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Running title: Multiverse multiple sclerosis stratification 

Abstract 

The underlying mechanisms for neurodegeneration in multiple sclerosis are complex and 

incompletely understood. Multivariate and multimodal investigations integrating demographic, 

clinical, multi-omics, and neuroimaging data provide opportunities for nuanced analyses, 

aimed to define disease progression markers. We used data from a 12-year longitudinal cohort 

of 88 people with multiple sclerosis, to test the predictive value of multi-omics, MRI, clinical 

examinations, self-reports on quality of life, demographics, and general health-related variables 

for future functional and cognitive disability. Progressive functional loss beyond an Expanded 

Disability Status Scale score≥4 was used to define a functional loss group. A cognitive decline 

group was defined by a ≥25% decrease from the maximum (cognitive) Paced Auditory Serial 

Addition Test score. We used a multiverse approach to identify which baseline variables were 

most predictive for functional and cognitive loss group memberships, independent of analysis 

bias.  

We identified several factors predicting an increased risk of future functional loss (FLG) and 

cognitive decline groups (CDG) within the next 12 years from baseline: functional score (0-

10, median Odds Ratio per baseline unit increase [mORFLG=2.15±0.51; mORCDG=2.46±1.60]), 

cognitive scores (1-60 [mORFLG=0.98±0.03; mORCDG=0.91±0.06]), the number of previous 

relapses [mORFLG=1.56±0.26; mORCDG=1.44±0.60], serum vitamin A levels (umol/l 

[mORFLG=0.92±0.06; mORCDG=0.33±0.36]), self-reported mental health (1-100 

[mORFLG=0.96±0.02; mORCDG=0.91±0.09]) and physical functioning (1-100 

[mORFLG=0.99±0.01; mORCDG=0.97±0.03]). Our results suggest that clinical assessment of 

physical function and cognition, self-reported mental health, and potentially vitamin A levels 

are the best predictors for risk-group stratifications of people with MS at baseline. While these 

findings are promising, we also want to underscore the observed analysis-choice induced 
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variability which necessitates both an increase in transparency when reporting study findings 

as well as strategies which are robust to the many researcher degrees of freedom. 

Keywords: Disease course prediction, multiverse, specification curve, patient-reported 

outcome measures 

Introduction 

Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system. 

Globally, there are more than 2.8 million people with MS (pwMS), with a higher prevalence 

in regions such as North America and Europe compared to Africa and East Asia.1 Despite 

significant advancements in disease-modifying therapies over the last two decades, pwMS 

exhibit considerable heterogeneity in their disease progression and response to treatment.2,3 

While some pwMS develop severe disability despite high-efficacy disease-modifying 

therapies, others remain stable under similar regimens.4 This variability underscores the 

importance of stratifying pwMS to identify distinct disease trajectories and improve treatment 

precision.  

Disease trajectories can be defined by functional or cognitive decline, which can appear 

independent of each other.5 A clinically meaningful definition of disease trajectories requires 

a multimodal approach that integrates clinical, imaging, and molecular markers.6 

An advantage of a multivariate approach is the possibility of highlighting multiple variables 

associated with MS, both those assessed in routine clinical assessments and beyond.7 For 

example, various brain imaging markers such as lesion count8, lesion volume9,10, and brain 

age11 have been linked to disability. Brain age is an age estimate based on a comparison of a 

person's brain MRI with a large dataset from a healthy population.12 Furthermore, several 

serum markers have been explored as prognostic markers in MS, including serum 

neurofilament light chain (NfL)13, chitinase-3-like protein1 (CHI3L1)14,15, vitamin D16, and 

potentially other vitamins17,18, and HLA-DRB1 carriership16. General health risk markers such 

as smoking19 and high body mass index (BMI)20 also contribute to MS-related outcomes. 

Clinical variables such as the relapse rate21, Expanded Disability Status Scale (EDSS)22, and 

cognitive performance, for example measured by the Paced Auditory Serial Addition Test 

(PASAT)23, further enhance the understanding of disease-related impairment. Additionally, 

patient-reported outcome measures (PROMs)24 can offer valuable insights for a more 

comprehensive assessment of disease impact. 
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We have established a unique cohort, containing longitudinal recordings for all the above 

variables. While the richness of such data provides insights from many different perspectives, 

it also presents analytical challenges, particularly the potential for bias introduced by 

researchers' subjective decisions in data (pre)processing, modelling, and interpretation. Study 

designs often highlight one or few predictors of MS outcomes, not accounting for multiple 

other predictors and their possible combinations. However, due to statistical dependencies, the 

selection of the variables included in such models influences the observed results, in addition 

to many other decision researchers make when processing and analysing data.25 

To enhance reproducibility and minimize bias, robust and systematic analytical frameworks 

are essential.25 Multiverse analyses, which explore multiple plausible analytical paths and 

evaluate their impact on results, offer a promising approach to address analysis bias.26  

Relevant not only to MS research, variable selection remains an unsolved statistical issue27 for 

which multiverse analyses provide an opportunity to decrease analysis-specific bias when 

presenting which variables are important for disease trajectories. In our study, we combine 

commonly used data from clinical follow-up and experimental biomarkers of MS derived from 

MRI, blood samples, clinical assessments and quality of life (QoL). We stratify pwMS into 

groups of cognitive and functional impairment and showcase variables predicting future 

trajectories already at baseline. 

Materials and methods  

Sample 

The sample included 88 pwMS with relapsing-remitting MS (RRMS) participating in the 

omega-3 fatty acid in MS (OFAMS) multicentre clinical trial28. The trial entailed data 

collection every 6 months over 2 years, followed by a single follow-up visit 10 years after the 

original trial concluded. A total of 85 (97%) of the original clinical trial participants were 

included and considered in the present analyses. In addition to age, sex, BMI, smoking status, 

and ω-3 supplementation (original clinical study intervention), the collected data used in this 

study entailed assessments of clinical (EDSS)22 and cognitive (PASAT)23 performance, 

together with QoL, evaluated by the short form quality of life inventory (SF-36)29, T1- and T2-

weighted MRI and blood samples (see Supplemental Table 13 for overview over variables; 

Supplemental Figure 3 for variability of raw measures).  
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We also used a reference MRI sample (see Supplemental Table 1) to establish brain age models 

(ntraining=58,317, nvalidation=6,608, age span = 5-90), non-clinical repeatedly sampled data of 

three individuals across one year (minimum of 25 scans each, Bergen Breakfast Scanning Club 

[BBSC])30, and a cross-sectional MS sample (n=748, mean age = 38.63±9.46 years) to validate 

the brain age model in a relevant clinical cohort, matched with healthy controls (n=751, mean 

age = 38.73±9.61). 

Demographic, clinical, self-reported, multi-omics, and neuroimaging assessments 

Age, sex, BMI, and smoking status (smoker/non-smoker assessed by both serum cotinine levels 

and self-reports) were general variables available for all participants. Clinical and cognitive 

scores included EDSS22 and PASAT23, and the number of relapses 12 months prior to study 

start. SF-36 indicated QoL in eight categories [physical functioning, role limitations due to 

physical health, role limitations due to emotional problems, energy/fatigue, emotional well-

being, social functioning, pain, and general health] based on the National Multiple Sclerosis 

Society's scoring recommendations31,32 with scores ranging from 0-100 (worst to best outcome) 

except for general health (1-5). Serum analyses for the current sample13,33, and MRI acquisition 

and post-processing (cortical reconstruction and lesion segmentation) have been described 

previously19. MRI markers of interest included baseline brain age gap (BAG) in years (see next 

section) from T1-weighted MRI data, as well as lesion count and volume (mm3) from T2-

weighted MRI data. Serum markers included CHI3L1 (mg/ml), NfL (pg/ml), and vitamin A 

and E levels (in µmol/L) and vitamin D levels (in nmol/L), as well as HLA−DRB1 carriership 

(yes/no). Intra-class correlation coefficients were good (ICC > 0.82), apart from CHI3L1 (ICC 

≈ 0), vitamin D levels (ICC = 0.56), and zero-variance variables (see Statistical Analyses). 

Sample stratification 

EDSS-based stratification 

We first stratified pwMS into a functional loss group (FLG) and the rest of the participants into 

a functionally stable or improving group (FSIG). FLG (n=19, 22.4%) was defined by reaching 

significant disability (EDSS≥4) after the baseline assessment and latest at the 144-month 

(range: 128-156, M=141.93±5.83 months) follow-up, in addition to either a confirmed 

disability progression during the original study's 24 months with 6-month follow-ups (11/19), 

or an EDSS≥1 increase between 24-month and 144-month visits (16/19). EDSS ≥ 4 was 

previously defined as severe disability22 and has been used as a threshold to identify pwMS 

who exhibit limitations in their activities of daily living34. For further quality control of the 
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grouping, we assessed whether there were clinical relapses present in a six-month proximity to 

each EDSS measurement, potentially explaining short-term EDSS increases at the time of 

measurement. This was only found for 3 out of 19 (15.8%) FLG members, for whom disability 

progression were confirmed independent of the event. Disability progression could be 

confirmed for 11 out of 19 (57.9%) FLG members during the first 24 months of evenly spaced 

6-month visits, and 18 out of 19 FLG members presented an EDSS increase between visits at 

month 24 and month 144. This disability progression could not be confirmed at 144-month 

follow-up, as only one EDSS measurement was available (see Supplementary Note 1). 

PASAT-based stratification 

In a second, independent stratification, we defined a cognitive decline group (CDG) based on 

a 15-point decrease in PASAT score (corresponding to 25% of the maximum score of 60 

points) either between baseline and 144-month follow-up or 24-month session and 144-month 

follow-up, and with the scores decreasing over time (nCDG=11). In contrast, a cognitively stable 

or improving group (CSIG) was defined by smaller cognitive decline than in the CDG, within 

expected effects of aging, or even stable or improving PASAT scores. Additional quality 

assurance can be found in Supplementary Note 1. 

Brain age 

We developed a machine-learning based generalized additive model (allowing polynomials up 

to the 4th order) trained on 58,317 healthy controls' cortical thickness, volume and surface area 

averages across Desikan-Killany atlas35 parcels to predict age. Such models allow sufficient 

flexibility to approximate non-linear age-dependencies, while still being simple enough to be 

interpretable.  

Bias corrections for brain age prediction models are important as brain ages are otherwise 

systematically overestimated for lowest ages and underestimated for highest ages, respectively. 

While this is a know problem, previous studies do usually only apply post-hoc corrections, 

which do however not remove all of the bias. Hence, we used a combined approach: The 

original training sample (n=58,317) was up-sampled (to n=150,517) using SMOGN36 to 

approximate a unimodal distribution to minimize training sample age-distribution bias. To 

account for remaining age-distribution bias, we applied a post-hoc correction using the training 

sample's linear age and brain age (BA) association's intercept (𝑎) and slopes (𝑏): 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐵𝐴 = 𝐵𝐴 + (𝐴𝑔𝑒 − (𝑎 + 𝑏 ∗ 𝐵𝐴)). The correction procedure improved model 

performance (Supplemental Table 2). Finally, the brain age gap (BAG) was calculated as the 
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difference between corrected BA and chronological age: 𝐵𝐴𝐺 = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐵𝐴 − 𝐴𝑔𝑒. Our 

model predicted lower corrected BAGs in healthy controls compared to pwMS in the utilized 

cross-sectional sample (t(1462)=-19.40, p<2.2*10-16, Cohen's d=-1.00, [-1.11,-0.89]). Moreover, 

we validated our models in BBSC data, showing within-subject correlations of Pearson's 

rsub1=0.25, rsub2=0.23, rsub3=0.53 between age and brain age, yet with only the last correlation 

being significant (psub3=0.006). Note that intra-class correlation coefficients could not be 

computed for these N=3 subjects due to the n-to-p ratio (small sample size, large number of 

observations). Additional information on the model validation procedure can be found at 

https://github.com/MaxKorbmacher/OFAMS_Brain_Age.  

Statistical Analysis 

Descriptives 

We first examined the validity of the stratification using linear mixed effects regression models 

with random intercept at the level of the individual to assess interaction effects between age 

and risk grouping, while controlling for age and sex. Specifically, age-group interaction effects 

on EDSS were used to evaluate functional loss stratification, and age-group interaction effects 

on PASAT for cognitive decline stratification (Fig.1, Supplemental Figures 1-2).  

To describe apparent differences at baseline, we analyzed univariate baseline differences 

between the respective risk vs stable groups using simple linear regression models, correcting 

for age and sex (Tables 1-2); and for differences in frequencies using Fisher's exact tests 

(Supplemental Tables 7-8).  

Multiverse analyses 

We used a multiverse approach to identify which baseline variables were most predictive of 

risk-membership using binary logistic regression (Fig. 2). Multiverse analyses have the aim to 

test the robustness of effects using different analytical choices. Multiple models are run, leading 

to distributions of coefficients, instead of a single estimate. Hence, instead of presenting single 

coefficients, we present the central tendency of coefficents (median) and variability (median 

absolute deviation). 

We included models with all possible combinations of variables of interest up to the 8th order 

with age as a covariate included in all models. All models were run with and without sex as a 

covariate, leading to a total of 1,761,938 models. The QoL "role limitations due to emotional 
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problems" and "role limitations due to physical problems" were constant (mean=0±0) across 

participants and therefore excluded from the analyses. 

McFadden's37 pseudo R2 (pR2) was estimated for each regression model as a model fit proxy. 

Wald-based power/sensitivity analysis38 was used to estimate the power of each model at 

α=0.05 by testing the assumption of a greater probability of functional or cognitive decline 

group-membership when predictors≠0. For the EDSS-based FLG, model fit was good1 

(pR2=11.35±5.00%; 60.69%>pR2>10%) when considering all 803,390 converged models. The 

median power for these models was 32.90±45.98%. For the PASAT-based CDG the median 

model fit was R2=37.19±19.00% (99.69%>pR2>10%) considering the same converged models, 

presenting a medium power of 16.87±25.01%. Considering the low median power, we present 

various versions of multiverse analysis results, considering only well-powered or well-fitting 

models in the supplement. Multiverse analyses ought to inform about all models, whether well 

specified or not. This is useful when assessing the literature while assuming analytic flexibility 

and the possibility of mis-specified models, both of which cannot be excluded. Hence, we 

reported on all models in the main text but reported only models selected for high power and/or 

excellent model fit in the supplement. We report raw/uncorrected p-values and 95% 

Confidence Intervals (CI) in square brackets when describing group differences for the 

stratifications. For multiverse analyses, median and median absolute deviation (MAD) are 

reported for the estimated ORs and p-values of each variable of interest across the specified 

models in the multiverse to a) belong to FLG vs FSIG or b) CDG vs CSIG. Additionally, the 

proportion of the OR's directionality (PORSD), such as the number of models including EDSS, 

with EDSS OR>1 for risk group membership, as share of all models was reported. When effects 

presented consistent directionality in 75% or more of the models they were used in, they were 

presented in the main text, in addition to clinically meaningful effect sizes. Clinically 

meaningful was defined here as plausible and possible changes based on the assessed scales 

and distributions of values and their changes, as well as the magnitude of the effect. For 

example, a 0.001% increase in the odds of belonging to one of the defined risk-groups per year 

of age at baseline might be a significant effect but accumulates to less than 1% higher odds 

even when being older than 100 years of age at baseline. Hence, in this example, the effect of 

age would not be counted as clinically meaningful. Finally, due to the relatively limited sample 

size and yet limited missingness, to avoid biasing the results, we did not conduct imputations 

 

1 Note that pseudo variance explained is generally lower than conventional variance explained.37 
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of missing values. For baseline missingness of all utilized variables see Supplemental Figure 

5, being relevant for the main analyses. EDSS and PASAT score missingness was relevant for 

stratification (see Supplementa tables 14-15). 

Results 

Study participants 

The 85 pwMS with a 12-year follow-up were aged 38.9±8.3 (range: 19-58) years at baseline 

and 49.6±8.6 at the final follow-up, with 65.9% being females. Median baseline EDSS±MAD 

was 2.00±0.74, baseline PASAT was 47.9±9.4, and time since diagnosis was 1.9±3.2 years, 

and since the first symptom 5.5±5.5 years. Missingness was minimal (n≤6) for the baseline 

measures, which informed the main analyses (Supplemental Figure 5). Additional 

demographics and an overview of all variables can be found in the Supplemental Material. 

Functional loss (disability) grouping 

We show that, while not possible to stratify at baseline, FLG presented a stronger increase in 

EDSS than FSIG (Fig. 1), shown by a significant interaction effect between group membership 

and age on EDSS (p=1.03*10-17), indicating a 0.14 unit faster annual increase in EDSS in the 

FLG group. At the same time, the groups were overall similar at baseline, with slightly worse 

physical function among FLG members (Table 1). 

 

-- Figure 1 around here – 

 

At baseline, FLG showed higher corrected EDSS=0.45 [0.02, 0.88] points (t=2.07, p=0.0416; 

MFLG=2.25±0.78, MFSIG=1.65±0.61). There were no other significant differences (p>.05, Table 

1). 

 

-- Table 1 around here – 

 

Multiverse analysis of functional loss group membership 
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While no multiverse analysis derived median p-values were below 0.05, the median area under 

the curve (mAUC) was mAUC=0.72±0.05, and there were multiple effects which were on 

average relatively large, as well as unaffected in their directionality, independent of the analytic 

choices (Fig. 2, Supplemental Table 3). Clinically relevant and least analysis-choice dependent 

predictors of FLG included higher EDSS (0-10, mORFLG=2.15±0.51, pmedian=.113, 

PORSD=100%), and QoL PROM physical functioning (mORFLG=0.99±0.01, pmedian=0.483, 

PORSD=84.45%), HLA-DRB1 carriership (yes/no, mORFLG=1.57±0.72, pmedian=0.508, 

PORSD=82.67%) and smoking (yes/no, mORFLG=1.35±0.28, pmedian=0.670, 

PORSD=94.22%), which increased the odds of belonging to the functional loss group. Higher 

Vitamin E (umol/l, mORFLG=0.92±0.06, pmedian=0.259, PORSD=99.99%) and A levels (umol/l, 

mORFLG=0.58±0.26, pmedian=0.512, PORSD=90.26%) as well as higher CHI3L1-levels 

(mg/ml, mORFLG=0.96±0.01, pmedian=0.126, PORSD=100%), NfL levels (pg/ml, 

mORFLG=0.99±0.01, pmedian=0.629, PORSD=87.2%), PASAT score (1-60, 

mORFLG=0.98±0.03, pmedian=0.565, PORSD=80.52%), relapses at baseline dating 1 year back 

in time (mORFLG=1.56±0.26, pmedian=0.324, PORSD=99.99%), and the QoL PROMs (1-100) 

social functioning (mORFLG=1.02±0.03, pmedian=0.430, PORSD=80.78%; overview of all 

effects: Supplemental Table 3). Importantly, these results did only change marginally when 

only including models with power≥80% (Supplemental Table 4), models with excellent model 

fit (pR2≥0.20, Supplemental Table 5), or models with both excellent model fit and power≥80% 

(Supplemental Table 6). 

 

-- Figure 2 around here -- 

 

Cognitive decline grouping 

CDG presented a stronger decrease in PASAT than CSIG (Fig. 1, Supplemental Figure 2), 

shown by a significant (p=3.83*10-5) interaction effect between group membership and age on 

PASAT, indicating a 0.80-unit faster annual decrease in PASAT score in CDG compared to 

CSIG. Moreover, CDG were on average 6.4±2.2 years older than CSIG, had a 3.8±1.6 points 

higher BMI, and 4.6±2.3 umpl/l higher vitamin E level at baseline after correcting for age and 

sex. There were no other significant differences (p>0.05, Table 2). 

-- Table 2 around here --- 
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Cognitive decline multiverse analysis 

Similar to the results for FLG, predictors of CDG membership were on average non-significant 

(median p>0.05), and mAUC=0.56±0.06. Yet multiple predictors had large median effects 

which were consistently of the same directionality (Fig. 2, Supplemental Table 10). Among 

those effects, higher CHI3L1 (mORCDG=1.26±0.17, pmedian=0.077, PORSD=99.59%), higher 

EDSS (mORCDG=2.76±1.96, pmedian=0.258, PORSD=94.56%), and a higher number of relapses 

(mORCDG=1.34±0.47, pmedian=0.657, PORSD=79.50%) increased the odds of CDG 

membership, as also observed for FLG. Higher QoL PROMs for mental health 

(mORCDG=0.91±0.09, pmedian=0.315, PORSD=94.79%) and physical functioning 

(mORCDG=0.97±0.03, pmedian=0.293, PORSD=95.33%), higher PASAT score 

(mORCDG=0.93±0.06, pmedian=0.301, PORSD=91.11%), and higher vitamin A 

(mORCDG=0.39±0.42, pmedian=0.516, PORSD=82.09%) decreased the odds of CDG 

membership, again, similar to FLG membership odds. 

Results unique to increased odds of CDG and not FLG membership included older age 

(mORCDG=1.10±0.05, pmedian=0.219, PORSD=92.58%), higher BMI (mORCDG=1.62±0.51, 

pmedian=0.052, PORSD=99.70%), larger lesion volume (cm3, mORCDG=1.12±0.13, 

pmedian=0.381, PORSD=92.15%). Female sex (mORCDG=0.43±0.43, pmedian=0.535, 

PORSD=84.71%), omega-3 supplementation (mORCDG=0.17±0.19, pmedian=0.220, 

PORSD=99.13%), higher vitamin D (mORCDG=1.26±0.17, pmedian=0.077, PORSD=99.59%) 

and E levels (mORCDG=1.07±0.04, pmedian=0.075, PORSD=99.77%) indicated lower odds of 

CDG membership. The results were robust to including only models with power≥80% 

(Supplemental Table 11), models with excellent model fit (pR2≥0.20, Supplemental Table 12), 

or models with both excellent model fit and power≥80% (Supplemental Table 13). 

Discussion 

This study provides a comprehensive analysis of baseline variables associated with the risk and 

outcome of MS to assess their combined predictive ability for stratification of functional loss 

(EDSS) and cognitive decline (PASAT). Our results are presented in the light of multiple 

possible analytical pathways, supporting conclusions independent of more than a million 

specified analytical choices. 

While our results highlight that multiple clinically relevant factors contribute to risk-group 

allocations, their individual significance, including p-value, consistency and magnitude of 
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effects, generally depended on the modelling choices. This highlights the usefulness of testing 

different analysis pipelines which includes varying control variables, variables of interest, and 

boundary conditions when assessing MS progression markers. 

We identify several predictors of risk-group allocation which were the least dependent on 

analysis-choices. Such risk predictors of functional and cognitive loss included a higher EDSS, 

number of prior relapses, lower vitamin A levels, PASAT and self-reported mental health and 

physical functioning. Higher CHI3L1 at baseline decreased the odds of belonging to a risk-

group. 

Our analyses are based on the identification of favourable compared to unfavourable disease 

trajectories. Such trajectories can be evaluated in different ways, often consulting EDSS scores 

which focus on physical function. However, previous evidence showcases that pwMS with 

functional disability progression do not necessarily correspond with those with comparably 

accelerated cognitive decline.39 The small overlap between the identified risk groups in our 

study confirmed this assumption. Moreover, quality controls ensured that the presented 

stratifications were robust to temporal fluctuations such as new relapses, new lesions or lesion 

activity, and we found clear differences in the trajectories when examining the variables which 

were stratified for. 

Multiple studies have examined single or a small selection of MS markers.14–18,22,24 Yet only 

few studies have focussed on multivariate assessments and particularly on longitudinal data.40–

43 Multimodal approaches have the advantage of enhancing predictions, for example as 

previously shown by combining electronic health records, clinical notes and neuroimaging data 

to predict MS severity44, conversion from clinically isolated syndrome to MS,45 or, similar to 

this study, to predict EDSS development.46 However, just as conventional statistical 

approaches, machine and deep learning techniques are influenced by the input variable 

selection and hyperparameter tuning suffers from generally small samples in the MS field. 

The utilized input variables in our multivariate approaches have previously, often univariately, 

been associated with different MS outcomes. For example, higher EDSS scores22, HLA-DRB1 

carriership16, lower vitamin levels16–18, higher lesion count8, cigarette smoking19, a lower 

PASAT test score23, several PROMs24, and a higher number of baseline relapses21 have 

previously been associated with functional loss in MS, similar to elevated CHI3L1 and NfL 

levels13–15. While we found that higher CHI3L1 levels indicated higher odds of disability 

progression, serum CHI3L1 were reported to be influenced by third variables such as exercise 
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intensity47 and CHI3L1 serum measures were unstable in our sample (ICC≈0, Supplemental 

Figure 3). Hence, a meaningful interpretation of our finding of higher CHI3L1 levels at 

baseline predicting less disability-progression at the 12-year follow-up not involving large 

uncertainty was not possible. Cerebrospinal fluid-derived CHI3L114,15 might be a more reliable 

measure. Additionally, our sample was relatively small and difficult to compare to more recent 

studies as patients were not treated during the first 6 months of the clinical trial. Hence, before 

drawing further inference, the influence of the characteristics of the examined limited sample 

and individual differences in disease trajectories need to be ruled out first by replicating of the 

findings reported here. Moreover, the statistical significance of the mentioned effects might 

depend on the selection of covariates. For example, the negative effect of cigarette smoking on 

health outcomes is generally known and has previously been documented in MS.19 However, 

to contribute to an acceleration of the disease or, for instance, functional or cognitive decline, 

other cumulative effects might need to be considered. 

PROMs and vitamin levels are yet underrepresented among variables informing MS 

assessments. Yet, PROMs have been suggested as a cost-effective and valid tool to inform on 

the long-term impact of MS.48 Considering multiple inventories and variability in study 

designs, systematic investigations of the value of PROMs, specifically certain dimensions, to 

inform and establish predictive models are necessary. Similarly, vitamin levels beyond vitamin 

D are not commonly measured in MS care. Yet, as vitamins A and D present a broad influence 

on the immune system, baseline vitamin levels might indirectly reflect immune-related 

processes, where for example a lower serum level might indicate a larger metabolic need and 

hence an activated immune system.49,50 The predictive value of vitamin levels on risk group 

membership might be confounded by nutritional health. While vitamin D deficiency has been 

linked with a higher risk of developing MS,16,33 for example, vitamin D supplementation does 

not seem to significantly affect clinical outcomes in pwMS.51 Such associations are not 

established for other vitamin serum concentrations. 

The main strengths of the study were the unique dataset, with near complete follow-up (95%) 

for over 12 years, in addition to a large brain age training set of more than 60,000 healthy 

subjects' MRI data, and multiple validation sets, including hundreds of cross-sectionally 

scanned individuals. Combining these data allowed for more comprehensive analyses than 

previously conducted. Moreover, our analyses represent a good example for the potential of 

data-reusage. We were able to apply a new multiverse approach to the data, showcasing the 

influence of analysis pipelines on research outcomes.  
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Our study faces some limitations. First, several data-related issues limit the generalizability of 

the results. The size of the risk groups was relatively small, and treatment adjusted to the 

individual, including medication changes over time reduce the comparability of pwMS 

exacerbating the observation of true population estimates. Moreover, as common with 

automatic segmentation tools of MRI data, the segmentations were imperfect. MRI data 

processing challenges beyond the data processing software are scanner hardware and software 

changes over the acquisition period which could not be controlled for in the present national 

multi-centre study.  

Machine learning implementations such as the utilized brain age model can "learn" and account 

for variability from unwanted covariates. Hence, the brain age predictions, which were trained 

on diverse, multi-site, software and field strength data, were meaningfully related to the 

examined developmental trajectories. The utilized brain age model is freely available together 

with a detailed user guide to enhance dissemination 

(https://github.com/MaxKorbmacher/OFAMS_Brain_Age). 

The examined results were stable, even when selecting for only for sufficiently powered or 

well-fitting models, despite the lack of control over model misspecifications. Misspecifications 

might have resulted from thousands of probed modeling choices, including, for instance, not 

accounting for multicollinearity and non-linear relationships. On the other hand, overall model 

performance might have been weak, as in the case of low area under the curve for cognitive 

decline predictions, with yet single predictors containing useful information, indicated by 

consistent and strong effect sizes which compare with functional loss group classifications. 

Additionally, perfect model specifications were not the goal. Instead, we aimed to account for 

researcher bias, such as executing multiple but only reporting the significant analyses, while 

also testing multiple variables of interest in the same sample. This approach allows to closer 

approximate the reality of the literature than only models showing perfect fit. 

We analysed a broad range of established and experimental MS markers. However, the 

selection of variables of interest in this study is not exhaustive and there might be more recently 

established markers which are more suitable for risk group stratifications, such as novel, strong 

risk loci as DNM3–PIGC or DYSF–ZNF63852, giving additional inside into the heritability of 

MS. 

The utilized brain age model focusses on cortical grey matter. While such approach improves 

the interpretability of the model, other approaches including subcortical grey matter12 or 
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information on white matter microstructure53 might be more sensitive to MS-specific 

degeneration. 

Overall, we show that pwMS can be stratified into functional and cognitive decline risk groups. 

Predictors for such group stratifications, are dependent on analytic choices. The strongest and 

most consistent effects were found for the number of prior relapses, EDSS, self-reported mental 

health, PASAT and potentially vitamin A. These findings offer not only additional insight into 

MS disease trajectories, but also a new perspective on analysing multiple MS markers. We 

encourage the MS research community to adopt the proposed multiverse approach to mitigate 

the influence of analysis pipelines on research outcomes and underline the potential for 

multivariate analyses. Additionally, we underscore the importance of incorporating disease 

stratifications, particularly using longitudinal data, as critical steps for advancing future studies. 

Data availability 

Brain age model training data are available from the respective websites of the databases either 

openly or after application. OFAMS data can be shared after receiving a new ethics approval. 

Brain age models and analysis code are freely available at 

https://github.com/MaxKorbmacher/OFAMS_Brain_Age. 
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Figure legends 

Figure 1. Sample stratification into functional and cognitive decline groups. Marginal 

interaction effects between group and age in random intercept models at the level of the 

individual indicate that risk groups (blue) show a faster functional and cognitive loss than 

functionally and cognitively stable or improving groups (red). Note that the stratifications were 

done independent from each other, resulting in nFLG=19 and nCDG=11, with only n=3 

participants being allocated in both groups. 

 

Figure 2. Multiverse estimates of predictors of functional (left) and cognitive decline 

(right). Note that while all median p-values>0.05, multiple effects were consistently 

unidirectional. For log OR distributions see Supplemental Figure 4. 
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