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Highlights: 27 

What are the main findings? 28 

• Clinical lower limb assessments (both subjective and objective) were more 29 

discriminative in differentiating between the four PFF recovery groups in 30 

older adults.  31 

• Older adults in the acute proximal femoral fracture recovery group 32 

demonstrated lower physical activity intensity compared to those in later 33 

recovery groups, with the differences being more pronounced for shorter- 34 

duration MX metrics (M1-M5)  35 

What is the implication of the main finding? 36 

• The cut-point free method (e.g., MX metrics) is useful for measuring phys- 37 

ical activity magnitude of older adult recovering from proximal femoral 38 

fracture.   39 

• Higher lower limb capacity and perception outcomes were strongly cor- 40 

related with greater daily activity intensity, particularly in older adults at 41 

later stages of proximal femoral fracture recovery. 42 

Abstract: Wearable and lightweight devices facilitate real-world physical ac- 43 

tivity (PA) assessments. MX metrics, as a cut-point-free parameter, evaluate 44 

acceleration above which the most active X minutes are accumulated. It 45 
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provides insights into the intensity of PA over specific durations. This study 46 

evaluated the association of MX metrics and clinical tests in older adults recov- 47 

ering from proximal femoral fracture (PFF). Analyses were conducted on the 48 

PFF cohort from the baseline assessment of the Mobilise-D project using an 49 

accelerometer-based device. Participants (N=396) were categorized into four 50 

recovery groups: acute, post-acute, extended recovery, and long-term recov- 51 

ery. Mobility capacity was assessed through the 6-min walking test (6MinWT), 52 

Short Physical Performance Battery (SPPB), 4-meter walking test (4MWT), and 53 

hand grip (HG) strength. Mobility perception was evaluated using the Late- 54 

Life Function and Disability Instrument (LLFDI). Eight MX metrics (M1-M90) 55 

were calculated using the GGIR package in R. Results showed moderate to 56 

strong positive correlation between M1-M30 and lower limb mobility capacity 57 

tests, and mobility perception (Lower Extremity domains) particularly in the 58 

extended and long-term recovery groups. MX metrics can be used for measur- 59 

ing PA intensity among older adults recovering from PFF. Shorter duration of 60 

MX metrics had higher association with lower limb mobility capacity and per- 61 

ception outcomes. 62 

Keywords: Acceleration, MX metrics, Physical activity, Clinical assessment, 63 

LLFDI 64 

 65 

1. Introduction 66 

Physical activity (PA) is essential for various health outcomes and maintaining 67 

independence at older ages [1]. After hip fracture, individuals experience a 68 

sudden decline in their PA levels [2]. The primary objective of rehabilitation 69 

after surgery is to restore mobility and reduce disability, mortality rate, and 70 

healthcare burden [3]. As part of established clinical routines, clinicians assess 71 

patients' PA to evaluate the effectiveness of therapeutic interventions and re- 72 

habilitation programs, and to address patients' specific needs. 73 

Conventionally, clinicians assess patients’ mobility capacity using common 74 

clinical tests such as the Short Physical Performance Battery (SPPB), 4-meter 75 

walking test (4MWT), 6-min walking test (6MinWT) and hand grip (HG) dy- 76 

namometer [3,4]. Additionally, the Late-Life Function and Disability Instru- 77 

ment (LLFDI) is a widely used questionnaire for assessing mobility perception 78 

in relation to function and disability [5,6]. However, these measurements can 79 

be affected by recall bias, ceiling or floor effects, and the Hawthorne effect, 80 

particularly in controlled settings [7,8]. 81 

Wearable digital devices, such as miniaturized accelerometers, facilitate the 82 

continuous capture of real-world mobility performance (daily PA) particularly 83 

in large scale cohorts and overcome the above-mentioned limitations [9,10]. 84 

Triaxial accelerometers measure the body’s acceleration along three axes as a 85 

proxy of PA intensity and duration [10]. The traditional approach to analyzing 86 

PA intensity from accelerometer data is the cut-point method. This method re- 87 

lies on predefined absolute intensity cut-points to categorize the time spent in 88 

various levels of intensity achieved during various physical activities (for ex- 89 

ample, time spent in sedentary, light, and moderate-to-vigorous PA (MVPA)) 90 
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[11,12]. However, this method has multiple limitations. First, intensity cut- 91 

points are protocol- and population-dependent [9,13,14]. Therefore, it is chal- 92 

lenging to compare or pool datasets. Second, it could easily classify PA if it has 93 

a score just below or above the cut-point [11,15]. Third, many individuals fail 94 

to achieve any activity above established cut-points. For example, prevalence 95 

of meeting guidelines (60 min/d of MVPA for children) varied from 8% to 96% 96 

depending on cut-points and sensor location [16]. Hence, there has been a re- 97 

cent shift from cut-point based metrics to raw acceleration data-driven metrics 98 

which are free from predefined cut-points [13,17,18]. 99 

Cut-point free metrics such as the MX metric identify the minimum accelera- 100 

tion value (measured in milligravitational units (mg)) above which the most 101 

active number of X minutes are accumulated during a monitoring period 102 

[11,18]. Active minutes in this metric can be accumulated across the day, which 103 

aligns with physical activity guidelines [19]. For example, if M10 of a person 104 

equals 55 mg, it means that the minimum acceleration for that person’s most 105 

active 10 minutes over 24 hours was 55 mg. This method allows for the com- 106 

parison of acceleration data to any cut-point (e.g., 55 mg equivalent for MVPA 107 

level among older adults) or to an acceleration that is indicative of a standard 108 

activity (e.g., 250 mg equivalent for brisk walking among adults) [15,18,20]. 109 

Although MX metrics are population independent, their value can vary de- 110 

pending on age, sex, health status, sensor placement, and so on. For instance, 111 

the mean value of M10 for 12-14 years old boys' and girls' students was 634.4 112 

mg and 417.1 mg respectively, who wore an accelerometer for up to 7 consec- 113 

utive days on the non-dominant wrist [17]. In contrast, the M10 values meas- 114 

ured with the same sensor placement were ~280 mg for office workers (mean 115 

age: 44.7 years) and ~200 mg for individuals with chronic disease (mean age: 116 

65.2 years) [17]. 117 

Currently, research involving the MX metric has examined its association with 118 

health indicators (for example, body mass index (BMI), waist‐to‐height ratio, 119 

cardiorespiratory fitness) and its ability to thoroughly profile and compare 120 

physical activity intensity across different populations (such as primary school 121 

students, centenarians, pre- and post- menopausal women) [11,15,21]. How- 122 

ever, there is a lack of knowledge regarding the relationship between MX met- 123 

rics and clinical tests in different populations with health conditions such as 124 

older adult recovering from Proximal Femoral Fracture (PFF). 125 

The main purpose of this study was to investigate the association of the MX 126 

metrics and various clinical tests including LLFDI outcomes, 6MinWT, 4MWT, 127 

SPPB, and HG strength. To this end, we analyzed the PFF cohort from the base- 128 

line assessment (T1) of the clinical validation study (CVS) of the Mobilise-D 129 

project [22]. Before measuring correlation, we classified our sample into four 130 

recovery groups that are formed based on the number of days between surgery 131 

and T1. Accordingly, we hypothesized that (1) clinical assessments and MX 132 

metrics would differ significantly across different PFF recovery groups; (2) the 133 

association between different duration of MX metrics and clinical tests would 134 

vary depending on the recovery group. 135 

2. Materials and Methods 136 
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2.1. Design 137 

This is a cross-sectional study using baseline data of the PFF cohort as part of 138 

Mobilise-D CVS project (Clinical Trial Registry Number: ISRCTN12051706). 139 

2.2. Participants 140 

Among 513 participants, 399 participants wore the AX6 device (Axivity, York, 141 

UK) and 114 wore the DynaPort MM+ device (McRoberts, The Hague, The 142 

Netherlands).  Due to different device attachment method (directly via 143 

adhesive patch vs indirectly fixed on the belt), this study included only the 144 

participants who wore the AX6 device. Of the 399 participants, three of them 145 

were excluded due to lack of valid recorded days (see below). Thus, in total 146 

number of participants from whom we used the data was 396 (257 females, 139 147 

males). The full inclusion and exclusion criteria are described elsewhere [22]. 148 

All participants provided written informed consent prior to data collection. 149 

Ethical approvals were obtained from Committee of the Protection of Persons, 150 

South-Mediterranean II, Montpellier (ref.: 221BO8), the ethics committee of the 151 

Medical Faculty of Eberhard-Karls-University Tubingen, Stuttgart (ref.: 152 

976/2020BO2), the ethics committee of the Medical Faculty at Heidelberg 153 

University (ref.: S-719/2021), and the Regional Committee for Medical and 154 

Health Professional Research Ethics, Trondheim (ref.: 216069).  155 

Participants were classified into four groups based on number of days between 156 

surgery date and clinical assessment date. Acute group: days ≤ 14, post-acute 157 

group: 14 < days ≤ 42, extended recovery group: 42 < days ≤ 182, long-term 158 

recovery group: days > 182. 159 

2.3. Tasks and Procedures 160 

2.3.1. Clinical setting 161 

Clinical outcome assessments: Mobility capacity of the participants was 162 

evaluated using SPPB, 4MWT, 6MinWT and HG strength [4,22]. The SPPB and 163 

6MinWT were performed in a straight, hard-surface, and flat corridor. The 164 

SPPB consists of three components including static balance, a five-times chair- 165 

rise test, and 4MWT [23]. Each component is scored between 0-4, and the total 166 

SPPB score spans from 0 (worst) to 12 (best). The 4MWT was repeated twice in 167 

a straight line at a comfortable and self-selected pace. The fastest trial was 168 

recorded as the maximum self-selected walking speed during the 4MWT. For 169 

6MinWT, experimenters instructed participants to walk as far as possible 170 

within six minutes, moving back and forth along a 20-meter corridor between 171 

two cones.. Note, acute group did not perform 6MinWT due to the long 172 

duration of the test. HG strength (kg) was measured using hand dynamometer. 173 

The highest score of three attempts at both sides was used in this study.   174 

Patient-reported outcome measures: The LLFDI contains two main 175 

components: Function and Disability [24]. The Disability component of LLFDI 176 

describes the Frequency of participating in life activities and Limitations in the 177 

capability of participating in those life activities. The Frequency is classified 178 

into Social and Personal Roles domains. The Limitation is classified in 179 

Instrumental Role and Management Role domains. The Function component 180 
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of the LLFDI assesses task difficulty. LLFDI-Function is divided into 3 181 

domains, Upper Extremity, Basic Lower Extremity, and Advanced Lower 182 

Extremity [24]. All items of the LLFDI components are scored on a five-point 183 

scale. The raw LLFDI scores are transformed into a scale ranging from 0-100 184 

for easy clinical interpretation. Higher scores mean better performance and 185 

less limitation [24]. Note, LLFDI answers of patients in the acute group were 186 

related to their perception prior to the femoral fracture (pre-fracture). 187 

2.3.2. Daily life setting 188 

To assess mobility performance, participants wore a single wearable device 189 

(AX6) which was attached directly on the lower back using a custom designed 190 

adhesive patch. Device was a 6 degrees of freedom inertial measurement unit 191 

with the following configuration; triaxial accelerometer with a range of ±8 g 192 

and resolution 1mg, triaxial gyroscope with a range of ±2000 degrees per 193 

second (dps) and a resolution of 70 mili-dps, sampling frequency 100 Hz). 194 

Participants were asked to keep the device on their lower back for 24 hours/day 195 

over 7 consecutive days. The device's battery life allows for one week of 196 

recording without recharging. In this study, we only use triaxial accelerometer 197 

data. 198 

2.3.3. Accelerometer processing 199 

The raw .csv data was processed using the GGIR package (version 3.1-4) of the 200 

statistical programming language R (version 4.3.1). Signal processing included 201 

1) autocalibration using local gravity as a reference, 2) non-wear time 202 

detection, and 3) calculation of dynamic acceleration corrected for gravity 203 

(Euclidean Norm minus 1g with negative values rounded up to zero, ENMO) 204 

averaged over 5s epochs and expressed in mg units (1mg = 0.00981 m.s-2). Non- 205 

wear was estimated based on standard deviation and value range of each axis, 206 

calculated in 60 minutes windows with 15-minute sliding windows. Non-wear 207 

time was detected if the standard deviation for at least two out of three axes 208 

was less than 3 mg or if the value range for at least two out of three axes was 209 

less than 50 mg (Hees algorithm: F1 performance of 0.88) [25,26]. Participants 210 

were excluded if they had less than 3 valid days (defined as >14 h per day) [27]. 211 

Table A (supplementary material, available online) provides the GGIR 212 

configuration for the reproducibility principle.  213 

Finally, eight different MX metrics (M1, M2, M5, M10, M15, M30, M60, M90 214 

(mg)) were calculated and averaged across all valid days and wear time to 215 

provide a comprehensive picture of physical activity [17]. MX metrics were 216 

extracted in part 2 of the GGIR package using the “qlevels” argument (e.g. for 217 

M90 qlevel = (1440 - 90)/1440). These MX statistics rank the acceleration for 218 

each epoch during the day in descending order to obtain the acceleration above 219 

which the person’s most active X minutes are accumulated [15,28]. Table B of 220 

Supplementary Material (available online) provides the variable names from 221 

the GGIR output.  222 

2.3.4. Statistical Analysis 223 

Kolmogorov–Smirnov tests revealed that all variables were not normally 224 

distributed (p < 0.05). Thus median, quartiles range (P25-P75), and range 225 
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[minimum-maximum] were used as non-parametric descriptive statistics. 226 

One-way non-parametric ANOVA (Kruskal-Wallis with Dunn’s post hoc tests) 227 

was used to compare the four recovery groups regarding participant 228 

characteristics, clinical tests, LLFDI domains, and MX metrics. Spearman Rank 229 

correlation was conducted to assess association of MX metrics, clinical tests. 230 

The strength of the correlation value (rs) was classified as very weak (rs: 0.00- 231 

0.19), weak (rs: 0.20-0.39), moderate (rs: 0.40-0.59), strong (rs: 0.60-0.79), and very 232 

strong (rs: 0.80-1.00) [29].  233 

A significant difference was set at a p level < 0.05; Bonferroni correction was 234 

applied to account for multiple testing. All statistical analyses were conducted 235 

using SPSS (version 29.0.1; Armonk, NY) and RStudio (version 2024.04.2, 236 

Boston, MA). Visualisation was done in Matlab (version R2023a; Mathworks, 237 

Natick, MA, USA) 238 

3. Results 239 

Participant characteristics are displayed in Table 1. There were three patients 240 

with missing surgery date. Therefore, these participants were not classified 241 

into recovery groups. The median (P25-P75) age of all participants was 79 (71- 242 

83) years. Post-acute participants were 5 years older than participants in the 243 

extended recovery group (p=0.007). The overall BMI of the participants was 244 

23.9 (21.5-26.5) kg/m2 and was similar across the four recovery groups.  245 

Table 1. Participant characteristics and clinical tests (Median (P25-P75), [min-max]). 246 

  

All  

Recovery groups 

p-value  
Acute  Post-acute  

Extended  

recovery  

Long-term  

recovery  

N  396  79  88  166  60  -  

Sex (F/M)  257/139  57/22  57/31  103/63  37/23  -  

Days since sur. (days)  

57.5   

(22.5-124.4)  

3.4  

 (3.3-4.5)  

27.9   

(23.3-32.9)  

96.3   

(62.4-121.7)  

330.4   

(223.8-353.4)  
-  

 3 missing  [2.4-12.5]  [14.7-41.5]  [42.3-180.5]  [186.4-367.4]  -  

Age (yrs)  79 (71-83)  78 (72-84)  81 (73-85)€  76 (69-82)€  78 (71-86)  €0.007  

Mass (kg)  67 (58-79)  67 (59-79)  68 (59-79)  67 (57-80)  69 (57-77)  0.990  

Height (cm)  168 (160-175)  165 (160-174)  165 (160-178)  169 (161-175)  168 (163-180)  0.497  

BMI (kg/m2)   
23.9   

(21.5-26.5)  

23.9   

(22.4-26.7)  

24.6   

(21.7-26.9)  

23.4   

(21.1-26.7)  

23.9   

(21.4-26.3)  
0.501  

4MWT (m/s)  
0.65   

(0.44-0.87)  

0.34   

(0.23-0.43)*  

0.61   

(0.51-0.76)*€  

0.74   

(0.57-0.92)*€  

0.87   

(0.59-1.09)*€  
*€<0.01  

SPPB (/12)  6 (4-9)  3 (2-5)*  5 (4-7)*€  8 (6-10)*€  9 (5-10)*€  *€<0.01  

6MinWT (m)  271 (192-376)  -  212 (157-287)€  299 (209-394)€  343 (242-441)€   *€<0.01  

HG (kg)  22 (17-30)  22 (17-27)  22 (17-28)  23 (17-32)  24 (18-32)  0.332  

F: Female, M: Male, BMI: Body Mass Index, 4MWT: 4-meter walking test, 6MinWT: 6-min walking test, SPPB: Short 247 

Physical Performance Battery, HG: hand grip strength. Note: Significant differences are marked in bold. * Group 1 248 

versus groups 2-4, € Group 2 versus groups 3-4. 249 

The median value of mobility capacity outcomes is depicted in a radar plot 250 

(Figure 1). The four axes displayed in this plot are 4MWT, SPPB, 6MinWT and 251 
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HG tests with values increasing outward from the centre.  In general, 4MWT 252 

speed and SPPB score showed the most significant differences between groups. 253 

Distance covered during 6MinWT test in extended recovery and long-term re- 254 

covery were 87 cm and 131 cm longer than in the post-acute group, respectively 255 

(all p < 0.01). The HG strength was similar among the participants in the four 256 

different recovery groups (p = 0.332) (Table 1, Figure. 1).  257 

 258 

 259 
 260 

Figure 1. Radar plot illustrating median of 4-meter walking test (4MWT), Short Physical Performance Battery (SPPB) 261 

score, 6-min walking test distance (6MinWT), and Hand Grip (HG) strength in four recovery groups of PFF patients. 262 

 263 

Figures 2 and 3 contain the box plots of the LLFDI components Disability and 264 

Function. The horizontal line inside the box represents the median value. Each 265 

box indicates the quartiles range. The median value of Personal Role, Social 266 

Role, and Instrumental Role scores in acute group (pre-fracture) were signifi- 267 

cantly higher than for the participants in the post-acute and extended recovery 268 

groups (all p < 0.05). In addition, the median value of the Management Role 269 

score of participants in the post-acute group was lower than in the acute group 270 

(pre-fracture) and extended recovery groups (all p < 0.05). The Personal Role, 271 

Social Role, and Instrumental Role scores among participants in extended and 272 

long-term recovery groups were higher than in the post-acute patients (all p < 273 

0.05) (Figure 2). Appendix C in the supplementary material displays the me- 274 

dian (P25–P75) values and between group comparisons for all LLFDI domains. 275 

 276 
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 277 

Figure 2. Box plot illustrating the Disability component of the LLFDI among four PFF recovery groups (whiskers 278 

extend to data points within 1.5 times the interquartile range, outliers marked as red plus, blue lines mean significant 279 

difference (p < 0.05)).  280 

 281 

As can be seen in Figure 3, Advanced Lower Extremity domain of LLFDI had 282 

the most between group differences. Median values of the Upper Extremity, 283 

Basic Lower Extremity, and Advanced Lower Extremity scores among acute 284 

group (pre-fracture) were higher than those in the post-acute and extended re- 285 

covery groups (all p < 0.05). Additionally, median values of Basic Lower Ex- 286 

tremity and Advanced Lower Extremity scores of participants in extended and 287 

long-term recovery groups were higher than those in the post-acute group (all 288 

p < 0.05) (Figure 3). 289 

 290 

 291 
Figure 3. Box plot illustrating Function component of LLFDI score among four PFF recovery groups (Whiskers extend 292 

to data points within 1.5 times the interquartile range, outliers marked as red plus, blue lines mean significant differ- 293 

ence (p < 0.05)). 294 

 295 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 16, 2025. ; https://doi.org/10.1101/2025.02.13.25322210doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.13.25322210
http://creativecommons.org/licenses/by-nc/4.0/


Sensors 2025, 25, x FOR PEER REVIEW 9 of 17 
 

 

The violin plots in Figure 4 display the distribution of MX metrics’ intensity 296 

among the four recovery groups. Each point in the plot represents an individual 297 

value. M1, M2, and M5 had the most between group differences. The intensity 298 

of all MX metrics was significantly higher in post-acute group compared to the 299 

acute group. Similarly, extended and long-term recovery groups had a higher 300 

intensity of MX metrices compared to acute group except for M90. Apart from 301 

M1, there was no difference between post-acute and extended recovery groups. 302 

Appendix D in the supplementary material presents the median (P25–P75) val- 303 

ues and the between group comparisons of the selected MX metrics.  304 

 305 

 306 
Figure 4. Violin plot illustrating MX metrics among four recovery groups (blue lines mean significant difference (p < 307 
0.05)). 308 

The heat map in Figure 5 depicts the correlations between clinical tests (y-axis: 309 

4MWT, SPPB, 6MinWT, HG, seven LLFDI’s domains) and MX metrics (x-axis) 310 

for all participants as well as each recovery group. The colour intensity ranges 311 

from light blue (very week correlation) to dark blue (strong correlation). The 312 

darkest blue areas of clinical assessments belonged to the relationship of 313 

6MinWT, 4MWT, SPPB and M1-M30. The darkest blue area of LLFDI domains 314 

belonged first to function component (Basic Lower Extremity and Advanced 315 

Lower Extremity domains) then to Disability component (Social Role and In- 316 

strumental Role domains) and M1-M30. Moreover, these relationships are 317 

stronger among participants in extended and long-term recovery groups, par- 318 

ticularly with shorter MX metrics durations (M1-M10) (Figure 5).  319 
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 320 

Figure 5. Heat map illustrating the level of association (rs value) between MX metrics (M1-M90) and all clinical tests 321 
among PFF patients in four recovery groups: 1) acute (pre-fracture for LLFDI assessments), 2) post-acute, 3) extended 322 
recovery, 4) long-term recovery, All) all participants (N=396). Clinical tests: 4-meter walking test (4MWT), Short 323 
Physical Performance Battery (SPPB) score, 6-min walking test distance (6MinWT), and Hand Grip (HG) strength, 324 
LLFDI domains: Social Role (SR), Personal Role (PR), Instrumental Role (IR), and Management Role (MR), Upper 325 
Extremity (UE), Basic Lower Extremity (BLE), Advanced Lower Extremity (ALE) (*: p < 0.05, **  p < 0.01, white font 326 
colour: strong correlation (rs: 0.60-0.79), NaN: not a number). 327 

4. Discussion 328 

To the best of our knowledge, this is the first study to analyze the association 329 

between cut-point free metrics (MX) and clinical tests (mobility capacity and 330 

perception) among older adults recovering from PFF.  To this end, we first com- 331 

pared MX metrics and clinical tests across the four recovery categories of our 332 

participants. Subsequently, we analyzed the relationships between MX metrics 333 

and clinical tests for all participants as well as within each recovery category.  334 

Demographic characteristics in the four recovery groups were similar (Table 1). 335 

The mobility capacity of our participants was measured using objective clinical 336 

tests. Based on results (SPPB, 4MWT, and 6MinWT outcomes), mobility capac- 337 

ities such as walking speed, balance, lower limb strength, and endurance were 338 

higher among participants in later recovery groups (Figure 1). The 4MWT and 339 

SPPB revealed the most between group differences.  These findings suggest 340 

that the 4MWT and SPPB have a higher potential for detecting meaningful dif- 341 

ferences among PFF patients at various recovery stages.  Better mobility 342 
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capacity outcomes (e.g., walking speed, balance, and endurance) in extended 343 

recovery and long-term recovery groups can reflect positive effect of rehabili- 344 

tation program and longer recovery duration.  345 

 Mobility perception scores, as assessed through seven different domains of the 346 

LLFDI questionnaire. Advance Lower Extremity domain of LLFDI (involving 347 

activities that require a high level of physical ability and endurance like run- 348 

ning ½ mile) has the most between group difference (Figure 3). Then, it has a 349 

potential to be responsive to meaningful between group differences. Mobility 350 

perceptions were higher among extended and long-term recovery groups com- 351 

pared to post-acute group which was aligned with mobility capacities findings. 352 

However, mobility perception among our participants after PFF (post-acute, 353 

extended, and long-term recovery groups) was lower than acute group before 354 

PFF (Figure 2, 3). These findings reveal that despite the improvement in mobil- 355 

ity perception over time among our participants after PFF, it remained lower 356 

than acute group (pre-fracture). However, the mobility perception of our pa- 357 

tients before fracture belonged to our participants in acute group which could 358 

have been affected by recall bias and pain. Our findings aligned with previous 359 

studies [30,31] which reported inactivity and intensity of pain can be consid- 360 

ered as important risk factors for worse self-perceived health and functional 361 

mobility. Further studies are needed to evaluate longitudinal LLFDI among 362 

older adults recovering from PFF.    363 

The violin plot visualized MX metrics as a duration-related PA intensity among 364 

older adults in four PFF recovery groups. The shorter durations of MX metrics 365 

(M1-M5) with greater intensity were more effective in distinguishing differ- 366 

ences among our participants (Figure 4). Intensity of PA longer than 10 minutes 367 

(M10-M90) were similar across post-acute, extended, and long-term recovery 368 

groups. Our findings were aligned with Rowlands and his colleagues (2019, 369 

Fig. 1) that found bigger between group differences (adolescent, office workers, 370 

adult with type 2 diabetes) for short time periods and higher intensity PA (i.e. 371 

M5, M15). Therefore, these findings confirm our first hypothesis about differ- 372 

ence of mobility capacity, mobility perception, and MX metrics among PFF pa- 373 

tients in different recovery stages after surgery.  374 

One approach to interpret MX metrics is using cut-points (e.g., sedentary, light, 375 

MVPA) [20]. Duncan and colleagues (2020) calibrated cut-points of acceleration 376 

data in older adults based on energy expenditure [20]. They identified the fol- 377 

lowing cut-points for sedentary time (11.7 mg), light physical activity (11.7-54.9 378 

mg) and moderate-to-vigorous (MVPA) (55 mg) in older adult from waist-worn 379 

accelerometers. Notably, their study protocol did not include vigorous physical 380 

activity (VPA). Median values of our MX metrics for PFF patients in acute 381 

group fell within the light intensity category and it gradually decreased from 382 

M1: 51.1 mg to M90: 32.4 mg. For PFF patients in post-acute, extended and long- 383 

term recovery groups, the median values for M1–M30 exceeded the MVPA 384 

threshold. However, for M60 and M90, the median values across all recovery 385 

groups declined and fell into the light intensity category. Therefore, MX metrics 386 

provide a clearer comparison of duration-related PA intensity and demonstrate 387 

better between-group differences, particularly when the PA levels of different 388 

groups fall within the same category.  389 

Rowlands and his colleagues (2021) suggested another approach to interpret 390 

accelerometery data [32]. Their study was among inactive adult UK Biobank 391 
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using wrist-worn accelerometers. Their research suggests that 1.0 mg increase 392 

in daily average acceleration is equal to 5-6 min brisk walking (500 steps taken 393 

in 5 minutes) which is associated with a greater life expectancy of 3.9 years and 394 

5% decreased in all-case mortality. In this study, we did not measure daily av- 395 

erage acceleration. However, an increase in MX metrics would lead to an in- 396 

crease in daily average acceleration. Therefore, MX metrics as a proxy for time- 397 

related intensity can be used for surveillance of PA magnitude among PFF pa- 398 

tients.  399 

 For the second hypothesis of this study, we found a strong correlation between 400 

lower limb clinical assessments (4MWT, SPPB, 6MinWT), the Function compo- 401 

nent of LLFDI (Advanced Lower Extremity), and shorter durations of MX met- 402 

rics (M1-M30). This suggests a higher association between mobility capacity, 403 

functional perception of lower limb activities, and shorter durations of daily 404 

PA among older adults recovering from PFF. Notably, this association was 405 

stronger among participants in the later recovery groups (extended and long- 406 

term recovery groups). This finding also indicates that participants in the later 407 

recovery stages, with higher mobility capacities, could perform daily PA at 408 

higher intensities, which could potentially contribute to improved overall 409 

health and life expectancy.   410 

Stamatakis and his colleagues, 2022, analyzed wrist-worn accelerometer of 411 

103,684 UK Biobank adults [33]. Their results revealed that approximately 3-4 412 

minutes of vigorous intermittent lifestyle physical activity (VILPA) were asso- 413 

ciated with substantial lower mortality risk. They also found that VILPA in 414 

nonexercisers can have similar effects to VPA in exercisers, suggesting that 415 

VILPA (i.e.  may be a suitable PA target particularly in individuals not able or 416 

willing to exercise. A longitudinal study about the mortality rate and shorter 417 

duration of MX metrics as VILPA could provide a new insight of daily PA 418 

among different population.  419 

 The association between M1-M10, Social Role, and Instrumental Role were 420 

positive and moderate among our participants. This means higher magnitude 421 

of daily PA is moderately associated with higher perception of engaging in so- 422 

cial activities and less limitations in activities both at home and in the commu- 423 

nity among older adults recovering from PFF. These findings support our sec- 424 

ond hypothesis, which proposed varying levels of association between MX 425 

metrics and clinical measurements in PFF patients. Based on our findings we 426 

can suggest more sophisticated analysis on shorter duration of MX metrics and 427 

clinical lower limb assessments both for within and between in different popu- 428 

lations.  Then MX metrics would provide a public health-friendly and person- 429 

alized interpretation of PA with the potential to be a standardized accelerome- 430 

ter outcome as a guideline [18,21].  431 

 The limitations of this study included the unequal sample sizes across recovery 432 

groups, sex heterogeneity, and the absence of contextual information for both 433 

clinical and daily PA assessments. Additionally, monitoring daily PA using a 434 

sensor may introduce a Hawthorne effect. The placement of the sensor on the 435 

lower back, where it is less visible, could help mitigate this effect. However, we 436 

are confident that this preliminary study provides practical insight for clini- 437 

cians and researchers to apply cut-point free metrics such as MX to precisely 438 

analyze PA and fill the gap between cut-point free metrics and traditional as- 439 

sessment. 440 
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5. Conclusions 441 

Clinical lower limb functional assessments, whether mobility capacity tests 442 

(e.g., 4MWT) or mobility perception tests (e.g., LLFDI), were more discrimina- 443 

tive in differentiating between the four PFF recovery groups among our older 444 

adult participants. Shorter duration of MX metrics (M1-M5) with higher inten- 445 

sity were more effective for between group comparison. Older adults in the 446 

later recovery stages, with higher mobility capacities could perform daily PA 447 

at higher intensities, which could potentially contribute to improved overall 448 

health and life expectancy. The associations between MX metrics and clinical 449 

tests (both mobility capacity and perception assessments) were positive, and 450 

stronger in shorter duration and higher magnitude of MX, particularly among 451 

PFF patients in later recovery groups.  452 
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PFF proximal femoral fracture 

PA physical activity 

SPPB short physical performance battery 

4MWT 4-meter walking test 

6MinWT 6-min walking test 

HG hand grip 

LLFDI late-life function and disability Instrument 

MVPA moderate-to-vigorous physical activity 

VILPA vigorous intermittent lifestyle physical activity 

BMI body mass index 

T1 baseline assessment 

CVS clinical validation study 

mg milligravitational 

dps degrees per second 
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