission375

Infection rates peaked during the colder months and festive seasons.376

COVID-19 impacted different districts at varying times, with higher risks ob-377

served in cities and lake-shore districts. Blantyre city was the most affected.378

The elevated risk in cities may be attributed to the influx of tourists, as in-379

ternational airports are located in urban centers, facilitating the importation380

of cases. Similarly, the heightened risk in lake-shore areas such as Rumphi,381

Nkhata Bay, Nkhotakota, Salima, and Mangochi can also be explained by382

the presence of tourists, contributing to both imported and locally transmit-383

ted cases. The analysis of random effects further suggests that increased risk384

in lake-shore areas may stem from inadequate hygiene practices and limited385

compliance with public health interventions. In Blantyre city, the higher risk386

could be linked to its status as Malawi’s leading trade center, attracting large387

numbers of people seeking economic opportunities. This population influx388

likely increases crowding and mobility, amplifying transmission risks [45].389

We have identified three significant limitations of this study. The first of390

these is that we do not have access to underlying estimates of infection preva-391

lence and incidence independently of case finding, and hence there may be392

confounding with test-seeking behaviour; however, this is common to the ma-393

jority of studies of infectious disease, and when studies of infection are carried394

out in European countries, biases due to testing were not typically large [46].395

The second limitation is the absence of COVID-19 vaccination data in the396

model. Vaccination significantly impacts transmission and severity. With-397

out accounting for vaccination data, the model may overestimate the risk398

in areas with high vaccination rates or underestimate the risk in districts399

with low vaccination uptake. Furthermore, the spatial and temporal vari-400

ability of vaccine rollouts, influenced by socio-economic and political factors,401

adds complexity that the model does not account for. Including vaccination402

data in future models would provide a more accurate and comprehensive403

understanding of COVID-19 dynamics. The third notable limitation of this404

study is the use of the average relative risk for the given week as the thresh-405

old for calculating exceedance probability. This approach is suboptimal, as406

the threshold should ideally be derived from expert judgment or established407
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standards to ensure greater accuracy and relevance.408

This work opens several avenues for future exploration and enhancement.409

The current analysis employs a Conditional Autoregressive (CAR) structure,410

which is based on the contiguity of districts. While effective, it may be ben-411

eficial to explore alternative spatial structures, such as Gaussian Random412

Fields (GRFs), which are more flexible and allow for smoother modelling of413

spatial relationships based on distance rather than strict adjacency [47, 48].414

GRFs can better capture subtle spatial dependencies and provide a richer415

representation of spatial variation. Furthermore, we can also incorporate a416

more advanced mathematical modelling approach that integrates both de-417

terministic and stochastic elements, providing a comprehensive framework418

to better capture the complex dynamics of COVID-19 transmission. This419

approach will enhance our understanding of how different factors influence420

the spread of COVID-19 over time and across different regions [49].421

Conclusion422

This study identifies significant effects of space, time, age, population423

density, and poverty on COVID-19 transmission in Malawi, while the effect424

of precipitation was not significant. Notably, the risk was highest during425

the colder months (June and July), the festive season (December), and Jan-426

uary. Urban areas and districts along Lake Malawi were more affected than427

other areas, with the 40–49 age group being at particularly high risk. Given428

these findings, if COVID-19 resurges or if similar infectious diseases with429

comparable characteristics emerge in the future, priority should be given to430

vaccinating the working population in urban areas and tourist centres during431

cold months and festive seasons. Additionally, the government must ensure432

that individuals in these high-risk areas comply with public health interven-433

tions and have access to adequate healthcare services.434
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