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Abstract

Multi-organ biological aging clocks derived from clinical phenotypes and neuroimaging have
emerged as valuable tools for studying human aging and disease™***. Plasma proteomics
provides an additional molecular dimension to enrich these clocks®. Here, we used 2448 plasma
proteins from 43,498 participants in the UK Biobank to develop 11 multi-organ proteome-based
biologica age gaps (ProtBAG). We compared them to 9 multi-organ phenotype-based biological
age gaps (PhenoBAG") regarding genetics, causal associations with 525 disease endpoints (DE)
from FinnGen and PGC, and their clinical promise to predict 14 disease categories and mortality.
We highlighted critical clinical and methodological considerations for generating ProtBAG,
including the need for age bias correction® and addressing protein organ specificity to enhance
model performance and generalizability. Genetic analyses revealed overlap between ProtBAGs
and PhenoBAGs, including shared loci, genetic correlations, and colocalization signals. A three-
layer causal network linked ProtBAG, PhenoBAG, and DE, exemplified by the pathway of
obesity—renal PhenoBAG—renal ProtBAG to holistically understand human aging and disease.
Combining features across multiple organs improved predictions for disease categories and
mortality. These findings provide aframework for integrating multi-omics and multi-organ
biological aging clocksin biomedicine. All results are publicly disseminated at https.//|abs-
laboratory.com/medicinel.
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Main

Multi-organ biological aging clocks, derived from neuroimaging and clinical phenotypes, are
increasingly being explored in clinical research and computational neuroscience astools to
understand human aging, disease, and mortality™**’. These clocks provide a comprehensive
view of biological age, reflecting the functional and structural changes across different organs.
While significant advancements have been made in leveraging phenotypic data for such models,
there remains a growing interest in incorporating molecular-level data, such as plasma
proteomics’, epigenetics®, and metabolomics’, to enrich the landscape of the multi-organ
biological age. Plasma proteomics from different platforms (e.g., Olink'® and SomaScan™) offers
the unique ability to identify and quantify proteins and post-transational modifications with high
sensitivity, potentially uncovering novel insights into organ-specific aging and its relationship
with health and disease™.

Despite its promise, deriving proteome-based biological age biomarkers presents several
challenges and unresolved questions. One common practice observed in neuroimaging-derived
brain age isto correct the age bias in an age prediction model, which can distort associations
between the biological age gap (BAG) and disease outcomes if not properly corrected™>4%,
That is, brain age tends to be overestimated for younger individuals and underestimated for older
individuals, while predictions are most accurate for those whose ages are closer to the mean of
the training dataset (Fig. 1b). Furthermore, the lack of organ specificity of plasma proteins
(analogous to pleiotropy in genetics), where a protein is over-expressed in multiple organ tissues
may complicate model development, leading to overfitting and reduced interpretability. Previous
studiesidentified similar overfitting issues and addressed them by employing data-driven feature
selection methods to mitigate the problem®*°. In addition, key factors that influence model
performance and generalizability, such as the type of omics data, the sample size and population
demographic and disease status of the training sample, and the balance between the closeness of
mode fit and the clinical power of BAG, have not been systematically evaluated. These
challenges highlight the need for systematic and reproducible evaluations of proteome-derived
BAGs (i.e., ProtBAG)". Addressing these gapsis essential to unlocking the full potential of
plasma proteomics in aging research and its clinical applications.

Phenome-wide BAGs (PhenoBAG) and ProtBAG represent two essential aspects of
human aging and disease causal pathways, connecting genetics—transcriptomics— proteomics
(ProtBA G)—endophenotypes (PhenoBA G)—disease outcomes (DE). Our prior studies® have
examined the genetic architecture of 9 multi-organ PhenoBAG through genome-wide association
studies (GWAS) and post-GWAS validations, such as genetic correlation™®, polygenic risk
scores™, and causal inference. A comprehensive framework to explore the overlap and
distinctions between ProtBAG and PhenoBAG is currently lacking. Addressing this gap requires
connecting genetics, ProtBAG, PhenoBAG, and disease endpoints (DE). Such an integrative
approach is essential for developing a holistic understanding of the causal pathways for potential
therapeutic development.

Multi-organ and multi-omics approach are gaining prominencein
modeling human aging and disease, driven by the hypothesis that integrating insights across
multiple spatial and temporal scales better captures underlying disease-related neurobiological
processes, thus enhancing diagnostic and prognostic biomarker discovery. For instance, Zhao et
al.?® demonstrated improved cognitive prediction by integrating brain and heart MRI features
with PRS. Similarly, our prior work on Al/ML-derived brain disease subtypes showed enhanced
systemic disease prediction when combining these brain imaging-derived biomarkers with

es21,3,1,22,23,7,24,5,25,26,27
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PRS®. However, the potential of multi-omics and multi-organ BAGs as complementary
biomarkers for disease and mortality remains unexplored.

This study used 2448 Olink plasma proteins from 43,498 UK Biobank participants
(UKBB and Supplementary €T able 1) to develop 11 organ-specific ProtBAGs (Method 1). We
systematically compared the 11 ProtBAGs with 9 PhenoBAGs derived from our previous
studies® (M ethod 2-3). We evaluated the influence of key methodological components
(Method 4) on modd performance and clinical interpretation using the 11 ProtBAGs.
Subsequently, we examine their genetic architecture and causal relationships with 525 DES from
FinnGen® and PGC* (Method 5). Finally, we assessed the potential of ProtBAGs, PhenoBAGs,
and their PRSs for predicting disease categories and mortality (M ethod 6). All results and pre-
trained AI/ML models are publicly disseminated at the MEDICINE portal: https.//labs-
laboratory.com/medicine/.
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Results

Biological age prediction performance of the 11 ProtBAGs derived from three AlI/ML
models

To rigorously evaluate the performance of biological age prediction models, we partitioned the
5089 healthy control (CN, without any pathologies) participants into the CN
training/validation/test (N=4589) and independent test (ind. test; N=500) datasets. Extended
Data Fig. 1 details this study's population selection and overall workflow. The CN training set
was used for model development and nested cross-validation when applicable, while the
independent test set provided an unbiased assessment of model performance (Supplementary
eTablel).


https://doi.org/10.1101/2025.02.06.25321803
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2025.02.06.25321803; this version posted February 7, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Extended Data Figure 1. Schematic diagram of the definition of populationsto derive
ProtBAG and overall analytic wor kflow of the study
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a) Wefirst split the entire proteomics population in the UK Biobank into 5089 healthy control
(CN) and 38,049 patient (PT) populations based on the ICD-10 code and other clinical history
information. b) To derive the 11 ProtBAGs, we trained the three AI/ML models using only the
CN training/validation/test population (N=4589) with a (nested) cross-validation procedure to
select the optimal model. The CN independent test (ind. test; N=500) and the PT population
(N=38,409) were used as independent test datasets. c) The analytical workflow of this study
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involved deriving 11 ProtBAGs, integrating them with 9 PhenoBAGs, and conducting GWAS
and post-GWAS analyses. The ProtBAGs, PhenoBAGs, and their PRSs were then evaluated for
their predictive power across 14 systemic disease categories and mortality outcomes.

When fitting the organ-specific proteins (M ethod 3) to three AI/ML models|[i.e., Lasso
regression, support vector regressor (SVR), and neural network (NN)], we observed marginal
variability in model performance, with no single model consistently outperforming the others
(Fig. 1la and Extended Data Fig. 2). For instance, the Lasso model outperformed NN and SVR
for the hepatic ProtBAG (P-value < 2.27x10°®, though the standard t-test may be permissive® in
a complex cross-validation setting). On the other hand, the brain ProtBAG derived from the NN
obtained alower MAE than the Lasso regression and SVR model (P-value < 2.31x10°%). Across
the different organ systems, the best model performance, before applying the age bias
correction®, was achieved for the brain ProBAG viathe NN (ind. test MAE=4.86; Pearson’s
r=0.65); the highest MAE was achieved for the hepatic ProtBAG viathe NN (MAE=10.19;
r=0.61). Notably, we found instances where MAE and r coefficient were not aligned — a lower
MAE (reflecting the magnitude of errors) did not always correspond to a higher r (indicating the
strength and direction of predictions), as these metrics capture different aspects of the model
performance and can serve as a potential bias-variance tradeoff and the nonlinear dynamics of
proteomics aging™. For example, the hepatic ProtBAG predicted using the NN exhibited a high
(r=0.61) despite a substantial MAE (MAE=10.19), while the eye ProtBAG using the same model
achieved alower MAE (MAE=6.78) but a much weaker (r=0.13). Supplementary eT able 2
presents detailed statistics for the age prediction tasks before and after the age bias correction®.
Extended Data Fig. 2 shows the Pearson’sr coefficient between predicted and chronological
age. Supplementary eNote 1 presents the detailed tissue-enriched proteinsin each organ to train
the 11 multi-organ ProtBAGs in the primary results (Fig. 1a and M ethod 3c).
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Figure 1: Three AI/ML modelsto derivethe 11 multi-organ ProtBAGs
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a) Age prediction performance quantified by the mean absolute error (MAE for the independent
test data) across 3 Al models and 11 organ systems using Olink plasma proteomics from UKBB.
The Human Protein Atlas project determined the organ-specific proteins (i.e., enriched genes for
at least four-fold higher mRNA level in the tissue of interest than other tissues,
https.//www.protei natlas.org/humanproteome/tissue). The # symbol denotes the model achieving
the lowest MAE; the * symbol indicates statistical significance (P-value<0.05) using a two-
sample t-test between two models. The dots present the model performance for the 50
repetitions. b) Age prediction performance should be reported using metrics before applying age
bias correction. Age bias correction should be explicitly applied for downstream clinical
applications, or age should be at least included as a covariate. Without applying age bias
correction, we demonstrated that downstream group comparisons between the healthy control
(CN: training/validation and independent test) group and the patient (PT) group could lead to
biased conclusions. Abbreviations: Ind. test: independent test; BAG: biological age gap.
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Extended Data Figure 2: The scatter plot between Al/ML-predicted biological age and
chronological age before and after age bias correction
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a) The scatter plot between the AI/ML-derived biological age and chronological age without
applying the age bias correction. b) The scatter plot between the Al/ML-derived biological age
and chronological age after the age bias correction is applied.

Critical considerationsfor the use of ProtBAG

Ikram recently discussed the use and misuse of biological aging in biomedicine from aclinical
perspective®. This study provided additional critical considerations regarding methodology and
clinical interpretation in deriving the 11 multi-organ ProtBAGs (M ethod 4).

Age bias correction should be applied

The age bias correction was commonly practiced in the brain imaging-derived age prediction
model®, leading to alower MAE and a higher r coefficient (Fig. 1b). One consideration in
biological age research is reporting metrics before applying age bias correction®. Reporting
uncorrected metrics ensures consistency in comparing model performance across studies,
preventing potential confusion or misapplication from comparing model performance across
studies. Additionally, age bias correction is necessary for downstream clinical associations to
avoid false conclusions. In our analysis comparing brain ProtBAG between the healthy control
(CN) and patient (PT) groups, we found that, without age bias correction*, the PT group
exhibited alower brain ProtBAG than the CN group (P-value=2.22 x10'%). However, after
applying age bias correction, we observed a reversed and more clinically plausible trend, with
the PT group showing a higher brain ProtBA G than the CN group (P-value=0.045) (Fig. 1b).
While including age as a covariate in downstream analyses is standard practice, applying age
bias correction remains essential.

Biologically-driven feature selection based on protein organ specificity can alleviate model
overfitting

Previous ProtBAG studies have demonstrated that feature sel ection algorithms can help mitigate
model overfitting when applying Al/ML models to unseen test data. For example, Oh et al.”
utilized L1 regularization in aggregated Lasso models to address overfitting. Similarly,
Argentieri et al.™ applied the Boruta feature selection algorithm, revealing that the most relevant
204 proteins achieved comparable performance to models trained on the complete set of 2,897
proteins.

Here, we demonstrated the generalizability of AI/ML models to independent test data
diminished further when using less organ-specific proteins (e.g., tissue-elevated proteins)
compared to a smaller subset of highly organ-specific proteins (e.g., tissue-enriched proteins).
Method 3c details the definition of different levels of organ specificity. In our experiments, we
found that restricting the model to brain tissue-enriched proteins (N=53) resulted in better model
generaizability from the training/validation/test dataset to the independent test dataset (Cohen’s
D=0.15) than the other two conditions. That is, this discrepancy was significantly larger when
modelsincluded 146 tissue-enhanced proteins (P-value<2.22x10%; Cohen’s D=1.24), 255
tissue-elevated proteins (P-value<2.22x10*%; Cohen’s D=1.46), and all the 2448 proteins (P-
value<2.22x10'%; Cohen’s D=3.52) (Fig. 2a).

Model overfitting can be alleviated by increasing the sample size of the training dataset

Argentieri et al.™® reported an MAE of 2.24 yearsand an r of 0.94 in their holdout test data using
UKBB data. Our approach differs from Argentieri et al. in several ways. For instance, we used
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only 4,589 CN participants for training, whereas Argentieri et a. included a much larger training
sample (i.e., 31,808 participants from the general population, including diseased participants). To
investigate this, we performed additional analyses to evaluate the effect of training sample size
(SS) on model generalizability, using 2,448 proteins as input features. We randomly selected
varying SS values (4,589, 10,000, 20,000, 30,000, and 31,808) from the general population to
train the model and assessed their generalizability to unseen data. As shown in Fig. 2b,
increasing the SS improved the model's performance on independent test data, as measured by
Cohen’s D values.

A tightly-fitted model does not provide higher statistical power to predict cognition than a
moder ately-fitted model

We underscore that the primary objective of developing ProtBAG, or any biological age
biomarker, is not to achieve a highly tightly-fitted model (e.g., alower MAE), as this can come
at the cost of overfitting and reduced power for cross-domain prediction (Fig. 2c). Instead, the
focus should be on ensuring that the ProtBA Gs demonstrate strong statistical associations with
cross-domain clinical variables, such as disease diagnoses and cognitive performance. Our
experiments observed that the NN model achieved alower MAE as the number of training
epochsincreased. However, when assessing the association between the brain ProtBAG and the
symbol digit substitution score using alinear regression model, the model at Epoch 2500
(181=0.027) demonstrated a smaller S coefficient compared to the model at Epoch 1000
(161=0.035), albeit this did not achieve statistical significance with a permutation test (P-
value=0.34) (Fig. 2d).

The demographics of the training dataset are important for model performance and clinical
interpretation

Critically, our AI/ML models (NN for the brain ProtBAG) were trained exclusively on a CN
population. Our approach follows the practice in brain neuroimaging-based BAG models, where
training is conducted on a healthy population to establish a normative reference for brain aging.
This framework allows deviationsin the brain PhenoBAG to be associated with pathol ogical
factors when the model is applied to external populations with pathologies, facilitating its clinical
interpretability.

We conducted a comparative experiment with varied training populations to examine
how disease diagnosis influences model performance and generalizability. Models trained on the
CN group showed higher MAE and less overfitting, while mixed-popul ation models achieved
lower MAE with moderate overfitting. This may be due to increased heterogeneity/variability
and extreme features tied to pathology, which risk capturing noise over generalizable signals.

Neuroimaging-derived brain PhenoBAG and brain ProtBAG achieved comparable predictive
performance

Finally, we compared the brain PhenoBAG (ind. test MAE=4.47), generated from 119 MRI-
derived brain imaging features®, with the brain ProtBAG (ind. test MAE=4.86), constructed
using 53 brain tissue-enriched proteins, and found their performance comparable (P-
value=0.088) (Fig. 2f).
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Figure 2: Theimpact of key components on model performance and gener alizability via the
brain ProtBAG
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a) Different levels of protein organ specificity serve as a means of feature selection, which refers
to protein-coding genes with elevated expression levelsin a specific tissue or organ, categorized
asi) tissue-enriched genes, ii) tissue-enhanced genes, and iii) tissue-elevated genes
(https.//www.protei natlas.org/humanproteome/brain/human+brain ). The results showed that
training the neural network (NN) using proteins with lower organ specificity (i.e., incorporating
more proteins as features) resulted in poor generalizability ability. b) Theissue of poor
generalizability was alleviated by increasing the training sample size. In this experiment, we
expanded the training population to include a mixed cohort encompassing individuals with ICD-
based disease diagnoses™®?, rather than restricting it to the CN population, acommon practicein
the neuroimaging-based brain PhenoBAG. c¢) The loss of the validation dataset for training the
NN to predict the chronological age at epochs 500, 1000, 1500, 2000, and 2500. The MAE of the
age prediction task at epochs 500, 1000, 1500, 2000, and 2500. d) A more “tightly-fitted” model
did not result in higher statistical power to predict cognition (i.e., symbol digit substitution) than
a“moderately-fitted” model. The S coefficient from the linear regression model associating brain
ProtBAG with the cognitive score was evaluated at epochs 500, 1000, 1500, 2000, and 2500.
While Epoch 1000 exhibited atrend toward a larger effect size than Epoch 2500, the permutation

Cahan's B=0.15
.

—h
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test yielded a P-value of 0.34 (N=10,000 times). €) The brain ProtBAG modd trained on a mixed
population (comprising both CN and PT) demonstrated alower MAE compared to the model
trained exclusively on the CN population (sample size=4589). f) The brain PhenoBAG and
ProtBAG models achieved comparable performance using brain imaging and plasma protein
features, respectively.

The genetic overlap between ProtBAG and PhenoBAG
We first conducted GWAS for the 11 ProtBAGs to identify shared genomic loci and regions with
the 9 PhenoBAGs from our previous study (M ethod 5a).

For the 20 GWA Ss using European ancestry populations, we identified 129 (P-
value<5x10°%/11) and 308 (P-value<5x10°®/9) genomic locus-BAG pairsfor the 11 ProtBAGs
and 9 PhenoBAGs, respectively. We denoted the genomic loci using their top lead SNPs defined
by FUMA (Supplementary eNote 2) considering linkage disequilibrium (LD); the genomic loci
are presented in Supplementary eT able 3. We visually present the shared genomic loci
annotated by cytogenetic regions based on the GRCh37 cytoband (Fig. 3a). Manhattan and QQ
plots, as well as the genomic inflation factor (1) of the 11 ProtBAG and 9 PhenoBAG GWASs,
are presented in our MEDICINE portal (e.g., hepatic ProtBAG: https.//labs-
laboratory.com/medicine/hepatic_protbag). The LDSC intercept (LDSCy=1.02[0.99, 1.03]) of
the 11 ProtBAG GWASs was closeto 1, indicating no severe population stratification observed.
Extended Data Fig. 3 presents the trumpet plots of the effective allele frequency vs. the 8
coefficients of the 11 ProtBAG GWASs.

We then computed the pairwise genetic correlation (gc) and phenotypic correlation (pc)
between the 11 ProtBAGs and 9 PhenoBAGs (M ethod 5b). We observed strong associations
between the renal PhenoBAG with multiple ProtBAG at both genetic and phenotypic levels,
including the immune ProtBAG (g.=0.21; p=0.33) and pulmonary ProtBAG (g.=0.30; p.=0.28).
Additionally, within-organ associations were not consi stently observed; for instance, the eye
exhibited neither significant nor phenotypic correlations between the eye PhenoBAG and
ProtBAG (Fig. 3b). Supplementary eTable 4 presents detailed statistics on genetic and
phenotypic correlations.
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Extended Data Figure 3: Trumpet plots of the effect allele frequency vs. the B coefficient of
the 11 ProtBAG GWASs
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The trumpet plots display the inverse relationship between the alternative (effect) allele
frequency and the effect size (4 coefficient) for the 11 ProtBAGs. We present the independent
significant SNPs defined in FUMA. The dot size corresponds to the effect size, while the
trangparency of the dot is proportional to its statistical significance.

The polygenic risk score of ProtBAG ismor e predictive than PhenoBAG
We conducted split-sample GWAS to develop the PRS model, using splitl GWAS for training
and split2 GWAS for testing, ensuring the two splits had similar age and sex distributions. We
evaluated the predictive power of the PRS for the 11 ProtBAG and 9 PhenoBAG by measuring
the incremental R? gained when predicting the BAG with the PRS as a feature on top of age and
sex (Method 5c¢).

All the PRSs demonstrated significant associations with the BAGs (P-value<4.58x10°%%).
The 11 ProtBAG-PRSs showed larger predictive power (incremental R? ranging from 2.03% to
26.3%) than the 9 PhenoBAG-PRSs (incremental R? ranging from 2.01% to 5.91%) when
predicting the BAGs (Fig. 3c). For instance, the heart ProtBAG exhibited a higher Pearson’s
correlation coefficient with ProtBAG-PRS (r=0.18) compared to the heart PhenoBAG and
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PhenoBAG-PRS (r=0.12) (Fig. 3d). Supplementary eTable 5 presents detailed statistics of the
PRS analyses.
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Figure 3: Genetic overlap between PhenoBAG and ProtBAG and the prediction power of
their polygenicrisk score
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a) Cytogenetic regions where the genomic region was jointly linked to PhenoBAG and

ProtBAG. Bonferroni correction was applied to denote significant genomic loci associated with
PhenoBAG (P-value<5x10®/9) and ProtBAG (P-value<5x10%/9). b) Phenotypic (pc) and genetic
(gc) associations were evaluated between each pair of the 9 PhenoBAGs and 11 ProtBAGs.
Statistically significant associations after Bonferroni correction (0.05/9/11) are marked with an
asterisk (*), and within-organ associations (e.g., between the brain PhenoBAG and ProtBAG) are
highlighted with black squares. c) The bar plot shows the incremental R? (i.e., the R? of the
aternative model minusthat of the null model) for the polygenic risk score (PRS) of each
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PhenoBAG and ProtBAG. The PRS was calculated using the split2 target GWAS data, with
splitl GWAS data serving as the training set for the PRScs moddl. d) The scatter plot shows the
relationship between the heart ProtBAG, cardiovascular PhenoBAG, and their corresponding
PRS, including the P-value and Pearson’s r. Notably, the relationship between PRS and
PhenoBAG/ProtBAG islikely not linear (although alinear model was fitted), as PRS inherently
accounts for only a small proportion of the variance in the phenotypes of interest. GWAS results
are publicly disseminated at https.//|abs-laboratory.com/medicineg/.

The causal relationship between the 11 ProtBAGs, 9 PhenoBAGs, and 525 DEs

We employed two computational genomics methods to explore the causal relationships among
the 11 ProtBAGs, 9 PhenoBAGs, and 525 DEs: i) Bayesian colocalization (M ethod 5d) and ii)
Mendelian randomization (M ethod 5e).

Guided by the strong genetic correlation between the hepatic ProtBAG, hepatic
PhenoBAG (g.=0.32), and renal PhenoBAG (g.=0.29), we investigated the shared causal variants
between two traits via Approximate Bayes Factor colocalization® analyses. We demonstrated
one genomic locus where the hepatic ProtBAG shared a potential causal variant with both the
hepatic PhenoBAG and renal PhenoBAG (Fig. 4a). The shared causal variant (rs7212936 at
17p13.3) showed a PP.H4.ABF (Approximate Bayes Factor)=0.99, which examines the posterior
probability (PP) to evaluate the hypothesis of a single shared causal variant associated with both
traits within this genomic locus. This causal SVN was mapped to the SERPINF2 gene and had
prior linksto traits such as serum albumin levels and urate measurements. Other variants within
this locus have been connected to various traits, including blood protein levels and wai st-to-hip
ratio.

Using bi-directional, two-sample Mendelian randomization analyses, we subsequently
established a three-layer causal network that linked ProtBAG, PhenoBAG, and DE (Fig. 4b).
The ProtBAG2PhenoBAG network did not show any significant causal signals (P-value<0.05/10
exposure variables). The PhenoBAG2ProtBAG network found 9 causal relationships, including
from the renal PhenoBAG to the renal ProtBAG [P-value=4.11x103<0.05/11; OR (95%
Cl)=1.18 (1.05, 1.31); number of 1Vs=46] and from the hepatic PhenoBAG to the brain
ProtBAG [P-value=3.44x10">; OR (95% Cl)=1.12 (1.04, 1.21); number of IVs=41]. The
PhenoBAG2DE network found 41 causal relationships, including from the cardiovascular
PhenoBAG to hypertension [FinnGen code: 19 HY PTENS; P-value=3.00x10 '<0.05/455; OR
(95% CI)=1.73 (1.37, 2.17); number of 1Vs=37] and from the pulmonary PhenoBAG to chronic
obstructive pulmonary disease [FinnGen code: JI0_COPD; P-value=1.48x10"%; OR (95%
Cl)=1.79 (1.58, 2.03); number of 1Vs=58]. Finally, for the DE2PhenoBAG network, we found 40
causal relationships, including from AD (PGC) to the brain PhenoBAG [P-value=5.00x10
°<0.05/179; OR (95% C1)=1.06 (1.03, 1.09); number of I\Vs=20]. This was further strengthened
by the causal link from AD (FinnGen code: G6_AD_WIDE) to the brain PhenoBAG [P-
value=3.10x10™; OR (95% CI)=1.10 (1.06, 1.14); number of 1Vs=8], aswell as other PhenoBAG
(e.g., immune and renal PhenoBAGs) (Fig. 4b). We highlighted a causal pathway connecting
three layers. obesity—renal PhenoBAG—rena ProtBAG. Obesity (FinnGen code:

E4 OBESITY) demonstrated a positive causal relationship with the renal PhenoBAG [P-
value=2.18x10%; OR (95% Cl)=1.11 (1.07, 1.15); number of 1Vs=19], which subsequently
exerted a causal effect on the renal ProtBAG [P-value=4.11x10"%;, OR (95% Cl)=1.18 (1.05,
1.31); number of 1Vs=46], among other ProtBAGs (i.e., eye, immune, male reproductive, and
pulmonary) (Fig. 4b).
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Mendelian randomization relies on stringent assumptions that can sometimes be violated.
We conducted comprehensive sensitivity analyses for the significant signals identified to
scrutinize this. Extended Data Fig. 4 provides the results of these analyses for the
abovementioned causal pathway, with a detailed discussion available in Supplementary eNote
3. Detailed statistics for all five estimators are presented in Supplementary eT able 6, and the
results of the sensitivity analyses are presented in Supplementary eFolder 1.
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Figure 4: Casual relationship between ProtBAG, PhenoBAG, and disease endpoints
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a) Genetic colocalization was evidenced at one locus (17p13.3) between the hepatic ProtBAG,
hepatic PhenoBAG, and renal PhenoBAG. The signed PP.H4.ABF (>0.8) denotes the posterior
probability (PP) of hypothesis H4, which suggests that both traits share the same causal SNP
(rs7212936). Representative GWAS hits are annotated based on previous studies available on the
NHGRI-EBI GWAS Catalog. b) We constructed a three-layer (ProtBAG-PhenoBAG-DE) causal
network by employing bi-directional two-sample Mendelian randomization, following a rigorous
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quality control procedure to select exposure and instrumental variables (number of 1Vs>7),
corrected for multiple comparisons (based on either the number of exposure or outcome
variables whichever is larger), and performed sensitivity analyses (e.g., horizontal pleiotropy and
removing overlap populations) to scrutinize the robustness of our results. Four causal networks
were analyzed: i) ProtBAG-to-PhenoBAG, ii) PhenoBAG-to-ProtBAG, iii) PhenoBAG-to-DE,
and iv) DE-to-PhenoBAG. Notably, the ProtBAG GWASs (N>40,000) were underpowered
compared to the PhenoGWASs (N>11,000 for body PhenoBAG), providing no evidence of
established causality from ProtBAG to PhenoBAG; Instrumental variables were selected via
clumping for these genome-wide significant SNPs considering LD. The arrows indicate the
direction of the established causal relationship from the exposure variable to the outcome
variable. The interactive network visualization is also available at https./labs-
laboratory.com/medicine/protbag_mr. Abbreviations: DE: disease endpoint; LD: linkage
disequilibrium. It is crucial to approach the interpretation of these potential causal relationships
with caution despite our thorough efforts in conducting multiple sensitivity checks to assess any
potential violations of underlying assumptions.
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Extended Data Figure 4: Sensitivity check analysesfor the causal pathway of
“ obesity—renal PhenoBAG—renal ProtBAG”
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a) Scatter plot for the MR effect sizes of the SNP-obesity association (x-axis, log OR) and the
SNP-renal PhenoBAG associations (y-axis, log OR) with standard error bars. The dopes of the
five lines correspond to the causal effect sizes estimated by the five MR estimators, respectively.
b) Forest plot for the single-SNP MR results. Each dot represents the MR effect (log OR)), and
the error bar displays the 95% CI for Obesity on renal PhenoBAG using only one SNP; the red
line shows the MR effect using all SNPs together for IVW and MR Egger estimators. c) Leave-
one-SNP-out analysis of obesity on renal PhenoBAG. Each dot represents the MR effect (log
OR), and the error bar displays the 95% CI by excluding that SNP from the analysis. Thered line
depictsthe IVW estimator using all SNPs. d) Funnel plot for the relationship between the causal
effect of obesity on renal PhenoBAG. Each dot represents MR effect sizes estimated using each
SNP as a separate instrument against the inverse of the standard error of the causal estimate. €)
Scatter plot for the MR effect sizes of the SNP-renal PhenoBAG association (x-axis, log OR) and
the SNP-renal ProtBAG associations (y-axis, SD units) with standard error bars. The slopes of
the five lines correspond to the causal effect sizes estimated by the five MR estimators,
respectively. f) Forest plot for the single-SNP MR results. Each dot represents the MR effect (log
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OR)), and the error bar displays the 95% CI for renal PhenoBAG on renal ProtBAG using only
one SNP; the red line shows the MR effect using all SNPs together for IVW and MR Egger
estimators. g) Leave-one-SNP-out analysis of renal PhenoBAG on renal ProtBAG. Each dot
represents the MR effect (log OR), and the error bar displays the 95% CI by excluding that SNP
from the analysis. Thered line depicts the IVW estimator using all SNPs. h) Funnel plot for the
relationship between the causal effect of renal PhenoBAG on renal ProtBAG. Each dot
represents MR effect sizes estimated using each SNP as a separate instrument against the inverse
of the standard error of the causal estimate.

Theclinical promise of the 11 ProtBAGs, 9 PhenoBAGs, and 20 PRSs

We demonstrate the clinical promise of the 11 ProtBAGs, 11 ProBAG-PRSs, 9 PhenoBAGs, and
9 PhenoBAG-PRSs in predicting various clinical outcomes through binary classification and
survival analysis: i) the classification of 14 systemic disease categories and ii) the risk of
mortality (M ethod 6a-b).

We assessed the prediction ability of support vector machines (SVM) at the individual
level to classify the 14 disease categories (M ethod 6a). The highest performance was observed
for the respiratory disease category (ICD-codes: J; balanced accuracy (BA)=0.62). The PRS and
ProtBAG individually exhibited lower predictive accuracy for disease categories than
PhenoBAG. Furthermore, combining all three feature sets failed to outperform the PhenoBAG
alone (Fig. 5a). Adding age and sex enhanced the classification accuracy (Supplementary
eFigure 1). Furthermore, we used the circulatory system disease categories (ICD code: 1) asan
example (Fig. 5b) and demonstrated that adding cross-organ features can improve classification
performance. The full evaluation metrics of the cross-validated results are presented in
Supplementary eTable 7.

We also used the 40 BAGs to predict mortality risk usng UKBB data (M ethod 6b). Our
analysis revealed that 24 BAGs, including ProtBAGs, PhenoBAGs, and their PRSs, showed
significant associations (P-value<0.05/9/11) with mortality. The brain ProtBAG showed the
highest mortality risks [HR (95% C1)=1.58 (1.54, 1.63); P-value=7.09x10™""°], followed by the
immune ProtBAG [HR (95% Cl)=1.44 (1.40, 1.48); P-value=3.07x10™"®], and pulmonary
ProtBAG [HR (95% C1)=1.43 (1.40, 1.47); P-value=1.98x10"°]. Among the 9 PhenoBAGs, the
renal PhenoBAG [HR (95% C1)=1.22 (1.21, 1.24); P-value=1.85x10%? and brain PhenoBAG
[HR (95% Cl)=1.21 (1.14, 1.30); P-value=8.63x10"°] showed the highest risks. For the 20 PRSs,
the highest mortality risk was achieved with the heart ProtBAG-PRS [HR (95% CI)=1.13 (1.10,
1.16); P-value=1.99x10™*® (Fig. 5¢). Given the population differences among ProtBAGs,
PhenoBAGs, and PRSs, comparing hazard ratios (HR) directly is not advisable, as variationsin
baseline hazard could affect the interpretation. We conducted a cumulative prediction analysis
based on the substantial associations identified in the 22 significant BAGs (excluding the brain
and eye PhenoBAGs due to their limited sample sizes). This analysis demonstrated that
combining these features provided additional predictive power beyond age and sex, achieving an
average concordance index of 0.76 = 0.014 (Fig. 5d). The brain and immune ProtBAGs
contributed most significantly to this improvement. Comprehensive statistics, including HRs, P-
values, and sample sizes, are available in Supplementary eTable 8.

Figure5: ProtBAG, PhenoBAG, and their PRS predict systemic disease categories and
mortality
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a) The classification balanced accuracy (BA) for 14 ICD-based disease categories was eval uated
using PRS, ProtBAG, and PhenoBAG as features within a support vector machine (SVM)
framework employing a nested cross-validation (CV) approach (training/validation/test datasets).
Balanced accuracy results from the CV are presented, with additional metrics provided in the
Supplement. Overall, PhenoBAG demonstrated greater predictive power than other omics data,
and smply combining ProtBAG, PhenoBAG, and PRS did not enhance classification
performance. The brain and eye PhenoBAG were excluded because merging them with the
populations of other features resulted in a very small sample size (N<1000). b) The cumulative
inclusion of organ-specific features enhanced classification performance in predicting circulatory

system diseases (ICD code: 1). The* symbol indicates statistical significance (<0.05) from a
two-sample t-test comparing CV test accuracy between two SVM models; however, a standard t-
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test isliberal® and should be interpreted cautiously. c) ProtBAG, PhenoBAG, and their PRS
show significant associations with the risk of mortality. Age and sex were included as covariates
in the Cox proportional hazard model. The symbol * indicates significant results that survived
the Bonferroni correction (<0.05/9/11). It isimportant to note that the population sample sizes
for ProtBAG and PhenoBAG differ, making their HRs not directly comparable. d) The
significant ProtBAG, PhenoBAG, and PRS were cumulatively included as features for mortality
risk prediction. The* symbol indicates statistical significance (<0.05) from a two-sample t-test
comparing results between two Cox models. HR: hazard ratio; Cl: concordance index.
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Discussion

This study systematically benchmarks the age prediction performance across 11 multi-organ
ProtBAGs, revealing insightsinto the factors influencing model performance and
generalizability to unseen data. Inspired by common practices in brain age research®, we
introduced critical methodological considerations to enhance rigor and clinical interpretability in
multi-organ aging research. Subsequently, we comprehensively compared the genetic overlap
between the 11 multi-organ ProtBAGs and the 9 PhenoBAGs. By constructing a three-layer
causal network, we connected genetics, proteomics, imaging/phenotypic endophenotypes, and
disease outcomes, providing an integrative framework for understanding these complex
interactions. Finally, we delivered compelling evidence of the clinical potential of the ProtBAGs,
PhenoBAGs, and their PRSs in predicting disease categories and mortality, positioning these
biomarkers as powerful tools for trandational medicine.

Reproducible and systematic evaluation of ProtBAG generation

We addressed several critical consderations for developing and applying ProtBAG. First, we
emphasized the importance of age bias correction, a technigque that enhances the clinical
relevance of ProtBAG models. In neuroimaging-based brain age research, age bias correction has
been extensively investigated™*®*°, We provided specific scenarios using proteomics data to
emphasize the importance of practicing thisin ProtBAG. For instance, Oh et al.” and Argentieri
et al.*® did not explicitly correct this bias, although they included age as a covariate in their
downstream association analyses.

Our findings also demonstrated the significance of biologically-driven feature selection in
aleviating overfitting. Focusing on organ-specific proteins, such as brain tissue-enriched
proteins, we achieved better generalizability to unseen data than models using broader, less
specific protein sets. Methodol ogically-driven feature selection algorithms, such as the Boruta
algorithm used by Argentieri et al.’®, offer valuable tools for refining predictive models.
However, several critical considerations must be addressed. First, complex feature selection
should be incorporated within the (nested) cross-validation framework to prevent potential "data
leakage," as highlighted in prior research on AD classification®. Second, integrating feature
selection within cross-validation can complicate the application of trained models to unseen data,
as the features selected may vary across different folds. Moreover, increasing the training sample
size reduced overfitting, emphasizing the importance of large and diverse training populations
for enhancing model performance. However, diseased populations may obscure clinical
interpretation, and increased data heterogeneity remains a critical area for further investigation®”.
In addition, we noted that a tighter modd fit, reflected in lower MAE, does not necessarily
equate to stronger clinical associations, as shown in our analysis of cognitive prediction using the
brain ProtBAG. This observation aligns with findings from a previous study that reported similar
results using neuroimaging-derived brain age models®.

The genetic overlap and associations between the 11 ProtBAGs, 9 PhenoBAGs, and 525
DEs

Our findings underscore the substantial genetic overlap between ProtBA Gs and PhenoBAGS,
offering perspectives on the shared and distinct genetic architectures underlying proteomics-
driven and phenotypic aging profiles. The identification of hundreds of significant genomic loci
linked to these BAGs, along with strong cross-omics and cross-organ genetic correlations,
emphasi zes the interconnected nature of systemic and organ-specific processesin aging™>>*.
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Notably, the observed associations, such as those between the renal PhenoBAG and immune and
pulmonary ProtBAGs, suggest the existence of genetic networks that transcend traditional organ
boundaries. Our previous research®! explored the genetic overlap across organs among the 9
PhenoBAGs. Building on that foundation, the current study expands this scope by integrating 11
ProtBAGs with cross-omics data spanning multiple organs, offering a comprehensive multi-scale
framework for understanding human aging and disease.

The superior predictive performance of ProtBAG-PRSs compared to PhenoBAG-PRSs
underscores the potential of proteomics-based approaches to advance precision medicinein
genetic aging research™®***% The observed differences suggest that ProtBAG may capture
distinct genetic signals with stronger biological relevance. This supports the growing recognition
of proteomics as a critical component in aging studies, offering deeper insights into novel
biomarkers and pathways that may remain elusive through traditional phenotypic analyses. Since
proteomicsis more closely linked to the underlying genetics and etiology of aging, it offersa
valuable molecular layer for studying human aging.

Causal inference analyses provided further insightsinto the intricate relationships
between BAGs and DEs. The colocalization signal of a shared causal variant in the hepatic and
renal BAGs exemplifies how integrating proteomic and phenotypic dimensions can uncover
biologically relevant loci with translational potential. Similarly, the causal pathway linking
obesity, renal PhenoBAGs, and renal ProtBAGs highlights the systemic impact of metabolic
factors on organ-specific aging processes. These findings emphasi ze our understanding of how
systemic and organ-specific factors drive age-related phenotypes and diseases.

In summary, we demonstrated the value of integrative analyses for BAGs for uncovering
the genetic and causal underpinnings of aging across multiple scales. Expanding sample sizes
and incorporating diverse ancestries will be critical to enhancing the generalizability of these
findings. In addition, exploring the functional consequences of shared loci and causal pathways
may provide actionable insights for therapeutic interventions targeting age-related conditions™.

The prediction power of the 11 ProtBAGs, 9 PhenoBAGs, and their PRSs
The observed differences in predictive power for systemic disease categories between
PhenoBAG, ProtBAG, and PRS can be attributed to the nature of the data we integrate and how
they relate to disease categories versus mortality outcomes. For disease category prediction,
PhenoBAG, which incorporates phenotypic traits directly linked to specific diseases, is likely
more predictive because these traits often represent the clinical manifestation of disease, offering
immediate and tangible insightsinto disease risk. Clinical features such as biomarkers, imaging
data, and medical history are more directly associated with disease effects, which makes
phenotypic data more informative for predicting disease outcomes. In contrast, PRS, based on
genetic predisposition, and ProtBAGs, which rely on proteomic data, may not effectively capture
disease-specific features. In particular, the current study focused exclusively on common genetic
variants, excluding rare ones typically associated with larger effect sizes*. These omics layers
provide broader insightsinto genetic risk and molecular pathways, but their relationshipsto
specific disease categories may be more complex and indirect, making them less predictive for
disease classfication. Similarly, arecent study showed that multi-omics data and biomarkers can
be effectively integrated to outperform PRSin disease predictions®.

For mortality prediction, however, ProtBAG and PhenoBAGs show strong predictive
power. Thisislikely because acomplex interplay of molecular and clinical factors influences
mortality. ProtBAG, which captures proteomic profiles, offers a more direct measure of the
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molecular processes that underlie aging and disease, such as inflammation, cellular stress, and
metabolic dysfunction. These processes are key contributors to mortality, especially in aging
populations'®*. PhenoBAG, incorporating clinical traits, also reflects the cumulative effects of
health deterioration and is strongly correlated with mortality outcomes™. PRS, while valuable for
predicting genetic susceptibility, may not fully capture the dynamic and multifactorial nature of
mortality risk, which involves genetic predisposition, lifestyle factors, physiological markers,
and environmental factors™.

Interestingly, combining multi-omics BAGs did not significantly improve disease
prediction, suggesting that integrating multiple omic layers does not necessarily lead to enhanced
performance for disease categories. This may be because disease prediction requires biomarkers
specifically relevant to each disease or the broad category, and the multi-omics approach may
still lack the necessary disease-specific biomarkers®. However, when predicting mortality, the
multi-organ BAGs and PRS improved prediction, highlighting the importance of integrating
different biological layers across multiple organs. Mortality is a more complex outcome that
involves systemic processes across the entire body, making multi-organ and multi-omic
approaches more effective. This suggests that combining various molecular layers across
organs/omics for comprehensive risk prediction is crucial for capturing the full spectrum of
biological processes that influence aging and mortality.

Outlook

This study investigates several pivotal aspects of biological age research. Future research should
expand on this foundation by integrating epigenetic, transcriptomic, and metabolomic data. This
will enrich the causal pathways from genetics to disease outcomes, providing amore holistic

view of human aging and disease™®*’.
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M ethods

Method 1: The MULTI consortium

The MULT]I consortium is an ongoing initiative to integrate and consolidate multi-organ data
(e.g., brain and heart MRI and eye OCT) with multi-omics data, including imaging, genetics, and
proteomics. Building on existing consortia and studies, MULTI aimsto curate and harmonize the
datato model human aging and disease across the lifespan. This study used individual-level and
summary-level multi-omics data from UKBB, FinnGen, and PGC to derive the multi-omics and
multi-organ BAGs. Supplementary eT ablel details the sample characteristics.

UK Biobank

UKBB™ is a population-based research initiative comprising around 500,000 individuals from
the United Kingdom between 2006 and 2010. Ethical approval for the UKBB study has been
secured, and information about the ethics committee can be found here:
https.//www.ukbiobank.ac.uk/learn-more-about-uk-biobank/governance/ethi cs-advisory-
committee. This study used brain MRI, eye OCT, and clinical phenotypes (e.g., physiological
and physical biomarkers) to derive the 9 PhenoBAGs; our previous studies™? detailed the
generation and the phenotypes used for each organ-specific PhenoBAGs. The 11 ProtBAGs were
derived from 2448 plasma proteomics data derived from the Olink platform. Imputed genotype
data covering the populations of ProtBAG and PhenoBA G were used for all genetic analyses.

FinnGen

The FinnGen® study is alarge-scale genomics initiative that has analyzed over 500,000 Finnish
biobank samples and correlated genetic variation with health data to understand disease
mechanisms and predispositions. The project is a collaboration between research organizations
and biobanks within Finland and international industry partners. For the benefit of research,
FinnGen generously made their GWAS findings accessible to the wider scientific community
(https.//www.finngen.fi/en/access results). This research utilized the publicly released GWAS
summary statistics (version R9), which became available on May 11, 2022, after harmonization
by the consortium. No individual data were used in the current study.

FinnGen published the R9 version of GWAS summary statistics via REGENIE software
(v2.2.4)*, covering 2272 DEs, including 2269 binary traits and 3 quantitative traits. The GWAS
model encompassed covariates like age, sex, theinitial 10 genetic principal components, and the
genotyping batch. Genotype imputation was referenced on the population-specific SISu v4.0
panel. We included GWAS summary statistics for 521 FinnGen DEsin our analyses.

Psychiatric Genomics Consortium

PGC* is an international collaboration of researchers studying the genetic basis of psychiatric
disorders. PGC aimsto identify and understand the genetic factors contributing to various
psychiatric disorders such as schizophrenia, bipolar disorder, major depressive disorder, and
others. The GWAS summary statistics were acquired from the PGC website
(https://pgc.unc.edu/for-researchers/downl oad-results/), underwent quality checks, and were
harmonized to ensure seamless integration into our analysis. No individual data were used from
PGC. Each study detailed its specific GWAS models and methodologies, and the consortium
consolidated the release of GWAS summary statistics derived from individual studies. In the
current study, we included summary datafor 4 brain diseases for which allele frequencies were
present.
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Method 2: Phenotype analysesto derive the 9 PhenoBAGs

We derived the 9 PhenoBAGs in our previous study™?, and we also present the final included
phenotypes for the 9 human organs in Supplementary eTable 1. In summary, we selected brain
MRI, physical and physiological measures indicative of key organ systems' function, structure,
or general health, including the brain (e.g., brain volume), cardiovascular (e.g., pulserate),
pulmonary (e.g., peak expiratory flow), musculoskeletal (e.g., BMI), immune (e.g., leukocytes),
renal (e.g., glomerular filtration), hepatic (e.g., albumin), and metabolic systems (e.g., lipid).
Data were processed to ensure reliability: averages were calculated for bilateral measures (e.g.,
handgrip strength), repeated tests (e.g., blood pressure), or the best performance from multiple
attempts (e.g., lung function via spirometry). The eye PhenoBAG was subsequently derived in
our follow-up study using eye OCT data’.

To derive the 9 PhenoBAGs, we used a linear support vector regressor (SVR) and fit the
organ-specific phenotypes as features with a 20-fold cross-validation procedure. Optimization of
the SVR’s hyperparameters (box constraint, kernel function, and ¢) did not substantially improve
performance. Critically, the SVR models were trained exclusively on healthy individuals,
defined as those without self-reported or healthcare-documented lifetime chronic medical
conditions. This approach supports the clinical interpretation of the trained models when applied
to disease groups, with deviations in these PhenoBAGs presumed to reflect specific pathological
factors.

Method 3: Proteomics analysesto derivethe 11 ProtBAGs

(a) Additional quality checks: We downloaded the original data (Category code: 1838), which
were analyzed and made available to the community by the UKB-PPP*. The initial quality
check was detailed in the origina work™; we performed additional quality check steps as below.
We focused our analysis on the first instance of the proteomics data ("instance'=0).
Subsequently, we merged the Olink files containing coding information, batch numbers, assay
details, and limit of detection (LOD) data (Category I1D: 1839) to match the ID of the proteomics
dataset. We eliminated Normalized Protein eXpression (NPX) values below the protein-specific
LOD. Furthermore, we restricted our analysis to proteins with sample sizes exceeding 10,000.
Thisresulted in 2448 proteinsin 43,498 participants.

(b) Missing protein NPX imputation: We observed a substantial missing rate for the 2448
proteins (1229 proteins with > 10% missing values), which made it challenging to employ
downstream Al/ML models for age prediction because many of these models do not directly
handle missing features. We used the AutoComplete®® deep learning algorithm to impute the
missing proteinsto overcome this. In the original paper, the authors have thoroughly evaluated
the impact of the missing rate on the imputation accuracy. Here, we followed the same approach
proposed in the paper, assessed the impact of the probability of an individual’s being masked
during training, and found that thisimpact is minimal for the imputation accuracy
(Supplementary eFigure 2). We observed a mean R value of 0.45 between the imputed values
and the ground truth for the 2448 proteins, showing improved model performance compared to
the original study on cardiometabolic and psychiatric phenotypes (0.14<R?<0.30).

(c) Organ-specific profiles of the 2448 plasma proteins. We used the Human Protein Atlas
(HPA) project (https.//www.protei natlas.org/humanproteome/tissue) to profile the over-
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expression of a specific protein at both RNA-seq and protein levels. HPA highlights the
expression profiles of genesin human tissues at both the mMRNA and protein levels. Protein
expression data from 44 normal human tissue types were obtained through antibody-based
protein profiling using conventional and multiplex immunohistochemistry. Accompanying the
resource are annotated protein expression levels and all images of immunohistochemically
stained tissues. Protein data encompass 15,302 genes (76%) with available antibodies.
Additionally, mRNA expression data were generated through RNA sequencing (RNA-seq) of 40
different normal tissue types. In our primary analyses to derive the 11 organ-specific ProtBAGs,
we considered defining whether a protein is over-expressed in a particular organ/tissue using the
following criterion: tissue-enriched genes are characterized by mRNA expression levels at least
four times higher in the tissue or organ of interest compared to all other tissues. This approach
aligns with the definition employed by Oh et al.>, which relied solely on data from the Genotype-
Tissue Expression (GTEX) project. In contrast, the Human Protein Atlas (HPA) integrates
resources from multiple consortia, extending beyond GTEX data.

An important yet unexplored question is the relative lack of organ specificity in plasma
proteins circulating throughout the human body compared to clinical phenotypes, such as brain
MRI features. Many proteins are frequently over-expressed across multiple tissues or organs,
akin to the pleiotropic effects observed in genetics. This observation is biologically plausible, as
proteomicsis more closely linked to underlying genetic mechanisms, whereas clinical
phenotypes are more directly associated with disease endpoints. Additionally, Argentieri et al.*®
demonstrated through feature selection that 204 out of 2,897 proteins from the UKBB Olink
platform could accurately predict chronological age. However, the impact of protein organ-
specificity definitions on model overfitting remains an unresolved question. In this study, we
explored thisissue by systematically relaxing the organ-specific profiles of proteins under three
distinct scenarios. Using the brain ProtBAG as an example, we assessed how varying the number
of proteinsincluded in the training of AI/ML models influences performance and overfitting
phenomena.

e Tissue-enriched genes/proteins: At least four-fold higher mRNA level in the tissue of
interest than in other tissues (N=53 proteins).

e Tissue-enhanced genes/proteins: At least four-fold higher mRNA level in the tissue of
interest compared to the average level in all other tissues (N=146 proteins).

e Tissue-elevated genes/proteins: tissue-enriched genes (including group-enriched genes)
and tissue-enhanced genes (N=255 proteins).

(d) Three AI/ML models. We systematically benchmarked age prediction performance using 4
Al/ML models on multi-modal brain MRI featuresin our previous study®. Using the same
methodology, we assessed the performance of modelsin deriving the 11 ProtBAGs using two
linear approaches (Lasso regression and SVR) and one non-linear method (neural networks). For
the linear models, hyperparameter selection (e.g., the C parameter for SVR) was conducted
through nested, repeated hold-out cross-validation” with 50 repetitions (80% training/validation
and 20% testing). Nested cross-validation was not applied to the neural network due to the
impracticality of exhaustively exploring hyperparameter combinations.

(e) Population selections: To rigorously train the AI/ML models, we have split the CN data
(N=5089) into the following datasets (Supplementary eFigure 1 and eTable 1):
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e CN independent test dataset: 500 participants were randomly drawn from the CN
population;

e CN training/validation dataset: 80% of the remaining 4589 CN were used for the inner
loop 10-fold CV for hyperparameter selection;

e CN cross-validation test dataset: 20% of the remaining 4589 CN were used for the
outer loop 50 repetitions,

e PT dataset: 38,409 participants that have at least one ICD-10-based diagnosis.

Model evaluation metrics included mean absolute error (MAE) and Pearson’sr.
Importantly, consistent with our prior studies, only healthy control participants were included in
the training/validation dataset, while individuals with any disease diagnosis were reserved for the
independent test dataset.

Method 4: Influence of key componentsin deriving the brain ProtBAG

We systematically evaluated key factors influencing model performance using the brain
ProtBAG as a case study. These factorsincluded i) the choice of AI/ML models (i.e.,, SVR,
Lasso, and neural networks), ii) theimpact of age bias correction on downstream clinical
applications, such as group differences between CN and PT groups, iii) the effect of protein
organ specificity on model overfitting, comparing enriched, enhanced, and elevated gene
categories, iv) the influence of mode fitting tightness on cross-domain prediction, particularly
associations with cognitive outcomes at various epochs (i.e., 500, 1000, 1500, 2000, and 2500
epochs), and v) the impact of feature type on model performance, comparing brain imaging-
derived features with brain over-expressed plasma proteins. These analyses provide practical
guidance for using plasma proteins to develop ProtBA Gs while enhancing clinical
interpretability and methodological rigor.

Method 5: Genetic analyses

We used the imputed genotype data for all genetic analyses. Our quality check pipeline focused
on European ancestry in UKBB (6,477,810 SNPs passing quality checks), and the quality-
checked genetic data were merged with respective organ-specific populations for GWAS. We
summarize our genetic quality check steps. First, we skipped the step for family relationship
inference® because the linear mixed mode via fastGWA™ inherently addresses population
stratification, encompassing additional cryptic population stratification factors. We then removed
duplicated variants from all 22 autosomal chromosomes. Individuals whose genetically identified
sex did not match their self-acknowledged sex were removed. Other excluding criteriawere: i)
individuals with more than 3% of missing genotypes; ii) variants with minor allele frequency
(MAF; dosage mode) of lessthan 1%; iii) variants with larger than 3% missing genotyping rate;
iv) variants that failed the Hardy-Weinberg test at 1x10*. To further adjust for population
stratification,> we derived the first 40 genetic principle components using the FlashPCA

software™. Details of the genetic quality check protocol are described elsewhere® 332,

(&) GWAS:
We applied alinear mixed model regression to the European ancestry populations using
fastGWA>* implemented in GCTA%.

PhenoBAG GWAS: In our initial investigation, we conducted GWAS for the 9 PhenoBAGs
using alinear model in PLINK, with fastGWA employed as a sensitivity analysis. For
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consistency with the ProtBAG GWASs in this study, we used the fatGWA summary statistics
for the 9 PhenoBAGs in al post-GWAS analyses. The fatGWA GWAS accounted for key
confounders, including age, dataset status (training/validation/test or independent test), age-
sguared, sex, interactions of age with sex, and the first 40 genetic principal components. For the
brain BAG GWAS specifically, additional covariates for total intracranial volume and brain
position in the scanner were included. A genome-wide significance threshold (511 1100111/9),
was applied.

ProtBAG GWAS:. We used fastGWA to perform the 11 ProtBAGs, adjusting age, dataset status
(training/validation/test or independent test), age-squared, sex, interactions of age with sex,
systolic/diastolic blood pressure, BMI, waist circumstance, standing height, weight, and the first
40 genetic principal components. We applied a genome-wide significance threshold

(57x[1107 [7/11) to annotate the significant independent genomic loci.

Annotation of genomic loci: For all GWASs, genomic loci were annotated using FUMA®. For
genomic loci annotation, FUMA initially identified lead SNPs (correlation r? < 0.1, distance <
250 kilobases) and assigned them to non-overlapping genomic loci. The lead SNP with the
lowest P-value (i.e., the top lead SNP) represented the genomic locus. Further details on the
definitions of top lead SNP, lead SNP, independent significant SNP, and candidate SNP can be
found in Supplementary eMethod 1. For visualization purposesin Fig. 3, we have mapped the
top lead SNP of each locusto the cytogenetic regions based on the GRCh37 cytoband.

(b) Genetic correlation: We estimated the genetic correlation (gc) between each PhenoBAG-
ProtBAG pair using the LDSC software. We employed precomputed LD scores from the 1000
Genomes of European ancestry, maintaining default settings for other parametersin LDSC. It's
worth noting that LDSC corrects for sample overlap, ensuring an unbiased genetic correlation
estimate®®. We also computed the pairwise Pearson’sr correlation coefficient to understand
whether the genetic correlation largely mirrors the phenotypic correlation (pc). Statistical
significance was determined using Bonferroni correction (0.05/9/11).

(c) PRS calculation: PRS was computed using split-sample sensitivity GWASs (splitl and
split2) for the PhenoBAG and ProtBAG GWASs. The PRS weights were established using
splitl/discovery GWAS data as the base/training set, while the split2/replication GWAS
summary statistics served as the target/testing data. Both base and target data underwent rigorous
quality control procedures involving severa steps: i) excluding duplicated and ambiguous SNPs
in the base data; ii) excluding high heterozygosity samples in the target data; and v) eliminating
duplicated, mismatching, and ambiguous SNPs in the target data.

After completing the QC procedures, PRS for the split2 group was calculated using the
PRS-CS> method. PRC-CS applies a continuous shrinkage prior, which adjusts the SNP effect
sizes based on their LD structure. SNPs with weaker evidence are "shrunk” toward zero, while
those with stronger evidence retain larger effect sizes. This avoids overfitting and improves
prediction performance. No clumping was performed because the method takes LD into account.
The shrinkage parameter was not set, and the algorithm learned it via a fully Bayesian approach.

(d) Bayesian colocalization: We used the R package (coloc) to investigate the genetic
colocalization signals between two traits (i.e., hepatic ProtBAG vs. hepatic PhenoBAG, and
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hepatic ProtBAG vs. renal PhenoBAG) at each genomic locus. We employed the Fully Bayesian
colocalization analysis using Bayes Factors (col oc.abf). This method examines the posterior
probability (PP.H4.ABF: Approximate Bayes Factor) to evaluate hypothesis H4, which suggests
the presence of a single shared causal variant associated with both traits within a specific
genomic locus. To determine the significance of the H4 hypothesis, we set a threshold of
PP.H4.ABF>0.8%. All other parameters (e.g., the prior probability of p;2) were set as default. For
each pair of traits, the genomic locus (N>100 SNPs) was defined by default from FUMA for one
trait, and then the coloc package extracted and harmonized the GWAS summary statistics within
thislocusfor the other trait.

(e) Two-sample bidirectional Mendelian randomization: We constructed a multi-layer causal
network linking ProtBAG, PhenoBAG, and DE using a bi-directional Mendelian randomization
approach. In total, 4 bi-directional causal networks were established: i) ProtBAG2PhenoBAG, ii)
PhenoBAG2ProtBAG, iii) PhenoBAG2DE, and iv) DE2PhenoBAG. These networks used
summary statistics from our ProtBAG and PhenoBAG GWAS in the UKBB, the FinnGen®, and
the PGC™ study for the 525 DEs. For example, the ProtBAG2PhenoBAG causal network
employed the 11 ProtBAG as exposure variables and the 9 PhenoBAGs as outcome variables.
The systematic quality-checking procedures to ensure unbiased exposure/outcome variable and
instrumental variable (I1Vs) selection are detailed below.

We used a two-sample Mendelian randomi zation approach implemented in the
TwoSampleMR package® to infer the causal relationships within these networks. We employed
five distinct Mendelian randomization methods, presenting the results of the inverse variance
weighted (VW) method in the main text and the outcomes of the other four methods (Egger,
weighted median, simple mode, and weighted mode estimators) in the supplement. The
STROBE-MR Statement® guided our analyses to increase transparency and reproducibility,
encompassing the selection of exposure and outcome variables, reporting statistics, and
implementing sensitivity checks to identify potential violations of underlying assumptions. First,
we performed an unbiased quality check on the GWAS summary statistics. Notably, the absence
of population overlapping bias®® was confirmed, given that FinnGen and UKBB participants
largely represent populations of European ancestry without explicit overlap. PGC GWAS
summary data were ensured to exclude UKBB participants. For the ProtBAG2PhenoBAG and
PhenoBAG2ProtBAG networks from UKBB, we reran the ProtBAG GWAS and ensured no
overlapping populations with PhenoBAG. Furthermore, all consortia's GWAS summary statistics
were based on or lifted to GRCh37. Subsequently, we selected the effective exposure variables
by assessing the statistical power of the exposure GWAS summary statisticsin terms of
instrumental variables (1Vs), ensuring that the number of 1Vs exceeded 7 before harmonizing the
data. Crucially, the function "clump_data" was applied to the exposure GWAS data, considering
LD. The function "harmonise_data" was then used to harmonize the GWAS summary statistics
of the exposure and outcome variables. Bonferroni correction was applied to all tested traits
based on the number of effective ProtBAGs, PhenoBAGs, or DES, whichever was larger.

Finally, we conducted multiple sensitivity analyses. First, we conducted a heterogeneity
test to scrutinize potential violationsin the IV's assumptions. To assess horizontal pleiotropy,
which indicates the IV's exclusivity assumption®, we utilized a funnel plot, single-SNP
Mendelian randomi zation methods, and the Egger estimator. Furthermore, we performed a leave-
one-out analysis, systematically excluding one instrument (SNP/IV) at atime, to gauge the
sensitivity of the resultsto individual SNPs.
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Method 6: Prediction analysesfor 14 systemic disease categories and the risk of mortality
We investigated the clinical promise of the 11 ProtBAGs, 9 PhenoBAGs, and their PRSsin two
sets of prediction analyses: i) classification tasks for predicting 14 systemic disease categories
based on the ICD-10 code (Supplementary eTable 7) and ii) survival analysisfor therisk of all-
cause mortality.

(a) Support vector machinesto classify patients of disease categoriesvs. controls: We
applied SVM with ProtBAG, PhenoBAG, and their PRS, implementing a nested cross-validation
procedure'’ to optimize the hyperparameter C and predict individual-level outcomes. Unlike
previous studies®, we did not set aside an independent test dataset due to the relatively small
sample size of the control population without any disease diagnoses (N=1651); patients for each
disease category were defined by the ICD-10 code (Field-ID: 41270). Brain and eye PhenoBAGs
were excluded from the analysis due to insufficient sample sizes after integrating all features.
Figure 5a-b reports the balanced accuracy (BA) obtained from the nested test data. The nested
cross-validation procedure involved an outer loop repeated 50 times, with 80% of the data
randomly allocated for training/validation and 20% for testing. Within the inner loop, the
training/validation data underwent a 10-fold split for model optimization. Supplementary
eTable 7 provides detailed metrics, including balanced accuracy, sensitivity, specificity, negative
predictive value, positive predictive value, and sample sizes for the training/validation/test
datasets.

(b) Survival analysisfor mortality risk: we employed a Cox proportional hazard model while
adjusting for covariates(i.e., age and sex) to test the associations of the 11 ProtBAGs, 9
PhenoBAGs, and their PRS with all-cause mortality. The covariates were included as additional
right-side variables in the moddl. The hazard ratio (HR), exp(5r), was calculated and reported as
the effect size measure that indicates the influence of each biomarker on the risk of mortality. To
train the model, the "time" variable was determined by calculating the difference between the
date of death (Field ID: 40000) for cases (or the censoring date for non-cases) and the date
attending the assessment center (Field ID: 53). Participants who passed away after enrolling in
the study were classified as cases.
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Data Availability

The GWAS summary statistics corresponding to this study are publicly available on the
MEDICINE knowledge portal (https.//|abs-laboratory.com/medicine/). Our study used data
generated by the human protein atlas (HPA: https.//www.proteinatlas.org). GWAS summary data
for the DEs were downloaded from the official websites of FinnGen (R9:
https.//www.finngen.fi/en/access results) and PGC (https.//pgc.unc.edu/for-
researchers/download-results/). Individual data from UKBB can be requested with proper
registration at https.//www.ukbiobank.ac.uk/. Certain sensitive data (e.g., allele frequency
information) supporting the findings are also available from the author upon request.
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Code Availability

The software and resources used in this study are all publicly available:
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MLNI: https.//github.com/anbai 106/mini, ProtBAG generation and classification for
disease categories,

AutoComplete: https.//github.com/sriramlab/AutoComplete, Proteomics imputation;
FUMA: https.//fuma.ctglab.nl/, Gene mapping, genomic locus annotation;

GCTA: https.//yanglab.westlake.edu.cn/software/gctal#Overview, fassGWA;

LDSC: https.//github.com/bulik/Idsc, genetic correlation

TwoSampleMR: https://mrcieu.github.io/TwoSampleM R/index.html, Mendelian
randomi zation;,

PRScs: https://github.com/getian107/PRScs, PRS calculation;

Lifelines: https:/lifelines.readthedocs.io/en/latest/, Survival analysis;

coloc: https.//github.com/chrlswallace/coloc; Bayesian colocalization.
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