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Abstract 11

Nearly 7.5% U.S. adults have long COVID. Recent epidemiological studies indic- 12

ated that long COVID, is significantly associated with subsequent brain structure 13

changes. However, it remains unknown if long COVID is causally associated with 14

brain structure change. Here we applied two Mendelian Randomization (MR) meth- 15

ods – Inverse Variance Weighting MR method (IVW) for correlated instrument vari- 16

ables and Component analysis-based Generalized Method of Moments (PC-GMM) 17

– to examine the potential causal relationships from long COVID to brain struc- 18

ture changes. The MR study was based on an instrumental variable analysis of 19

data from a recent long COVID genome-wide association study (GWAS) (3,018 20

cases and 994,582 controls), the Enhancing NeuroImaging Genetics through Meta 21

Analysis (ENIGMA) (Global and regional cortical measures, N = 33,709; combined 22

hemispheric subcortical volumes, N = 38,851), and UK Biobank (left/right subcor- 23

tical volumes, N = 19,629). We found no significant causal relationship between long 24

COVID and brain structure changes. As we gain more insights into long COVID and 25

its long-term health outcomes, future works are necessary to validate our findings 26

and understand the mechanisms underlying the observed associations, though not 27

causal, of long COVID with subsequent brain structure changes. 28
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1. Introduction 30

According to data from National Center for Health Statistics in 2022, about 7.5% of U.S. 31

adults were living with long COVID, also known as post COVID-19 condition or post- 32

acute sequelae of COVID-19 (PASC) [1]. Long COVID is currently defined by World 33

Health Organization as a range of symptoms that present after COVID-19 and persist 34

after 3 months [2, 3]. Neuropsychiatric symptoms including depression, anxiety and cog- 35

nitive deficits have been widely reported as symptoms in patients with long COVID 36

across the severity spectrum of this respiratory disease [3, 4, 5]. Direct viral infection 37

of the central nervous system [6, 7], or prolonged neuroinflammation [8] have been pro- 38

posed as potential underlying mechanisms. Recent studies suggest that brain structure 39

abnormalities are involved in long covid associated neuropsychiatric symptoms. Heine 40

et al. [9] carried out a prospective cross-sectional observational study and showed that 41

the volumes of the left thalamus, putamen and pallidum for long COVID with fatigue 42

decreased. Michael et al. [3] implemented a prospective, national longitudinal study to 43

investigate the pathophysiology and recovery trajectory of persistent long COVID cognit- 44

ive deficits and found reduced anterior cingulate cortex volume one year after admission. 45

These studies showed that long COVID was associated with subsequent brain structure 46

changes. However, due to the inherent challenges related to confounding variables and 47

reverse causation in epidemiological observational studies, it remains unknown whether 48

long COVID leads to brain structure changes. 49

Mendelian randomization (MR) is a useful tool to investigate causal relationship. It 50

utilizes genetic variants as instrument variables to randomly allocate an exposure and 51

estimate the causal relationship of the exposure on an outcome. Recently Ding and 52

Xu [10] carried out a large-scale MR study and showed that COVID-19 infection and 53

severity were not causally associated with brain structure. Meanwhile, Zhou et al. [11] 54

showed nominally significant causal effect of COVID-19 infection, hospitalized COVID- 55

19 and severe COVID-19 on specific brain structures. Currently, it remains unknown 56

if long COVID is causally associated with subsequent brain structure changes. Genetic 57

susceptibility of long COVID is different from COVID. Specifically, the genome-wide 58

significant SNPs in long COVID [2] are not genome-wide significant in GWAS for COVID 59

infection (N=1,348,701) and COVID severity (N=1,557,411)(https://www.covid19hg. 60

org/results/r5/) [10]. Most COVID patients recover within 3 months and only a subset 61

of them continue to have long COVID, approximately 14% to 43% [12, 13, 14]. Therefore, 62

in this study we aim to investigate the causal relationship of long COVID with brain 63

structure change including both cortical and subcortical brain structures. 64

2

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 13, 2025. ; https://doi.org/10.1101/2025.02.12.25322170doi: medRxiv preprint 

https://www.covid19hg.org/results/r5/
https://www.covid19hg.org/results/r5/
https://www.covid19hg.org/results/r5/
https://doi.org/10.1101/2025.02.12.25322170
http://creativecommons.org/licenses/by/4.0/


2. Method 65

2.1 Datasets 66

In this study, we used GWAS summary statistics of long COVID [2] (N = 3,018 for 67

cases and 994,582 for controls, available from https://www.medrxiv.org/node/671137. 68

external-links.html) and GWAS summary statistics of brain structure (global and re- 69

gional cortices [15], N = 33,709, available from http://enigma.ini.usc.edu/research/ 70

download-enigma-gwas-results; combined hemispheric subcortical regions [16], N = 71

38,851, available from http://enigma.ini.usc.edu/research/download-enigma-gwas-results;72

and left/right subcortices [17], N = 19,629, available from https://github.com/BIG-S2/ 73

GWAS). More details are in Supplementary Table 1. 74

For long COVID GWAS, we used the strict broad case control meta analysis between 75

long COVID patients with an earlier test-verified severe acute respiratory syndrome 76

coronavirus 2 (SARS-CoV-2) infection (i.e. strict cases) and genetically ancestry-matched 77

population controls without known long COVID (i.e. broad controls). Long COVID was 78

defined as patients with any symptoms that present after COVID-19 infection and persist 79

after three months. The most common symptoms were fatigue, anosmia, shortness of 80

breath, persistent cough and problems with memory and concentration. 81

The GWAS investigations of brain structures were conducted with participants in EN- 82

IGMA and UK Biobank. The outcome measures include surface area and thickness of the 83

global and 34 regional cortices [15] as well as volumes of 7 combined hemispheric [16] and 84

17 left/right subcortices [17], which are specifically amygdala, hippocampus, accumbens, 85

putamen, pallidum, thalamus, insula, caudate, and brain stem. Included GWAS studies 86

have obtained ethical approval from the corresponding ethics review boards. 87

2.2 Two sample cis-MR 88

Two cis-MR methods were adopted – IVW for correlated instrument variables [18] and 89

PCGMM [19]. In total 16 Instrument variables within 3Mb around the identified lead vari- 90

ant rs9367106 in the long COVID GWAS study [2] were selected with p-value threshold 91

of 5×10−6. To avoid numerically unstable causal effect estimate in the IVW method [20], 92

LD clumping [21] was used to select informative SNPs and remove other correlated SNPs 93

with r2 > 0.8 within a window size of 100
r2

where r2 = 0.8. The window size was set based 94

on the recommendation of the snp clumping in the “bigsnpr" package [22]. For both IVW 95

and PCGMM, we searched appropriate proxies for those instrument SNPs not available in 96

the brain structure outcome datasets with r2 = 0.6; we also harmonized long COVID and 97

brain structure data and removed palindromic SNPs with minor allele frequency above 98

0.42 (see Supplementary Tables 2-4 for proxy SNPs and harmonized GWAS summary 99

statistics for exposure and outcome.). For ivw, 3 informative SNPs were selected. Ac- 100
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cording to PheWeb (https://pheweb.org/UKB-SAIGE/about) [23] and GWAS Catalog 101

[24], none of the 3 instrument variables had pleiotropy effects through other risk factors. 102

The mr_ivw function from MendelianRandomization package [18] was applied for ivw 103

analysis. For PCGMM, we utilized the “mr_pcgmm" function from the MendelianRan- 104

domization package. As recommended by the function, LD clumping was carried out 105

with parameter r2 > 0.95 within a window size of 100
r2

where r2 = 0.95. In total 4 SNPs 106

were selected and based on PheWeb and GWAS Catalog, none of them were genome-wide 107

significantly associated with pleiotropy risk factors. The selected 4 instrument SNPs were 108

linearly combined and the first 2 principle components which explained 99% variance of 109

the genetic data were chosen. For both ivw and pcgmm, F statistic was larger than 10, 110

suggesting no weak instruments (see Supplementary Table 5) [25, 26]. 111

2.3 MR multiple testing correction procedures 112

We accounted for multiple testing by defining significance at a false discovery rate (FDR) 113

of 0.05. We performed separate FDR corrections for each subgroup of brain structure MR 114

analyses [27] using Benjamini–Hochberg procedure [28]. Specially, the subgroups are: 1) 115

long COVID on global cortical brain structures, 2) long COVID on regional cortical brain 116

structures, 3) long COVID on hemispheric combined subcortical brain structures, 4) long 117

COVID on left/right subcortical brain structures. The corrected Pvalue = original Pvalue 118

× m
k
, where m is the number of MR analyses in each subgroup and k is the rank of pvalue 119

in a ascending order in that subgroup. 120

3. Results 121

Among the 94 brain structure summary statistics datasets (Sec. 2.1), the 7 combined 122

subcortical volume datasets were excluded because only one instrument variable exists in 123

the outcome datasets, even after proxy searching (Sec. 2.2). For the remaining 87 outcome 124

datasets, we found no significant causal relationship between long COVID with brain 125

structure changes in global cortex (Table 1), regional cortex (Figure 1B) and left/right 126

subcortex (Table 1) under the control of FDR<0.05 for each sugroup (see Section MR 127

multiple testing correction procedures ), i.e. the corrected Pvalue after FDR correction is 128

larger than the significance threshold 0.05 for the surface area/thickness/volume of each 129

specific brain region. 130

The null conclusion is consistent between IVW and PCGMM methods. Specifically, the 131

sign of the causal effect estimates/z scores are mostly the same between IVW and PCGMM 132

and the size of the causal effect estimates/z scores are largely similar (Table 1 for global 133

cortices and left/right subcortices and Figure 1A for regional cortices), given that the two 134

methods both work well. 135
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Table 1. MR analysis for causal relationship of long COVID on global cortical and
left/right subcortical brain structure changes. Both IVW and PCGMM show that long
COVID is not causally associated with global cortical and left/right subcortical brain structure
changes (i.e. corrected Pvalue > 0.05).
Outcome IVW PCGMM

SNPs num Estimate 95% CI Pvalue Corrected Pvalue * SNPs num Estimate 95% CI Pvalue Corrected Pvalue

global cortex

surface area 3 -0.150 (-0.286, -0.014) 0.031 0.062 4 -0.184 (-0.346, -0.021) 0.027 0.053
thickness 3 0.002 (-0.132, 0.136) 0.976 0.976 4 0.023 (-0.127, 0.173) 0.768 0.768

left/right subcortical volume

left.hippocampus,pheno81 3 -0.130 (-0.288, 0.028) 0.107 1.000 4 -0.156 (-0.342, 0.029) 0.098 1.000
Brain.stem,pheno68 3 0.121 (-0.037, 0.279) 0.133 1.000 4 0.143 (-0.371, 0.657) 0.585 1.000
right.hippocampus,pheno94 3 -0.121 (-0.279, 0.037) 0.134 0.757 4 -0.145 (-0.329, 0.04) 0.124 1.000
right.amygdala,pheno95 3 -0.079 (-0.237, 0.079) 0.327 1.000 4 -0.075 (-0.362, 0.212) 0.608 1.000
left.accumbens.area,pheno83 3 0.078 (-0.08, 0.236) 0.331 1.000 4 0.071 (-0.57, 0.712) 0.828 1.000
right.accumbens.area,pheno96 3 0.064 (-0.094, 0.222) 0.427 1.000 4 0.007 (-0.172, 0.186) 0.941 1.000
left.thalamus.proper,pheno77 3 0.059 (-0.099, 0.217) 0.464 1.000 4 0.047 (-0.132, 0.227) 0.604 1.000
right.thalamus.proper,pheno90 3 0.056 (-0.103, 0.214) 0.491 1.000 4 0.005 (-0.487, 0.497) 0.984 0.984
left.caudate,pheno78 3 -0.043 (-0.202, 0.115) 0.593 1.000 4 -0.104 (-0.405, 0.198) 0.500 1.000
right.caudate,pheno91 3 -0.031 (-0.19, 0.127) 0.698 1.000 4 -0.071 (-0.252, 0.11) 0.440 1.000
left.amygdala,pheno82 3 0.030 (-0.128, 0.188) 0.707 1.000 4 0.018 (-0.273, 0.309) 0.904 1.000
right.putamen,pheno92 3 -0.027 (-0.185, 0.131) 0.739 1.000 4 -0.011 (-0.195, 0.174) 0.910 1.000
left.pallidum,pheno80 3 -0.025 (-0.183, 0.133) 0.754 0.986 4 -0.099 (-0.866, 0.667) 0.800 1.000
right.insula,pheno62 3 0.020 (-0.138, 0.178) 0.807 0.980 4 0.051 (-0.129, 0.23) 0.580 1.000
left.insula,pheno31 3 -0.019 (-0.178, 0.139) 0.809 0.917 4 0.011 (-0.168, 0.19) 0.904 1.000
right.pallidum,pheno93 3 0.018 (-0.14, 0.176) 0.826 0.877 4 0.002 (-0.177, 0.181) 0.982 1.000
left.putamen,pheno79 3 0.009 (-0.15, 0.167) 0.916 0.916 4 0.009 (-0.17, 0.188) 0.924 1.000

* Corrected Pvalue means Pvalue after multiple testing correction (see Section MR multiple testing correction procedures ).

A Z Score of IVW and PCGMM for regional cortical surface area and thickness

B Corrected Pvalue of IVW and PCGMM for regional cortical surface area and thickness

Figure 1. MR analysis for causal relationship of long COVID on regional cortical
brain structure changes. Panel A shows the Z score of the IVW and PCGMM analysis for
the causal relationship between long COVID and regional cortices, for both surface area and
thickness. Panel B shows the correponding corrected Pvalue (Section MR multiple testing
correction procedures ). Generally speaking, IVW and PCGMM produces similar Z scores and
corrected P values. Both methods show that long COVID is not causally associated with
regional cortical brain structure changes (i.e. corrected Pvalue > 0.05).
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4. Discussion 136

We implemented the first MR analysis to investigate the causal relationship between long 137

COVID and brain structure changes, utilizing two cis-MR methods – IVW for correlated 138

instruments and PCGMM. Both methods produced consistent results indicating that 139

the genetic susceptibility of long COVID is not causally associated with brain structure 140

changes. 141

Our MR analysis complements existing epidemiological observational studies and suggests 142

that brain structure changes due to long COVID are dynamic and temporal. Recent 143

epidemiological observational studies suggest long COVID is significantly associated with 144

subsequent brain structure changes in specific brain regions. Heine et al. [9] showed 145

decreased volumes of some subcortical brain regions for long COVID patients with fatigue. 146

Michael et al. [3] found reduced volume for anterior cingulate cortex for long COVID 147

patients one year after admission. However, these observational studies only report brain 148

structure changes in a relatively short period after the acute SARS-CoV-2 infection, such 149

as a median 7.5 months with inter-quartile range (first and third quartiles) 6.5–9.2 months 150

[9] or one year after admission to hospital [3]. In contrast, MR estimates reflect a lifelong 151

effect of genetic susceptibility of long COVID on brain structure changes. And there are 152

epidemiological studies suggesting that some brain structure changes due to long COVID 153

were discovered to recover. For example, Tian et al. [29] observed the dynamic brain 154

changes from 3 to 10 months after discharge from hospital for 34 COVID patients and 155

found that the cortical thickness were dynamic and finally returned to baseline. Du et al. 156

[30] observed brain structure changes of COVID survivors at 1 year and 2 years after 157

discharge from hospital and found that the decreased GMVs in the left middle frontal 158

gyrus, inferior frontal gyrus of the operculum, right middle temporal gyrus, and inferior 159

temporal gyrus returned to normal at two years. 160

Our findings about causal relationship between long COVID and brain structure changes 161

is consistent with existing MR analyses between COVID and brain structure changes. 162

Ding and Xu [10] showed that COVID-19 infection and severity were not causally asso- 163

ciated with brain structure in a large-scale MR analysis. The GWAS samples for the 164

exposure and outcome in this study are not overlapped. Bias due to weak instruments in 165

a non-overlapping two-sample MR analysis is in the direction of the null and thus false 166

positive findings can be avoided [31, 32]. Although Zhou et al. [11] proposed causal effect 167

of COVID-19 infection, hospitalized COVID-19 and severe COVID-19 on specific brain 168

structures, their results are only nominally significant. 169

Our study has limitations. First, there would be misclassification for a binary exposure 170

(i.e. long COVID in this investigation) and collider bias “SARS-CoV-2 infection” may 171

be present when analyzing long COVID cases with an earlier test-verified SARS-CoV-2 172

infection. Second, currently the only available GWAS study [2] for long COVID recruited 173

6

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 13, 2025. ; https://doi.org/10.1101/2025.02.12.25322170doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.12.25322170
http://creativecommons.org/licenses/by/4.0/


patients with all symptoms rather than a specific symptom such as the neuropsychiat- 174

ric symptom or fatigue. The selection criteria for symptoms matter because the brain 175

structures are more likely to change for long COVID with neuropsychiatric symptom or 176

fatigue than long COVID with symptoms less related to brain such as short of breath, or 177

cough. Third, we did not examine the causal effects of long COVID on brain structures 178

in subgroups stratified by age, gender, or comorbidities due to the lack of such GWAS 179

data. Fourth, the GWAS summary statistics for both long COVID and brain structure 180

changes in this study were primarily for individuals of European ancestry. The causal 181

associations of long COVID and brain structure changes for ethnic and racial minorities 182

in the US are important because they were disproportionately affected by the pandemic 183

[33]. 184

To validate our findings in the future, new large-scale GWAS studies for long COVID are 185

necessary such as for a specific brain-related symptom of long COVID. GWAS studies of 186

test-verified SARS-CoV-2 are needed for collider bias analysis if long COVID confirmation 187

is conditioning on earlier test verification of COVID infection [34]. Epidemiological obser- 188

vational studies with much longer longitudinal follow-up periods are also recommended 189

to investigate the long-term dynamic change of brain structure after COVID infection. 190

Meanwhile, identifying the contributing factors for the temporal brain structure changes 191

are also important since these factors are modifiable compared with genetic susceptibility 192

and they could potentially be therapeutic targets to reverse the brain structure damage 193

from long COVID earlier. 194

Taken together the complementary evidence from both epidemiological and MR stud- 195

ies, long-COVID is associated with subsequent brain structure changes. However this 196

dynamic and temporal association relationship might be mediated by modifiable factors 197

such as inflammation trigger by COVID infection [35, 36] other than genetic susceptib- 198

ility. Targeting those modifiable mediators could potentially reverse the brain structure 199

damage from long COVID. Future works are necessary to validate our findings and un- 200

derstand the underlying mechanisms of the association relationship between long COVID 201

and subsequent brain structure changes. 202
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