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Abstract 

Introduction: Pelvic pain (dysmenorrhea and non-menstrual) is the most common presentation of 
adolescent endometriosis, but symptoms vary between and within patients. Other presentations, 
such as gastrointestinal (GI) symptoms, are often misattributed, leading to diagnostic delays. 
Patients incur frequent primary and specialty care visits, generating multiple and diverse clinical 
notes. These offer insights into disease trajectory and symptom heterogeneity, which can be 
rigorously investigated using clustering methods. This study aims to 1) evaluate phenotypes 
using electronic health records (EHRs) and 2) compare two clustering models (note- vs patient-
level) for their ability to identify symptom patterns. 
 
Methods: We queried the Mount Sinai Data Warehouse for clinical notes from patients aged 13-
19 years with a SNOMED endometriosis diagnosis, yielding an initial sample of 7,221 notes. A 
randomly selected subsample was annotated with 12 disease-relevant labels, including 
symptoms, hormone use, and medications. The final analytic sample included 695 notes from 26 
unique patients. Pelvic pain, dysmenorrhea, chronic pain, and GI symptoms were selected as 
model predictors based on principal component analysis. Two unsupervised machine learning 
(ML) methods were then applied for note- vs patient-level analyses: Partitioning Around Medoid 
(PAM) and Multivariate Mixture Models (MGM).   
 
Results: The PAM model identified K=3 clusters with average silhouette width of 0.76, 
indicating strong between-cluster separation. The “feature-absent” (abs) phenotype (76%) was 
distinct for absence of all 4 features. The “classic” phenotype (8%) exhibited pelvic pain, 
dysmenorrhea, and chronic pain. The “GI” phenotype (16%) was dominated by GI symptoms. 
The MGM identified K=2 stable patient-level clusters (Δ weighted model deviance = -224.93 
from K=2 to 3) with a mean cluster membership probability of 0.97: A “classic” phenotype 
(50%), characterized by pelvic pain and chronic pain, and a “non-classic” phenotype (50%), 
defined by the absence of these features. PAM-based classic phenotype had significantly higher 
rates of hormonal intervention (78% vs 26% abs, 49% GI) and pain medication (68% vs 9% abs, 
14% GI). For the patient-level, the classic phenotype also had higher average rates per person of 
hormonal therapy (26% vs 7%) and prescription pain medications (27% % vs 9%) (p<0.01 for 
all). 
 
Conclusions: Both methods captured classic and non-classic phenotypes, with the note-level 
model uniquely identifying a feature-absent group. The classic phenotype's link to higher 
hormonal and pain intervention underscores the importance of recognizing non-classic 
symptoms. This study, the first to directly compare note- and patient-level clustering of EHR 
notes in endometriosis, demonstrates the ability to detect the less clinically recognizable 
phenotypes. This proof-of-concept can be applied to larger datasets to refine phenotype 
identification, aiding in earlier diagnosis. 
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Introduction 
Endometriosis is a chronic gynecological condition characterized by the presence of 

endometrial-like tissue outside the uterus, affecting approximately 10% of reproductive-age 

women worldwide1. This prevalent disease imposes a significant burden on patients, healthcare 

systems, and society at large. Women with endometriosis often experience debilitating symptoms 

such as chronic pelvic pain, dysmenorrhea, and infertility, leading to reduced quality of life and 

substantial economic costs due to healthcare utilization and lost productivity2. Despite its 

prevalence and impact, endometriosis remains underdiagnosed and undertreated, with an average 

delay of 7-10 years from symptom onset to definitive diagnosis1, 3. 

Up to two-thirds of patients with endometriosis report onset of symptoms during 

adolescence1, 4. It is the leading cause of dysmenorrhea and chronic pain in adolescents, 

significantly impairing both physical and psychosocial functioning15. Adolescent endometriosis 

presents unique diagnostic and management challenges, as symptoms may be atypical or 

dismissed as normal menstrual discomfort3. Pelvic pain is the most common presenting symptom 

in adolescents (present in 63% of adolescents), presenting as both dysmenorrhea and/or non-

menstrual pelvic pain. Gastrointestinal (GI) and bowel symptoms are less recognized but not 

uncommon presenting symptoms. Overall, the heterogeneity in symptoms between- and within 

patients over time, and the invasive nature of diagnostic laparoscopy, contribute to the delays in 

diagnosis. Early identification of specific symptom patterns (phenotypes) could enable more 

timely interventions, and thus greatly improve quality of life in this patient population.  

Given the complex and heterogeneous nature of endometriosis, particularly in 

adolescents, exploratory data analysis techniques such as clustering can be valuable tools for 

uncovering patterns and subgroups within the patient population. Clustering algorithms can 

identify groups of patients with similar symptom profiles, comorbidities, or treatment responses, 

potentially leading to more targeted and personalized approaches to diagnosis and management6. 

Clustering has been successfully used in other medical fields such as asthma7, 8, obesity9, chronic 

pain syndromes10, 11 and sleep disorders12. Additionally, clustering analysis may reveal 

previously unrecognized associations between symptoms or clinical features, generating new 

hypotheses about disease mechanisms or progression in young patients. In particular, application 

of these techniques to data extracted from electronic health records (EHRs) can facilitate 
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identification of distinct phenotypes or risk profiles that could inform clinical decision-making 

and guide future research efforts. 

The widespread adoption of EHRs presents a valuable opportunity to better characterize 

and elucidate adolescent endometriosis using real-world clinical data on demographics, 

symptoms, diagnostic tests, treatments, and outcomes13. Importantly, the unstructured clinical 

notes often contain rich descriptions of symptoms and clinical findings that may not be 

adequately represented in structured data fields. This is particularly relevant for endometriosis, 

which tends to be under-documented within the EHRs14. Leveraging these unstructured data 

through natural language processing (NLP) techniques can provide deeper insights into the 

diverse symptom patterns and clinical presentations of adolescent endometriosis13. Furthermore, 

the longitudinal nature of EHR data allows for the study of disease progression and treatment 

outcomes over time, potentially identifying factors associated with earlier diagnosis or better 

management strategies. 

  Clustering of clinical notes introduces important considerations. First is the decision of 

whether clinical notes should be treated independently (note-level analysis) or grouped by patient 

(patient-level analysis). For example, the commonly used K-means algorithm partitions 

observations (i.e., individual notes) into groups, isolating the note from patients’ clinical history. 

These notes can represent a “snapshot” of a patient’s disease at a given moment – such as a brief 

doctor’s visit where the patient’s medical history is not a primary focus or when previous 

medical history for the patient is not available for review. In contrast, hierarchical clustering 

algorithms partition the data at the patient level, capturing symptom patterns aggregated across 

all notes belonging to an individual. This could be closer to a clinical scenario where the 

physician can track a patient’s ongoing care over time. Accordingly, both clustering approaches 

have clinical relevance and potential use from an application perspective, depending on the use 

case scenario.  

 To date, no study has compared note-level and patient-level clustering methods in any 

medical field toward this endeavor. This study aims to address this gap through a comparative 

unsupervised learning framework to identify potential subtypes (“phenotypes”) of adolescent 

endometriosis by leveraging EHR data. Our objectives are to: 1) Implement unsupervised 

machine learning (ML) to identify adolescent endometriosis subtypes (phenotypes), and 2) 

Compare phenotypes generated from note-level clustering (treating each note as a separate 
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entity) versus patient-level clustering (aggregating symptom patterns across all notes for each 

patient).  

 

1. Methods  

1.1. Study sample  

 Clinical notes from patients aged 13-19 with a SNOMED diagnosis of endometriosis 

were obtained from the Mount Sinai Data Warehouse. The query included all clinical notes per 

patient except for telephone encounters, resulting in 7,221 notes from 122 patients. For this 

proof-of-concept study, a random sample of 700 notes were selected for annotation and labeling. 

Exclusion criteria included having fewer than 3 clinical notes, due to clustering model 

convergence restraints, yielding an analytic sample of 695 notes from 26 unique patients. All 

study procedures were approved by the Institutional Review Board at Icahn School of Medicine 

at Mount Sinai (ISMMS) (IRB= STUDY-22-01581-MOD0010). 

1.2. Definitions and outcomes  

 Each note was manually annotated by domain experts in isolation from the other notes 

from the same patient (i.e. at the “note level”) with 12 disease relevant labels including 

symptoms, hormone use, and medications: endometriosis, pelvic pain, pelvic tenderness, 

abdominal pain, abdominal tenderness, gastrointestinal symptoms, dysmenorrhea, dyspareunia, 

pain severity, pain chronicity, pain medication use, and therapy utilization (includes hormonal 

therapy, IUD, and/or birth control). These labels were chosen based on the literature on 

endometriosis definitions and with guidance from OBGYN domain experts (SH, VL). 

Annotations were made according to any reference to current or prior experience of the patients 

within the individual note, according to the following study specific definitions. Endometriosis 

was defined as a mention of endometriosis confirmed with Laparoscopy within the individual 

clinical note. Pelvic pain was defined as any non-cyclical, non-menstrual pelvic pain or 

discomfort, while dysmenorrhea was defined as cyclic cramping, pain or discomfort. Abdominal 

pain was annotated as any non-cyclic abdominal pain superior to the pelvis. Abdominal 

tenderness and pelvic tenderness both refer to pain or discomfort elicited on clinical physical 

exam. Gastrointestinal symptoms include all bowel symptoms (diarrhea, constipation, gas, 

irritable bowel syndrome), as well as irritable bowel disease (IBD), nausea and gastritis. Chronic 

pain was defined as a mention of pain or discomfort lasting 3 months or longer, consistent with 
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pelvic pain studies15. Pain severity was defined as either a mention to ‘severe pain’ or a pain 

rating equal to or greater than 7/10 on the numeric pain rating scale, or pain that is described as 

debilitating to everyday activities. Pain medication use was specified as a note-specific reference 

to current, past, or future pain medication, and was further stratified into over-the-counter pain 

medications versus prescription pain medications. Similarly, hormonal, IUD, and birth control 

was stratified into respective categories, annotated if mentioned in the isolated note. All variables 

were eventually dichotomized into binomial variables.  

1.3. Clustering and data analysis 

 With the overall goal of identifying the most clinically relevant independent predictors 

that inform clustering behavior with the greatest ability to discriminate between phenotypes 

based on symptoms, we utilized previously described methods and adapted for our data12, 16-18. 

Briefly, this involves dimension reduction and variable selection via multiple correspondence 

analysis (MCA), which identifies predictors that simultaneously explain the largest amount of 

variability in the data that have the least amount of correlation. Then, iterative model fitting is 

used to identify the best-fitting model based on the model fit indices appropriate for the model 

type being used (i.e., point variability, silhouette width and within-cluster sum of squares; 

WCSS, Bayesian fit indices). 

1.3.1. MCA and variable selection 

We conducted an MCA to explore association patterns among the binomial variables and 

reduce dimensionality. MCA is similar to the more commonly used principal component 

analysis. It was selected for this analysis as it is better suited for the binary nature of our data19-21, 

allowing us to capture relevant dimensions where data variability is maximized while addressing 

potential collinearity.  

The number of dimensions to retain was determined based on the widely accepted 

criterion that retained dimensions should account for more than 70% of the cumulative 

variance21, 22. We then inspected each variable’s contribution (%), coordinate (i.e., correlation) 

values, and cosine squared (cos2) values (i.e., quality of representation) within the selected 

dimensions to identify key predictors.  

 The most informative variables from the selected MCA dimensions were chosen for 

clustering analysis to estimate phenotypic patterns. In instances where two predictors showed 
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similar associations with a dimension but were highly collinear, we retained the predictor that 

improved cluster distinction and model feasibility.  

1.4. Note-level clustering analyses  

 For note-level clustering, we used the partitioning around medoids (PAM)23 algorithm, 

which is the recommended method for categorical and binary variables24, 25. This involves first 

standardizing the data by converting to a matrix of average of partial dissimilarities between 

pairs of data points26  based on root-sum-of-squares (Euclidean) distances. The PAM algorithm 

uses these similarities/dissimilarities from the distance matrix to identify note clusters based on 

the selected features. This method identifies medoids (representative data points within each 

cluster), unlike K-Means which uses centroids—the mean of all data points in a cluster—making 

it better suited for binary data25, 27. Furthermore, it is more robust against noise and outliers,28, 29 

therefore making it better suited for smaller datasets24, 29, 30. We used the “cluster” library in R 

statistical software for the analyses31.  

1.4.1. Model Selection and Fit Assessment  

 The overall model fit was assessed based on the model fit indices of cluster cohesion, 

separation, and consistency across subsets of data. Silhouette width values range from -1 to 1 and 

provide a measure of how well each note aligned within its assigned cluster, with values closest 

to 1 indicating better alignment. This value balances within-cluster cohesion and separation from 

other clusters and can be utilized to select the ‘appropriate’ number of clusters.24, 32 WCSS 

quantifies cluster compactness by calculating the distance of notes to their cluster’s medoid, with 

lower values indicating tighter consistency within clusters33. Lastly, stability analysis by 

bootstrapping methods (measured by Jaccard indices; JI) was conducted to verify that clustering 

results were reproducible across random subsets, confirming that the identified clusters 

represented robust symptom patterns34. JI values range from 0 to 1, with values closest to 1 

indicting higher stability.  

1.5. Patient-level clustering analyses  

 For the patient-level clustering, we applied an unsupervised ML method based on 

multivariate mixture generalized linear mixed models (MMGLMMs)35, 36. This approach was 

chosen for its ability to accommodate data that span multiple variables and recognize co-

occurrence patterns over multiple notes. It specifically models each patient’s data through a set 

of latent random effects (i.e. predictors), estimating the likelihood of cluster membership 
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(referred to as individual component probability; ICP), using Markov Chain Monte Carlo 

(MCMC)-based Bayesian inference. The approach involves defining a prior distribution for 

model parameters and subsequently inferring cluster membership by analyzing the posterior 

sample distribution generated from the MCMC. The posterior median probabilities are used to 

calculate each patient’s probability of belonging to a specific cluster. For our model, we included 

the number of notes as a covariate, 6,000 MCMC samples and discarded the first 1,000 as burn 

in to enable stability in chain convergence37.  

 The MMGLMM is an effective technique for patient-level clustering analysis for several 

reasons. First, the approach is well-suited to handle data types that are sampled irregularly across 

multiple time points and accounts for correlations among repeated measures from the same 

individual by incorporating random effects12, 36. This model does not rely on the assumption of 

classical normality; instead, it allows for different normal mixtures in the random effects 

distribution for each cluster, enhancing model fit and providing robustness against potential 

misspecification of random effects12. The analysis was performed using the “MixAK” library in 

R35, and further details on MMGLMM methodology are described elsewhere35, 36.  

1.5.1. Assessment of model fit  

Overall model fit was assessed using the penalty of expected deviance (PED) index and 

the posterior distribution of model deviances (D), as recommended for MMGLMMs 35, 38. The 

PED combines the expected model deviance with the model complexity penalty term optimism, 

p(opt)39. Lower PED values indicate better model fit. By comparing PED values across multiple 

MCMC-estimated models, it can be used to inform model choice based on minimum loss.  The 

metric has been applied across various sample sizes and parameter settings in similar 

phenotyping studies across healthcare contexts12, 39. As an additional approach to guide model 

selection, we also examined deviance distributions to compare models, following established 

recommendations. 

1.5.2. Model convergence diagnostics  

The effective sample size (ESS) and split- Ř statistic were used to assess the convergence 

of the MCMC simulations, consistent with published guidelines.40, 41 The ESS measures whether 

the number of MCMC iterations is sufficient to provide stable estimates, with ESS > 100 

indicating adequate estimator accuracy41. On the other hand, the split- Ř statistic evaluates the 

mixing of the Markov chains with a score of 1.1 or less indicating desirable convergence40. 
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1.6. Evaluation of estimated phenotype profiles for note- and patient-level  

 For both note-level and patient-level analyses, post-hoc Chi-squared tests were performed 

to both confirm inter-cluster differentiation in the predictor variables and examine phenotype-

level differences in clinical features not included in the clustering algorithms. P values less than 

0.05 were considered significant.  

1.7. Comparison of note- and patient- level clusters 

 We compared the model-identified clusters, at the individual- and cluster levels. 

Specifically, we evaluated the characteristics of the clusters from both models for alignment 

across the 2 approaches, i.e., number and size of the clusters, number of notes and patients in 

each, similarities and differences in feature contribution to each cluster. We then inspected each 

patient’s cluster assignment for alignment across the 2 approaches. We further compared cluster 

alignment using visualization methods to explore the note-level cluster spread (number of note-

level clusters and frequencies of notes) for each individual. Finally, we computed the frequency 

of each feature per cluster and patient to further characterize the clusters identified from each 

model. 

 

2. Results  

2.1. Sample characteristics  

 Sample characteristics are provided in Table 1. The analytic sample includes 695 notes 

from 26 adolescent patients with a SNOMED diagnosis of endometriosis. Patients individually 

contribute an average of 26.7 +/- 41.3 with a large range of 3-214, capturing a wide range of 

clinical encounters. An average of 3.8 (SD 2.8, Range 1-12) departments are represented per 

patient. The average patient age at the time of the first note is 17.3 +/- 2.3) and 20.1 +/- 2.8 at the 

last note. 44% of the patients self-identified as white, 19% as black or African American, and 

38% as other. 

 Frequencies of the 12 manually annotated features were calculated at both the note- and 

patient levels, reported in Table 2. Notably, GI symptoms were the most frequently reported 

outcome (appearing in 125 notes with an average of 4.81 per person), followed by abdominal 

pain (120 total notes, avg. 4.62 per person), and then pelvic pain (94 total, avg. 3.62 per person). 

On the other hand, dyspareunia was the least frequently documented symptom (11 total mentions 

with an average of 0.42 per person), followed by pelvic tenderness (33 total mentions, avg 1.27 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 12, 2025. ; https://doi.org/10.1101/2025.02.10.25321215doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.10.25321215
http://creativecommons.org/licenses/by/4.0/


 9 

mentions/person) and then abdominal tenderness (35 total mentions, avg 1.35 mentions/person). 

Regarding therapy, 102 total notes mentioned any pain medications (49 over the counter, 77 

prescription) and 233 mentioned additional therapy (128 oral contraceptive (OCP), 73 IUD, and 

68 hormonal therapy). 

2.2. Feature selection and variable reduction 

 As shown in Supplementary Table 1, three symptom features are mentioned in a 

significantly smaller frequences when compared to the other features: dyspareunia was 

mentioned in 1.94% of total feature mentions, pelvic tenderness in 5.81% and abdominal 

tenderness in 6.16%, while the remaining symptoms appeared in 11.62% - 22.01%. Thus, these 

three features were not included into the MCA.  

 MCA results indicated that the first four dimensions individually explain more than 

10.64% of the variance (36.27%, 18.56%, 13.46%, and 10.64%, respectively) and collectively 

account for 78.93% of the total variance, surpassing the >70% threshold for meaningful 

dimensionality reduction. Results detailing each symptom feature’s total contribution, 

representation quality, and individual coordinates (correlations) within each dimension are 

provided in Supplemental Table 2. Based on coordinate values, chronic pain (2.59) has the 

strongest positive association with dimension 1. Abdominal pain (1.59) and GI symptoms (1.57) 

are most strongly associated with dimension 2, while severe pain (3.32) has the highest 

correlation with dimension 3 and pelvic pain (0.87) with dimension 4. Contributions reveal that 

the presence of severe pain (73.66%), dysmenorrhea (77.95%), and GI symptoms 

(45.96%) substantially impacts the explained variance in the dimensions. Cosine squared values, 

representing the quality of representation, suggest that the variance for dysmenorrhea (0.95) is 

best captured by the associated dimensions. These results are further illustrated in 

Supplementary Figure 1.  

Correlations between the highest contributing features are provided in Supplementary 

Table 3, showing high collinearity among several symptom pairs: chronic pain and pelvic pain 

(0.56, p<0.0001), GI symptoms and abdominal pain (0.49, p<0.0001), dysmenorrhea and chronic 

pain (0.44, p<0.0001) and chronic pain and endometriosis (0.44 p<0.0001).  

Dysmenorrhea, GI symptoms, pelvic pain, and chronic pain are included in both 

models based on the evaluation of PAM model metrics and the correlations described above, 

combined with the goal of preserving clinically important information. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 12, 2025. ; https://doi.org/10.1101/2025.02.10.25321215doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.10.25321215
http://creativecommons.org/licenses/by/4.0/


 10

2.3. Note-level clustering analysis 

2.3.1. PAM model evaluation  

The PAM clustering analysis identifies a three-cluster (K=3) solution as the optimal 

model for the data based on the silhouette width, WCSS, and the Jaccard index (Supplementary 

Table 4). The silhouette width improves significantly from K=2 (0.67) to K=3 (0.76, ∆(K2 to 3) 

=0.09) but shows marginal improvement with K=4 (0.79, ∆0.03), indicating optimal fit at K=3.24, 

31 Similarly, the WCSS, which quantifies the compactness of clusters, decreases from 0.27 at 

K=2 to 0.19 at K=3 (∆0.08), and further decreases to 0.15 at K=4 (∆0.04), indicating tighter 

clustering. Calculating the Point variability and JI introduces an error at K=4, indicating model 

saturation at K=3.  

Supplementary Table 5 describes detailed metrics for the selected K=3 model. Notably, 

the silhouette width was highest for the feature-absent phenotype (0.84), indicating strong 

separation, while the GI phenotype and classic phenotype had moderate silhouette widths of 0.51 

and 0.39, respectively. Cluster stability, assessed via the JI, demonstrated highest reproducibility 

for the feature-absent phenotype (0.95) but lower reproducibility for the classic and GI 

phenotypes. 

2.3.2. Note-level phenotypes  

 Three note-level phenotypes are displayed in Figure 1. Post-hoc X2 tests between 

phenotypes for all annotated features (including the four model predictors) are summarized in 

Supplementary Table 6. The X2 statistic from the test of independence indicated statistically 

significant differences (p<0.05) across phenotypes for all features except hormonal therapy 

alone, indicating strong distinctions among the identified phenotypes.  

 Phenotype 1, referred to as the “feature-absent” phenotype, constitutes the largest 

group, with 530 notes (76% of the sample) and includes notes from all 26 patients in the dataset. 

This phenotype is characterized by the absence of pelvic pain, dysmenorrhea, chronic pain, and 

gastrointestinal symptoms (all four model indicator variables) (Figure 1). Of the notes in this 

phenotype, the four indicator variables are mentioned at very low frequencies: only 5.3% of the 

notes mention pelvic pain, 4.9% mention dysmenorrhea, 0.4% mention chronic pain and 0.0% 

mentioned GI symptoms (p<0.001 for all) (Supplementary Table 6). This phenotype was 

further associated with lower likelihood of intervention, with only 25.9% of notes documenting a 
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therapy (composite of OCPs and/or IUDs and/or hormonal therapies) and 9.1% reporting a pain 

medication (over the counter or prescription) (Supplementary Table 6).  

 Phenotype 2 (the “classic” phenotype) represents 8% of the notes (n=57) and includes 

18 unique patients, and is defined by the presence of pelvic pain, dysmenorrhea, and chronic 

pain, exhibiting the hallmark symptoms of endometriosis (Figure 1). Regarding the frequencies 

of the four indicator variables in this group, chronic pain has the highest frequency (93.0%), 

followed by pelvic pain (89.5%), and then dysmenorrhea (70.2%). As expected, GI symptoms 

are documented at significantly lower frequency (29.8%). This group has the highest rates of 

clinical intervention, with 68.4% of notes reporting some form of pain medication, and 77.2% 

reporting an endometriosis therapy (OCPs and/or IUDs and/or hormonal therapies) 

(Supplementary Table 6). 

 Phenotype 3 (the “GI” phenotype) includes 108 notes (16%) from 15 patients, and is 

defined by the presence of GI symptoms (Figure 1). Of the notes in this phenotype, 100.0% 

mention GI symptoms, while only 13.9%, 16.7%, and 7.4% mention pelvic pain, dysmenorrhea 

and chronic pain, respectively. This group has lower frequencies of interventions compared to 

classic phenotype: 13.9% of notes document pain medications and 49.2% of notes document 

OCP/IUD/hormonal therapy interventions (Supplementary Table 6).  

2.3.3. Note-level phenotype associations  

 The associations of non-indicator clinical features with each phenotype reveal additional 

distinctions between the three phenotypes in terms of symptomatology and intervention patterns. 

Pain medication usage, both prescription and over the counter (OTC), shows distinct patterns 

across phenotypes in Chi-squared analysis. As described, the classic phenotype has the highest 

rates and the feature-absent the lowest. Post-hoc X2 analysis (Supplementary Table 6) indicates 

that the pain medication feature was least likely to be present in the GI phenotype, compared to 

the other two phenotypes (X2 residual = -4.43, p=0.001).  

 Additional therapies (including hormonal therapy, OCPs, and IUDs) are also most 

frequently in the classic phenotype according to Chi-squared analysis (p<0.001). Post-hoc results 

(Supplementary Table 6) shows significantly higher residuals in the feature-absent phenotype 

(residual 8.00, p<0.001), followed by the classic phenotype (residual -3.82, p=0.009), and lastly 

the GI phenotype (residual -4.36, p=0.001).  

2.4. Patient-level clustering analysis 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 12, 2025. ; https://doi.org/10.1101/2025.02.10.25321215doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.10.25321215
http://creativecommons.org/licenses/by/4.0/


 12

2.4.1. MMGLMM model evaluation 

A two-cluster solution provided the best fit for the patient-level data based on the PED, 

weighted PED (wPED), and convergence diagnostics (wPED of 1993.8 K=2 vs 2218.7 for K=3). 

The two-cluster model also had a lower penalty for model complexity (P(opt) = 61.1 vs. 193.8), 

favoring a simpler structure.  

Overall cluster membership probability indicated high confidence of member assignment 

based on based the mean ICP of 0.97 (SD = 0.08), a median of 1.00 (mad = 0.00), and a range 

from 0.69 to 1.00, indicating more than half of the participants were assigned into their 

respective cluster with 100% certainty.  

Convergence diagnostics further supported the two-cluster model, which achieves good 

convergence with a Gelman-Rubin convergence diagnostic of 1.0, while the three-cluster model 

shows instability (Gelman-Rubin convergence diagnostic= 5.32, upper CI = 13.1), suggesting 

that the three-cluster model did not converge.  

2.4.2. Patient-level phenotype characterization  

 Figure 2 shows the two patient-level phenotypes identified by the MMGLMM model, 

along with the posterior mean estimates of feature-level parameters for each phenotype. We refer 

to these two phenotypes as the “classic” phenotype and the “non-classic” phenotype for ease 

of comparison and reference throughout the sections that follow. 

  The classic phenotype (N=13, 50%) is characterized by higher prevalence of pain-related 

features, with the highest posterior mean contributions from chronic pain (1.02) and pelvic 

pain (0.93). Dysmenorrhea is moderately present, but it is not a defining characteristic of this 

phenotype based on the posterior mean estimate (0.52). GI symptoms contribute the least to the 

classic phenotype, with the lowest posterior mean estimate among the four features (0.42) 

(Figure 2). 

 In contrast, the non-classic phenotype (N=13, 50%) is most notably characterized by the 

absence of traditionally considered pain-related symptoms, as the lowest posterior mean 

estimates are observed for chronic pain (-1.17) and pelvic pain (-1.13). Of the four model 

indicator variables within this phenotype, GI symptoms have the highest posterior mean estimate 

in this (-0.43), indicating a relatively higher presence of GI symptoms compared to the other 

features (Figure 2). 
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 Independent t-tests comparing the mean proportions of the indicator variables 

(Supplementary Table 7) confirm that the two phenotypes are most clearly distinguished 

by pelvic pain and chronic pain and that within the non-classic phenotype, GI symptoms are 

most likely to have occurrence. Compared to non-classic, the classic phenotype is associated 

with statistically higher mean proportions for pelvic pain (0.33 ± 0.12 vs. 0.03 ± 0.04; t = 8.4, 

p<0.001) and chronic pain (0.24 ± 0.17 vs. 0.03 ± 0.05; t = 4.4, p = 0.001). Finally, 

dysmenorrhea and GI symptoms are equally associated both phenotypes (p < 0.05 for both). 

2.4.3. Patient-level phenotype associations   

 T-tests comparing the remaining annotated features between the two patient-level 

phenotypes are presented in Supplementary Table 7. Consistent with the PAM model results, 

the classic phenotype shows a higher likelihood of overall therapy utilization, including 

hormonal therapy, OCPs, and IUDs, compared to the non-classic Phenotype (0.08 ± 0.11 vs. 0.00 

± 0.01; p = 0.035). Among individual therapies, only hormonal therapy differs significantly, with 

a higher mean proportion in the classic phenotype (0.26 ± 0.23) compared to the non-classic 

phenotype (0.07 ± 0.10; p = 0.015). 

 In contrast to the PAM model, overall pain medication use does not differ significantly 

between the two groups. However, patients in the classic phenotype are significantly more likely 

to use prescription pain medications (0.27 ± 0.25) compared to those in the non-classic 

Phenotype (0.09 ± 0.12; p = 0.034). Within the non-classic phenotype, the GI symptoms were 

associated with the highest likelihood of occurrence among all the symptom features investigated 

(i.e., X2 statistic; See Supplementary Table 7).  

2.5. Note- vs. patient-level comparisons  

 Figure 3 directly compares the note-level and patient-level assignments by illustrating 

the distribution of note-level phenotype across individual patients, stratified by patient-level 

phenotype. The feature-absent notes constituted the majority of notes in both patient-level 

phenotypes.  

 The non-classic patient-level phenotype appears to capture two distinct ‘types’ of patients 

with few exceptions. First, it contains the four patients with 100% of notes assigned to the 

feature-absent note-level phenotype. Secondly, it includes the patients who have higher 

proportions of ‘GI notes’ than ‘classic notes’ from the PAM model. Patient ID 6 appears to be an 

exception, as it contains more ‘classic notes’ than ‘GI notes.’ 
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 The classic patient-level phenotype also captures several groups of patients. First, it 

includes patients with no notes assigned to the GI note-level phenotype. It also contains patients 

with higher or equal proportions of “classic notes” than “GI notes.” Patient ID 20 appears to be 

an exception, as it is the only individual in this patient-level phenotype without any “classic 

notes.” 

  

3. Discussion  

 In this study, we characterize symptom phenotypes in adolescent endometriosis using two 

different approaches to clustering: note-level (PAM) and patient-level (MGM). We identify three 

phenotypes at the note-level (classic, GI, and feature-absent) and two phenotypes at the patient-

level (classic and non-classic), based on the predictors of pelvic pain, chronic pain, 

dysmenorrhea, and GI symptoms. To our knowledge, this is the first study to compare different 

clustering techniques for phenotype evaluation in endometriosis.  

Our findings indicate that both clustering methods identify a distinct classic phenotype, 

representing the traditional symptoms of endometriosis. In the note-level analysis, this phenotype 

is characterized by pelvic pain, chronic pain, and dysmenorrhea. At the patient-level, the 

corresponding phenotype is more specifically defined by chronic pain and pelvic pain, with 

dysmenorrhea present in both patient-level phenotypes but not predictive of either. These 

findings align with existing literature, which identifies pelvic pain as the most common 

presenting symptom of endometriosis42. For instance, prior studies have found nearly two-thirds 

of adolescents with chronic acyclic pelvic pain end up having laparoscopic evidence of 

endometriosis43, 44. Chronic pain is also a well-established factor, as prior work highlights the 

chronicity and severity of pain as a key driver for adolescents to seek medical care, particularly 

given the long diagnostic delays in this patient population43.  

The contribution of dysmenorrhea to our classic phenotypes is particularly noteworthy. 

Prior literature identifies cyclic versus non-cyclic pain as a distinguishing factor between 

adolescent and adult endometriosis42, 45. While cyclic pain (dysmenorrhea) is a well-established 

presenting symptom in adult endometriosis, it is less prominent in adolescents. One study 

reported that only 9.4% of adolescents with endometriosis presented with cyclic pain alone, 

compared to 90.6% who had acyclic pain45, 46. Although this analysis does not directly compare 

adults and adolescents, the patient-level findings suggest that dysmenorrhea is not a major 
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contributor to either phenotype, despite being a somewhat prevalent symptom (although less 

prevalent than acyclic pain and GI symptoms). Additionally, the patient-level classic phenotype 

is associated with higher therapy utilization (hormonal, IUP, or OCP) compared to the mixed 

phenotype, further supporting the notion that adolescents with more typical symptoms are more 

likely to receive targeted treatments.  

Next, both clustering methods identify a phenotype with a higher contribution of GI 

symptoms. The note-level analysis uniquely identifies a distinct GI phenotype, while the patient-

level analysis captures these symptoms within a broader non-classic phenotype, where GI 

symptoms are the largest contributing feature. This finding aligns with prior studies showing that 

adolescents with endometriosis can present with GI symptoms, although less commonly than 

pelvic pain42, 46. For example, a prior study found that nausea was reported more frequently by 

adolescents than adults ( 70% vs. 51%)43, underscoring the importance of recognizing GI 

symptom dominant presentations in the population.  

Notably, for both clustering methods, the GI/non-classic phenotype is less likely to be 

associated with treatments (See Supplementary Tables 6 and 7), in line with prior evidence that 

adolescents with predominantly GI or non-classic presentations often experience delays in 

diagnosis. That is, previous studies reported that their symptoms are frequently attributed to 

functional bowel disorders or lead to GI specialty referrals, resulting in fragmented care and 

missed opportunities for early intervention13 47.  

The note-level clustering approach identifies a third phenotype for whom none of the four 

indicator variables appear, hence we refer to it as “feature-absent”. These notes likely reflect 

periods of symptom quiescence, underreporting, or notes unrelated to endometriosis. 

Interestingly, the feature-absent phenotype is more likely to be associated with hormonal, OCP or 

IUD therapy, suggesting that at least part of this group reflects periods of symptom quiescence 

during treatment. This supports prior literature demonstrating that therapies, including OCPs, are 

often effective in relieving pain48. In our post-hoc investigation of this possibility, we repeated 

the analysis after removing notes where all 12 annotated features were absent. The results (not 

reported herein) with respect to phenotype descriptions and associations with therapy remained 

unchanged. This further alludes to the ability of this clustering approach to capture stable or 

asymptomatic periods. Additionally, the feature-absent comprised over 75% of the total notes in 
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the study sample, consistent with prior report that adolescents with endometriosis are frequent 

overall users of healthcare49.    

From a methodological standpoint, this study highlights the complementary perspectives 

the note-level and patient-level analyses can provide. The patient-level approach emphasizes 

between-patient variability, summarizing overall symptom profiles across all notes for a given 

patient. This method captures the well-established variability disease presentation among 

individuals42, 45. In contrast, the note-level approach captures the temporality and within-patient 

heterogeneity of symptoms, providing a dynamic view of symptom fluctuations over time. While 

evidence for temporal variability is more limited14, prior work suggests that changing symptom 

patterns may be linked to pathologic differences in endometriosis lesions between adolescents 

and adults or increased prevalence of deep infiltrating endometriosis as patients age43. Our 

findings quantify these within-patient fluctuations through note-level clustering, contributing to 

previous literature noting symptom heterogeneity across time. Together, these approaches 

highlight the value of capturing both episodic and longitudinal symptom patterns to improve 

phenotypic characterization.   

A major strength of this study is its use of unstructured EHR data, capturing real-world 

symptom descriptions that are often overlooked when relying only on structured data and 

diagnostic codes. Second, the use of two different clustering approaches allows us to identify 

clinically meaningful phenotypes that capture both within-and between-patient variability, 

offering a more comprehensive symptom profile than a single method in isolation. Clinically, our 

findings highlight the importance of recognizing atypical presentations, such as GI-predominant 

symptoms and cases where the four indicator variables are absent, as these patients are more 

likely to face diagnostic delays or unnecessary referrals. 

 

4. Limitations  

Despite its strengths and novelty, our study has several limitations. First, the small sample 

size, while sufficient for a proof-of-concept analysis, limits the generalizability of our findings. 

Additionally, the present study focuses on symptom features without incorporating other clinical 

variables, such as imaging findings, genetic components, or treatment responses that are 

becoming increasingly studied. Repeating these analyses in larger samples, as well as conducting 

multi-site studies can enable more comprehensive comparisons of the identified phenotypes. 
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Furthermore, future research can benefit from integrating additional clinical variables to identify 

more nuanced symptom patterns or potential moderators, as well as compare them to adult 

populations.  

 

5. Conclusion  

 In conclusion, this study demonstrates the utility of unsupervised clustering methods to 

characterize symptom heterogeneity in adolescent endometriosis using EHR-derived clinical 

notes. Both clustering approaches identify a distinct classic phenotype with hallmark pain 

symptoms and a GI/non-classic phenotype, highlighting the diverse symptom presentations in 

this population. The note-level analysis uniquely identifies a feature-absent phenotype, reflecting 

periods of symptom dormancy, underreporting, or unrelated notes. By capturing both episodic 

within-patient variability and between-patient heterogeneity, our findings support the dynamic 

nature of adolescent endometriosis. These results emphasize the importance of recognizing 

atypical presentations, which will ultimately aid in earlier diagnosis. 
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Table 1. Study participant characteristics (N =26)   

Characteristic Average +/- SD Minimum  Maximum  

Age     

   At first note 17.3 +/- 2.3 10.7 20.5 

   At last note  20.1 +/- 2.8 15.9 26.1 

Substance Use 0 0 0 

# Notes per patient   26.7 +/- 41.3 3 214 

# Departments per patient  3.8 +/- 2.8 1 12 

Race Count Proportion  

White 11 0.42  

Black or African American 5 0.19  

Other  10 0.38  
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Table 2. Total frequencies of each annotated feature and averages of per person frequency (Total 
notes = 695). 
Characteristic Total (N) Average (%) 

 

Minimum (%) Maximum (%) 

Endometriosis 66 2.54 0 12 

Pelvic pain 94 3.62 0 28 

Pelvic tenderness 33 1.27 0 20 

Abdominal pain 120 4.62 0 74 

Abdominal tenderness 35 1.35 0 27 

GI Symptoms  125 4.81 0 47 

Dysmenorrhea 84 3.23 0 19 

Dyspareunia  11 0.42 0 3 

Severe pain  31 1.19 0 6 

Chronic pain  63 2.42 0 13 

Pain medication      

   Over the counter 49 1.88 0 13 

   Prescription  77 2.96 0 19 

   Any pain med 102 3.92 0 21 

Therapy      

   OCP 128 4.92 0 26 

   IUD 73 2.81 0 34 

   Hormonal therapy  68 2.62 0 31 

   Any therapy  233 8.96 0 50 

GI: gastrointestinal; IUD: intrauterine device; OCP: oral contraceptive pill 
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Figure titles and legends  
 
Figure 1. PAM-identified note-level phenotype characteristics based on the indicator variables.  
 
Abbreviations: GI: gastrointestinal  
 
 
 
 
Figure 2. MMGLMM-identified patient-level phenotype descriptions based on indicator variable 
intensity (Bayesian point estimates). Each value represents the average intensity (or strength) of 
a specific feature for a given cluster, based on the posterior distribution after fitting the model.  
 
Abbreviations: GI: gastrointestinal 
 
 
 
 
Figure 3. Distribution of notes for each patient along with their assignment according to the 
note-level (PAM) and patient-level (MMGLMM) clustering models.  
 
This figure shows the percentage distribution of notes across note-level clusters for each patient, 
grouped by their patient-level phenotype. Each bar represents an individual patient, with colored 
segments indicating the proportion of notes in each note-level cluster. The two facets highlight 
differences in note-level cluster distribution between the patient-level phenotypes. 
 
Abbreviations: GI: gastrointestinal, MMGLMM: multivariate mixture generalized linear mixed 

models, PAM: partitioning around medoid 
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