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Abstract 

Multi-organ biological aging clocks derived from clinical phenotypes and neuroimaging have 
emerged as valuable tools for studying human aging and disease1,2,3,4. Plasma proteomics 
provides an additional molecular dimension to enrich these clocks5. Here, we used 2448 plasma 
proteins from 43,498 participants in the UK Biobank to develop 11 multi-organ proteome-based 
biological age gaps (ProtBAG). We compared them to 9 multi-organ phenotype-based biological 
age gaps (PhenoBAG1) regarding genetics, causal associations with 525 disease endpoints (DE) 
from FinnGen and PGC, and their clinical promise to predict 14 disease categories and mortality. 
We highlighted critical clinical and methodological considerations for generating ProtBAG, 
including the need for age bias correction6 and addressing protein organ specificity to enhance 
model performance and generalizability. Genetic analyses revealed overlap between ProtBAGs 
and PhenoBAGs, including shared loci, genetic correlations, and colocalization signals. A three-
layer causal network linked ProtBAG, PhenoBAG, and DE, exemplified by the pathway of 
obesity→renal PhenoBAG→renal ProtBAG to holistically understand human aging and disease. 
Combining features across multiple organs improved predictions for disease categories and 
mortality. These findings provide a framework for integrating multi-omics and multi-organ 
biological aging clocks in biomedicine. All results are publicly disseminated at https://labs-
laboratory.com/medicine/. 
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Main 
Multi-organ biological aging clocks, derived from neuroimaging and clinical phenotypes, are 
increasingly being explored in clinical research and computational neuroscience as tools to 
understand human aging, disease, and mortality1,2,4,7. These clocks provide a comprehensive 
view of biological age, reflecting the functional and structural changes across different organs. 
While significant advancements have been made in leveraging phenotypic data for such models, 
there remains a growing interest in incorporating molecular-level data, such as plasma 
proteomics5, epigenetics8, and metabolomics9, to enrich the landscape of the multi-organ 
biological age. Plasma proteomics from different platforms (e.g., Olink10 and SomaScan11) offers 
the unique ability to identify and quantify proteins and post-translational modifications with high 
sensitivity, potentially uncovering novel insights into organ-specific aging and its relationship 
with health and disease12. 

Despite its promise, deriving proteome-based biological age biomarkers presents several 
challenges and unresolved questions. One common practice observed in neuroimaging-derived 
brain age is to correct the age bias in an age prediction model, which can distort associations 
between the biological age gap (BAG) and disease outcomes if not properly corrected13,14,6,15. 
That is, brain age tends to be overestimated for younger individuals and underestimated for older 
individuals, while predictions are most accurate for those whose ages are closer to the mean of 
the training dataset (Fig. 1b). Furthermore, the lack of organ specificity of plasma proteins 
(analogous to pleiotropy in genetics), where a protein is over-expressed in multiple organ tissues 
may complicate model development, leading to overfitting and reduced interpretability. Previous 
studies identified similar overfitting issues and addressed them by employing data-driven feature 
selection methods to mitigate the problem5,16. In addition, key factors that influence model 
performance and generalizability, such as the type of omics data, the sample size and population 
demographic and disease status of the training sample, and the balance between the closeness of 
model fit and the clinical power of BAG, have not been systematically evaluated. These 
challenges highlight the need for systematic and reproducible evaluations of proteome-derived 
BAGs (i.e., ProtBAG)17. Addressing these gaps is essential to unlocking the full potential of 
plasma proteomics in aging research and its clinical applications. 

Phenome-wide BAGs (PhenoBAG) and ProtBAG represent two essential aspects of 
human aging and disease causal pathways, connecting genetics→transcriptomics→proteomics 
(ProtBAG)→endophenotypes (PhenoBAG)→disease outcomes (DE). Our prior studies1,3 have 
examined the genetic architecture of 9 multi-organ PhenoBAG through genome-wide association 
studies (GWAS) and post-GWAS validations, such as genetic correlation18, polygenic risk 
scores19, and causal inference20. A comprehensive framework to explore the overlap and 
distinctions between ProtBAG and PhenoBAG is currently lacking. Addressing this gap requires 
connecting genetics, ProtBAG, PhenoBAG, and disease endpoints (DE). Such an integrative 
approach is essential for developing a holistic understanding of the causal pathways for potential 
therapeutic development. 

Multi-organ and multi-omics approaches21,3,1,22,23,7,24,5,25,26,27 are gaining prominence in 
modeling human aging and disease, driven by the hypothesis that integrating insights across 
multiple spatial and temporal scales better captures underlying disease-related neurobiological 
processes, thus enhancing diagnostic and prognostic biomarker discovery. For instance, Zhao et 
al.28 demonstrated improved cognitive prediction by integrating brain and heart MRI features 
with PRS. Similarly, our prior work on AI/ML-derived brain disease subtypes showed enhanced 
systemic disease prediction when combining these brain imaging-derived biomarkers with 
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PRS29. However, the potential of multi-omics and multi-organ BAGs as complementary 
biomarkers for disease and mortality remains unexplored. 

This study used 2448 Olink plasma proteins from 43,498 UK Biobank participants 
(UKBB and Supplementary eTable 1) to develop 11 organ-specific ProtBAGs (Method 1). We 
systematically compared the 11 ProtBAGs with 9 PhenoBAGs derived from our previous 
studies1,3 (Method 2-3). We evaluated the influence of key methodological components 
(Method 4) on model performance and clinical interpretation using the 11 ProtBAGs. 
Subsequently, we examine their genetic architecture and causal relationships with 525 DEs from 
FinnGen30 and PGC31 (Method 5). Finally, we assessed the potential of ProtBAGs, PhenoBAGs, 
and their PRSs for predicting disease categories and mortality (Method 6). All results and pre-
trained AI/ML models are publicly disseminated at the MEDICINE portal: https://labs-
laboratory.com/medicine/.  
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Results 
 
Biological age prediction performance of the 11 ProtBAGs derived from three AI/ML 
models 
To rigorously evaluate the performance of biological age prediction models, we partitioned the 
5089 healthy control (CN, without any pathologies) participants into the CN 
training/validation/test (N=4589) and independent test (ind. test; N=500) datasets. Extended 
Data Fig. 1 details this study's population selection and overall workflow. The CN training set 
was used for model development and nested cross-validation when applicable, while the 
independent test set provided an unbiased assessment of model performance (Supplementary 
eTable 1).  
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Extended Data Figure 1: Schematic diagram of the definition of populations to derive 
ProtBAG and overall analytic workflow of the study 

 
a) We first split the entire proteomics population in the UK Biobank into 5089 healthy control 
(CN) and 38,049 patient (PT) populations based on the ICD-10 code and other clinical history 
information. b) To derive the 11 ProtBAGs, we trained the three AI/ML models using only the 
CN training/validation/test population (N=4589) with a (nested) cross-validation procedure to 
select the optimal model. The CN independent test (ind. test; N=500) and the PT population 
(N=38,409) were used as independent test datasets. c) The analytical workflow of this study 
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involved deriving 11 ProtBAGs, integrating them with 9 PhenoBAGs, and conducting GWAS 
and post-GWAS analyses. The ProtBAGs, PhenoBAGs, and their PRSs were then evaluated for 
their predictive power across 14 systemic disease categories and mortality outcomes. 
 

When fitting the organ-specific proteins (Method 3) to three AI/ML models [i.e., Lasso 
regression, support vector regressor (SVR), and neural network (NN)], we observed marginal 
variability in model performance, with no single model consistently outperforming the others 
(Fig. 1a and Extended Data Fig. 2). For instance, the Lasso model outperformed NN and SVR 
for the hepatic ProtBAG (P-value < 2.27x10-6, though the standard t-test may be permissive32 in 
a complex cross-validation setting). On the other hand, the brain ProtBAG derived from the NN 
obtained a lower MAE than the Lasso regression and SVR model (P-value < 2.31x10-3). Across 
the different organ systems, the best model performance, before applying the age bias 
correction6, was achieved for the brain ProBAG via the NN (ind. test MAE=4.86; Pearson’s 
r=0.65); the highest MAE was achieved for the hepatic ProtBAG via the NN (MAE=10.19; 
r=0.61). Notably, we found instances where MAE and r coefficient were not aligned – a lower 
MAE (reflecting the magnitude of errors) did not always correspond to a higher r (indicating the 
strength and direction of predictions), as these metrics capture different aspects of the model 
performance and can serve as a potential bias-variance tradeoff and the nonlinear dynamics of 
proteomics aging33. For example, the hepatic ProtBAG predicted using the NN exhibited a high 
(r=0.61) despite a substantial MAE (MAE=10.19), while the eye ProtBAG using the same model 
achieved a lower MAE (MAE=6.78) but a much weaker (r=0.13). Supplementary eTable 2 
presents detailed statistics for the age prediction tasks before and after the age bias correction6. 
Extended Data Fig. 2 shows the Pearson’s r coefficient between predicted and chronological 
age. Supplementary eNote 1 presents the detailed tissue-enriched proteins in each organ to train 
the 11 multi-organ ProtBAGs in the primary results (Fig. 1a and Method 3c). 
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Figure 1: Three AI/ML models to derive the 11 multi-organ ProtBAGs  

 
a) Age prediction performance quantified by the mean absolute error (MAE for the independent 
test data) across 3 AI models and 11 organ systems using Olink plasma proteomics from UKBB. 
The Human Protein Atlas project determined the organ-specific proteins (i.e., enriched genes for 
at least four-fold higher mRNA level in the tissue of interest than other tissues; 
https://www.proteinatlas.org/humanproteome/tissue). The # symbol denotes the model achieving 
the lowest MAE; the * symbol indicates statistical significance (P-value<0.05) using a two-
sample t-test between two models. The dots present the model performance for the 50 
repetitions. b) Age prediction performance should be reported using metrics before applying age 
bias correction14. Age bias correction should be explicitly applied for downstream clinical 
applications, or age should be at least included as a covariate. Without applying age bias 
correction, we demonstrated that downstream group comparisons between the healthy control 
(CN: training/validation and independent test) group and the patient (PT) group could lead to 
biased conclusions. Abbreviations: Ind. test: independent test; BAG: biological age gap.  
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Extended Data Figure 2: The scatter plot between AI/ML-predicted biological age and 
chronological age before and after age bias correction  
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a) The scatter plot between the AI/ML-derived biological age and chronological age without 
applying the age bias correction. b) The scatter plot between the AI/ML-derived biological age 
and chronological age after the age bias correction is applied. 
 
Critical considerations for the use of ProtBAG 
Ikram recently discussed the use and misuse of biological aging in biomedicine from a clinical 
perspective34. This study provided additional critical considerations regarding methodology and 
clinical interpretation in deriving the 11 multi-organ ProtBAGs (Method 4).  
 
Age bias correction should be applied 
The age bias correction was commonly practiced in the brain imaging-derived age prediction 
model6, leading to a lower MAE and a higher r coefficient (Fig. 1b). One consideration in 
biological age research is reporting metrics before applying age bias correction6. Reporting 
uncorrected metrics ensures consistency in comparing model performance across studies, 
preventing potential confusion or misapplication from comparing model performance across 
studies. Additionally, age bias correction is necessary for downstream clinical associations to 
avoid false conclusions. In our analysis comparing brain ProtBAG between the healthy control 
(CN) and patient (PT) groups, we found that, without age bias correction14, the PT group 
exhibited a lower brain ProtBAG than the CN group (P-value=2.22 ×10-16). However, after 
applying age bias correction, we observed a reversed and more clinically plausible trend, with 
the PT group showing a higher brain ProtBAG than the CN group (P-value=0.045) (Fig. 1b). 
While including age as a covariate in downstream analyses is standard practice, applying age 
bias correction remains essential. 
 
Biologically-driven feature selection based on protein organ specificity can alleviate model 
overfitting 
Previous ProtBAG studies have demonstrated that feature selection algorithms can help mitigate 
model overfitting when applying AI/ML models to unseen test data. For example, Oh et al.5 
utilized L1 regularization in aggregated Lasso models to address overfitting. Similarly, 
Argentieri et al.16 applied the Boruta feature selection algorithm, revealing that the most relevant 
204 proteins achieved comparable performance to models trained on the complete set of 2,897 
proteins. 

Here, we demonstrated the generalizability of AI/ML models to independent test data 
diminished further when using less organ-specific proteins (e.g., tissue-elevated proteins) 
compared to a smaller subset of highly organ-specific proteins (e.g., tissue-enriched proteins). 
Method 3c details the definition of different levels of organ specificity. In our experiments, we 
found that restricting the model to brain tissue-enriched proteins (N=53) resulted in better model 
generalizability from the training/validation/test dataset to the independent test dataset (Cohen’s 
D=0.15) than the other two conditions. That is, this discrepancy was significantly larger when 
models included 146 tissue-enhanced proteins (P-value<2.22x10-16; Cohen’s D=1.24), 255 
tissue-elevated proteins (P-value<2.22x10-16; Cohen’s D=1.46), and all the 2448 proteins (P-
value<2.22x10-16; Cohen’s D=3.52) (Fig. 2a).  
 
Model overfitting can be alleviated by increasing the sample size of the training dataset 
Argentieri et al.16 reported an MAE of 2.24 years and an r of 0.94 in their holdout test data using 
UKBB data. Our approach differs from Argentieri et al. in several ways. For instance, we used 
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only 4,589 CN participants for training, whereas Argentieri et al. included a much larger training 
sample (i.e., 31,808 participants from the general population, including diseased participants). To 
investigate this, we performed additional analyses to evaluate the effect of training sample size 
(SS) on model generalizability, using 2,448 proteins as input features. We randomly selected 
varying SS values (4,589, 10,000, 20,000, 30,000, and 31,808) from the general population to 
train the model and assessed their generalizability to unseen data. As shown in Fig. 2b, 
increasing the SS improved the model's performance on independent test data, as measured by 
Cohen’s D values. 
 
A tightly-fitted model does not provide higher statistical power to predict cognition than a 
moderately-fitted model 
We underscore that the primary objective of developing ProtBAG, or any biological age 
biomarker, is not to achieve a highly tightly-fitted model (e.g., a lower MAE), as this can come 
at the cost of overfitting and reduced power for cross-domain prediction (Fig. 2c). Instead, the 
focus should be on ensuring that the ProtBAGs demonstrate strong statistical associations with 
cross-domain clinical variables, such as disease diagnoses and cognitive performance. Our 
experiments observed that the NN model achieved a lower MAE as the number of training 
epochs increased. However, when assessing the association between the brain ProtBAG and the 
symbol digit substitution score using a linear regression model, the model at Epoch 2500 
(|β|=0.027) demonstrated a smaller β coefficient compared to the model at Epoch 1000 
(|β|=0.035), albeit this did not achieve statistical significance with a permutation test (P-
value=0.34) (Fig. 2d).  
 
The demographics of the training dataset are important for model performance and clinical 
interpretation 
Critically, our AI/ML models (NN for the brain ProtBAG) were trained exclusively on a CN 
population. Our approach follows the practice in brain neuroimaging-based BAG models, where 
training is conducted on a healthy population to establish a normative reference for brain aging. 
This framework allows deviations in the brain PhenoBAG to be associated with pathological 
factors when the model is applied to external populations with pathologies, facilitating its clinical 
interpretability. 
 We conducted a comparative experiment with varied training populations to examine 
how disease diagnosis influences model performance and generalizability. Models trained on the 
CN group showed higher MAE and less overfitting, while mixed-population models achieved 
lower MAE with moderate overfitting. This may be due to increased heterogeneity/variability 
and extreme features tied to pathology, which risk capturing noise over generalizable signals. 
 
Neuroimaging-derived brain PhenoBAG and brain ProtBAG achieved comparable predictive 
performance 
Finally, we compared the brain PhenoBAG (ind. test MAE=4.47), generated from 119 MRI-
derived brain imaging features3, with the brain ProtBAG (ind. test MAE=4.86), constructed 
using 53 brain tissue-enriched proteins, and found their performance comparable (P-
value=0.088) (Fig. 2f). 
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Figure 2: The impact of key components on model performance and generalizability via the
brain ProtBAG 

 
a) Different levels of protein organ specificity serve as a means of feature selection, which refers 
to protein-coding genes with elevated expression levels in a specific tissue or organ, categorized 
as i) tissue-enriched genes, ii) tissue-enhanced genes, and iii) tissue-elevated genes 
(https://www.proteinatlas.org/humanproteome/brain/human+brain ). The results showed that 
training the neural network (NN) using proteins with lower organ specificity (i.e., incorporating 
more proteins as features) resulted in poor generalizability ability. b) The issue of poor 
generalizability was alleviated by increasing the training sample size. In this experiment, we 
expanded the training population to include a mixed cohort encompassing individuals with ICD-
based disease diagnoses16,5, rather than restricting it to the CN population, a common practice in 
the neuroimaging-based brain PhenoBAG. c) The loss of the validation dataset for training the 
NN to predict the chronological age at epochs 500, 1000, 1500, 2000, and 2500. The MAE of the 
age prediction task at epochs 500, 1000, 1500, 2000, and 2500. d) A more “tightly-fitted” model 
did not result in higher statistical power to predict cognition (i.e., symbol digit substitution) than 
a “moderately-fitted” model. The β coefficient from the linear regression model associating brain 
ProtBAG with the cognitive score was evaluated at epochs 500, 1000, 1500, 2000, and 2500. 
While Epoch 1000 exhibited a trend toward a larger effect size than Epoch 2500, the permutation 
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test yielded a P-value of 0.34 (N=10,000 times). e) The brain ProtBAG model trained on a mixed 
population (comprising both CN and PT) demonstrated a lower MAE compared to the model 
trained exclusively on the CN population (sample size=4589). f) The brain PhenoBAG and 
ProtBAG models achieved comparable performance using brain imaging and plasma protein 
features, respectively. 
 
The genetic overlap between ProtBAG and PhenoBAG 
We first conducted GWAS for the 11 ProtBAGs to identify shared genomic loci and regions with 
the 9 PhenoBAGs from our previous study (Method 5a).  

For the 20 GWASs using European ancestry populations, we identified 129 (P-
value<5x10-8/11) and 308 (P-value<5x10-8/9) genomic locus-BAG pairs for the 11 ProtBAGs 
and 9 PhenoBAGs, respectively. We denoted the genomic loci using their top lead SNPs defined 
by FUMA (Supplementary eNote 2) considering linkage disequilibrium (LD); the genomic loci 
are presented in Supplementary eTable 3. We visually present the shared genomic loci 
annotated by cytogenetic regions based on the GRCh37 cytoband (Fig. 3a). Manhattan and QQ 
plots, as well as the genomic inflation factor (λ) of the 11 ProtBAG and 9 PhenoBAG GWASs, 
are presented in our MEDICINE portal (e.g., hepatic ProtBAG: https://labs-
laboratory.com/medicine/hepatic_protbag). The LDSC intercept (LDSCb=1.02 [0.99, 1.03]) of 
the 11 ProtBAG GWASs was close to 1, indicating no severe population stratification observed. 
Extended Data Fig. 3 presents the trumpet plots of the effective allele frequency vs. the β 
coefficients of the 11 ProtBAG GWASs.  

We then computed the pairwise genetic correlation (gc) and phenotypic correlation (pc) 
between the 11 ProtBAGs and 9 PhenoBAGs (Method 5b). We observed strong associations 
between the renal PhenoBAG with multiple ProtBAG at both genetic and phenotypic levels, 
including the immune ProtBAG (gc=0.21; pc=0.33) and pulmonary ProtBAG (gc=0.30; pc=0.28). 
Additionally, within-organ associations were not consistently observed; for instance, the eye 
exhibited neither significant nor phenotypic correlations between the eye PhenoBAG and 
ProtBAG (Fig. 3b). Supplementary eTable 4 presents detailed statistics on genetic and 
phenotypic correlations. 
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Extended Data Figure 3: Trumpet plots of the effect allele frequency vs. the β coefficient of 
the 11 ProtBAG GWASs 

 
The trumpet plots display the inverse relationship between the alternative (effect) allele 
frequency and the effect size (β coefficient) for the 11 ProtBAGs. We present the independent 
significant SNPs defined in FUMA. The dot size corresponds to the effect size, while the 
transparency of the dot is proportional to its statistical significance. 
 
The polygenic risk score of ProtBAG is more predictive than PhenoBAG 
We conducted split-sample GWAS to develop the PRS model, using split1 GWAS for training 
and split2 GWAS for testing, ensuring the two splits had similar age and sex distributions. We 
evaluated the predictive power of the PRS for the 11 ProtBAG and 9 PhenoBAG by measuring 
the incremental R2 gained when predicting the BAG with the PRS as a feature on top of age and 
sex (Method 5c).  

All the PRSs demonstrated significant associations with the BAGs (P-value<4.58×10-81). 
The 11 ProtBAG-PRSs showed larger predictive power (incremental R2 ranging from 2.03% to 
26.3%) than the 9 PhenoBAG-PRSs (incremental R2 ranging from 2.01% to 5.91%) when 
predicting the BAGs (Fig. 3c). For instance, the heart ProtBAG exhibited a higher Pearson’s 
correlation coefficient with ProtBAG-PRS (r=0.18) compared to the heart PhenoBAG and 
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PhenoBAG-PRS (r=0.12) (Fig. 3d). Supplementary eTable 5 presents detailed statistics of the 
PRS analyses. 
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Figure 3: Genetic overlap between PhenoBAG and ProtBAG and the prediction power of 
their polygenic risk score 

 
a) Cytogenetic regions where the genomic region was jointly linked to PhenoBAG and 
ProtBAG. Bonferroni correction was applied to denote significant genomic loci associated with 
PhenoBAG (P-value<5x10-8/9) and ProtBAG (P-value<5x10-8/9). b) Phenotypic (pc) and genetic 
(gc) associations were evaluated between each pair of the 9 PhenoBAGs and 11 ProtBAGs. 
Statistically significant associations after Bonferroni correction (0.05/9/11) are marked with an 
asterisk (*), and within-organ associations (e.g., between the brain PhenoBAG and ProtBAG) are 
highlighted with black squares. c) The bar plot shows the incremental R2 (i.e., the R2 of the 
alternative model minus that of the null model) for the polygenic risk score (PRS) of each 
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PhenoBAG and ProtBAG. The PRS was calculated using the split2 target GWAS data, with 
split1 GWAS data serving as the training set for the PRScs model. d) The scatter plot shows the 
relationship between the heart ProtBAG, cardiovascular PhenoBAG, and their corresponding 
PRS, including the P-value and Pearson’s r. Notably, the relationship between PRS and 
PhenoBAG/ProtBAG is likely not linear (although a linear model was fitted), as PRS inherently 
accounts for only a small proportion of the variance in the phenotypes of interest. GWAS results 
are publicly disseminated at https://labs-laboratory.com/medicine/. 
 
The causal relationship between the 11 ProtBAGs, 9 PhenoBAGs, and 525 DEs 
We employed two computational genomics methods to explore the causal relationships among 
the 11 ProtBAGs, 9 PhenoBAGs, and 525 DEs: i) Bayesian colocalization (Method 5d) and ii) 
Mendelian randomization (Method 5e). 

Guided by the strong genetic correlation between the hepatic ProtBAG, hepatic 
PhenoBAG (gc=0.32), and renal PhenoBAG (gc=0.29), we investigated the shared causal variants 
between two traits via Approximate Bayes Factor colocalization35 analyses. We demonstrated 
one genomic locus where the hepatic ProtBAG shared a potential causal variant with both the 
hepatic PhenoBAG and renal PhenoBAG (Fig. 4a). The shared causal variant (rs7212936 at 
17p13.3) showed a PP.H4.ABF (Approximate Bayes Factor)=0.99, which examines the posterior 
probability (PP) to evaluate the hypothesis of a single shared causal variant associated with both 
traits within this genomic locus. This causal SVN was mapped to the SERPINF2 gene and had 
prior links to traits such as serum albumin levels and urate measurements. Other variants within 
this locus have been connected to various traits, including blood protein levels and waist-to-hip 
ratio. 

Using bi-directional, two-sample Mendelian randomization analyses, we subsequently 
established a three-layer causal network that linked ProtBAG, PhenoBAG, and DE (Fig. 4b). 
The ProtBAG2PhenoBAG network did not show any significant causal signals (P-value<0.05/10 
exposure variables). The PhenoBAG2ProtBAG network found 9 causal relationships, including 
from the renal PhenoBAG to the renal ProtBAG [P-value=4.11x10-3<0.05/11; OR (95% 
CI)=1.18 (1.05, 1.31); number of IVs=46] and from the hepatic PhenoBAG to the brain 
ProtBAG [P-value=3.44x10-3; OR (95% CI)=1.12 (1.04, 1.21); number of IVs=41]. The 
PhenoBAG2DE network found 41 causal relationships, including from the cardiovascular 
PhenoBAG to hypertension [FinnGen code: I9_HYPTENS; P-value=3.00x10-7<0.05/455; OR 
(95% CI)=1.73 (1.37, 2.17); number of IVs=37] and from the pulmonary PhenoBAG to chronic 
obstructive pulmonary disease [FinnGen code: J10_COPD; P-value=1.48x10-19; OR (95% 
CI)=1.79 (1.58, 2.03); number of IVs=58]. Finally, for the DE2PhenoBAG network, we found 40 
causal relationships, including from AD (PGC) to the brain PhenoBAG [P-value=5.00x10-

5<0.05/179; OR (95% CI)=1.06 (1.03, 1.09); number of IVs=20]. This was further strengthened 
by the causal link from AD (FinnGen code: G6_AD_WIDE) to the brain PhenoBAG [P-
value=3.10x10-5; OR (95% CI)=1.10 (1.06, 1.14); number of IVs=8], as well as other PhenoBAG 
(e.g., immune and renal PhenoBAGs) (Fig. 4b). We highlighted a causal pathway connecting 
three layers: obesity→renal PhenoBAG→renal ProtBAG. Obesity (FinnGen code: 
E4_OBESITY) demonstrated a positive causal relationship with the renal PhenoBAG [P-
value=2.18x10-8; OR (95% CI)=1.11 (1.07, 1.15); number of IVs=19], which subsequently 
exerted a causal effect on the renal ProtBAG [P-value=4.11x10-3; OR (95% CI)=1.18 (1.05, 
1.31); number of IVs=46], among other ProtBAGs (i.e., eye, immune, male reproductive, and 
pulmonary) (Fig. 4b).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2025. ; https://doi.org/10.1101/2025.02.06.25321803doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.06.25321803
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

Mendelian randomization relies on stringent assumptions that can sometimes be violated. 
We conducted comprehensive sensitivity analyses for the significant signals identified to 
scrutinize this. Extended Data Fig. 4 provides the results of these analyses for the 
abovementioned causal pathway, with a detailed discussion available in Supplementary eNote 
3. Detailed statistics for all five estimators are presented in Supplementary eTable 6, and the 
results of the sensitivity analyses are presented in Supplementary eFolder 1.  
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Figure 4: Casual relationship between ProtBAG, PhenoBAG, and disease endpoints 

 
a) Genetic colocalization was evidenced at one locus (17p13.3) between the hepatic ProtBAG, 
hepatic PhenoBAG, and renal PhenoBAG. The signed PP.H4.ABF (>0.8) denotes the posterior 
probability (PP) of hypothesis H4, which suggests that both traits share the same causal SNP 
(rs7212936). Representative GWAS hits are annotated based on previous studies available on the
NHGRI-EBI GWAS Catalog. b) We constructed a three-layer (ProtBAG-PhenoBAG-DE) causal 
network by employing bi-directional two-sample Mendelian randomization, following a rigorous 

he 
al 
us 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2025. ; https://doi.org/10.1101/2025.02.06.25321803doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.06.25321803
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

quality control procedure to select exposure and instrumental variables (number of IVs>7), 
corrected for multiple comparisons (based on either the number of exposure or outcome 
variables whichever is larger), and performed sensitivity analyses (e.g., horizontal pleiotropy and 
removing overlap populations) to scrutinize the robustness of our results. Four causal networks 
were analyzed: i) ProtBAG-to-PhenoBAG, ii) PhenoBAG-to-ProtBAG, iii) PhenoBAG-to-DE, 
and iv) DE-to-PhenoBAG. Notably, the ProtBAG GWASs (N>40,000) were underpowered 
compared to the PhenoGWASs (N>11,000 for body PhenoBAG), providing no evidence of 
established causality from ProtBAG to PhenoBAG; Instrumental variables were selected via 
clumping for these genome-wide significant SNPs considering LD. The arrows indicate the 
direction of the established causal relationship from the exposure variable to the outcome 
variable. The interactive network visualization is also available at https://labs-
laboratory.com/medicine/protbag_mr. Abbreviations: DE: disease endpoint; LD: linkage 
disequilibrium. It is crucial to approach the interpretation of these potential causal relationships 
with caution despite our thorough efforts in conducting multiple sensitivity checks to assess any 
potential violations of underlying assumptions.  
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2025. ; https://doi.org/10.1101/2025.02.06.25321803doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.06.25321803
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

Extended Data Figure 4: Sensitivity check analyses for the causal pathway of 
“obesity→renal PhenoBAG→renal ProtBAG” 

 
a) Scatter plot for the MR effect sizes of the SNP-obesity association (x-axis, log OR) and the 
SNP-renal PhenoBAG associations (y-axis, log OR) with standard error bars. The slopes of the 
five lines correspond to the causal effect sizes estimated by the five MR estimators, respectively. 
b) Forest plot for the single-SNP MR results. Each dot represents the MR effect (log OR)), and 
the error bar displays the 95% CI for Obesity on renal PhenoBAG using only one SNP; the red 
line shows the MR effect using all SNPs together for IVW and MR Egger estimators. c) Leave-
one-SNP-out analysis of obesity on renal PhenoBAG. Each dot represents the MR effect (log 
OR), and the error bar displays the 95% CI by excluding that SNP from the analysis. The red line 
depicts the IVW estimator using all SNPs. d) Funnel plot for the relationship between the causal 
effect of obesity on renal PhenoBAG. Each dot represents MR effect sizes estimated using each 
SNP as a separate instrument against the inverse of the standard error of the causal estimate. e) 
Scatter plot for the MR effect sizes of the SNP-renal PhenoBAG association (x-axis, log OR) and 
the SNP-renal ProtBAG associations (y-axis, SD units) with standard error bars. The slopes of 
the five lines correspond to the causal effect sizes estimated by the five MR estimators, 
respectively. f) Forest plot for the single-SNP MR results. Each dot represents the MR effect (log 
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OR)), and the error bar displays the 95% CI for renal PhenoBAG on renal ProtBAG using only 
one SNP; the red line shows the MR effect using all SNPs together for IVW and MR Egger 
estimators. g) Leave-one-SNP-out analysis of renal PhenoBAG on renal ProtBAG. Each dot 
represents the MR effect (log OR), and the error bar displays the 95% CI by excluding that SNP 
from the analysis. The red line depicts the IVW estimator using all SNPs. h) Funnel plot for the 
relationship between the causal effect of renal PhenoBAG on renal ProtBAG. Each dot 
represents MR effect sizes estimated using each SNP as a separate instrument against the inverse 
of the standard error of the causal estimate.  
 
The clinical promise of the 11 ProtBAGs, 9 PhenoBAGs, and 20 PRSs 
We demonstrate the clinical promise of the 11 ProtBAGs, 11 ProBAG-PRSs, 9 PhenoBAGs, and 
9 PhenoBAG-PRSs in predicting various clinical outcomes through binary classification and 
survival analysis: i) the classification of 14 systemic disease categories and ii) the risk of 
mortality (Method 6a-b). 

We assessed the prediction ability of support vector machines (SVM) at the individual 
level to classify the 14 disease categories (Method 6a). The highest performance was observed 
for the respiratory disease category (ICD-codes: J; balanced accuracy (BA)=0.62). The PRS and 
ProtBAG individually exhibited lower predictive accuracy for disease categories than 
PhenoBAG. Furthermore, combining all three feature sets failed to outperform the PhenoBAG 
alone (Fig. 5a). Adding age and sex enhanced the classification accuracy (Supplementary 
eFigure 1). Furthermore, we used the circulatory system disease categories (ICD code: I) as an 
example (Fig. 5b) and demonstrated that adding cross-organ features can improve classification 
performance. The full evaluation metrics of the cross-validated results are presented in 
Supplementary eTable 7. 

We also used the 40 BAGs to predict mortality risk using UKBB data (Method 6b). Our 
analysis revealed that 24 BAGs, including ProtBAGs, PhenoBAGs, and their PRSs, showed 
significant associations (P-value<0.05/9/11) with mortality. The brain ProtBAG showed the 
highest mortality risks [HR (95% CI)=1.58 (1.54, 1.63); P-value=7.09x10-176], followed by the 
immune ProtBAG [HR (95% CI)=1.44 (1.40, 1.48); P-value=3.07x10-181], and pulmonary 
ProtBAG [HR (95% CI)=1.43 (1.40, 1.47); P-value=1.98x10-156]. Among the 9 PhenoBAGs, the 
renal PhenoBAG [HR (95% CI)=1.22 (1.21, 1.24); P-value=1.85x10-252] and brain PhenoBAG 
[HR (95% CI)=1.21 (1.14, 1.30); P-value=8.63x10-9] showed the highest risks. For the 20 PRSs, 
the highest mortality risk was achieved with the heart ProtBAG-PRS [HR (95% CI)=1.13 (1.10, 
1.16); P-value=1.99x10-18 (Fig. 5c). Given the population differences among ProtBAGs, 
PhenoBAGs, and PRSs, comparing hazard ratios (HR) directly is not advisable, as variations in 
baseline hazard could affect the interpretation. We conducted a cumulative prediction analysis 
based on the substantial associations identified in the 22 significant BAGs (excluding the brain 
and eye PhenoBAGs due to their limited sample sizes). This analysis demonstrated that 
combining these features provided additional predictive power beyond age and sex, achieving an 
average concordance index of 0.76 ± 0.014 (Fig. 5d). The brain and immune ProtBAGs 
contributed most significantly to this improvement. Comprehensive statistics, including HRs, P-
values, and sample sizes, are available in Supplementary eTable 8. 
 
Figure 5: ProtBAG, PhenoBAG, and their PRS predict systemic disease categories and 
mortality 
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a) The classification balanced accuracy (BA) for 14 ICD-based disease categories was evaluated 
using PRS, ProtBAG, and PhenoBAG as features within a support vector machine (SVM) 
framework employing a nested cross-validation (CV) approach (training/validation/test datasets). 
Balanced accuracy results from the CV are presented, with additional metrics provided in the 
Supplement. Overall, PhenoBAG demonstrated greater predictive power than other omics data, 
and simply combining ProtBAG, PhenoBAG, and PRS did not enhance classification 
performance. The brain and eye PhenoBAG were excluded because merging them with the 
populations of other features resulted in a very small sample size (N<1000). b) The cumulative 
inclusion of organ-specific features enhanced classification performance in predicting circulatory 
system diseases (ICD code: I). The * symbol indicates statistical significance (<0.05) from a 
two-sample t-test comparing CV test accuracy between two SVM models; however, a standard t-
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test is liberal32 and should be interpreted cautiously. c) ProtBAG, PhenoBAG, and their PRS 
show significant associations with the risk of mortality. Age and sex were included as covariates 
in the Cox proportional hazard model. The symbol * indicates significant results that survived 
the Bonferroni correction (<0.05/9/11). It is important to note that the population sample sizes 
for ProtBAG and PhenoBAG differ, making their HRs not directly comparable. d) The 
significant ProtBAG, PhenoBAG, and PRS were cumulatively included as features for mortality 
risk prediction. The * symbol indicates statistical significance (<0.05) from a two-sample t-test 
comparing results between two Cox models. HR: hazard ratio; CI: concordance index. 
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Discussion 

This study systematically benchmarks the age prediction performance across 11 multi-organ 
ProtBAGs, revealing insights into the factors influencing model performance and 
generalizability to unseen data. Inspired by common practices in brain age research6, we 
introduced critical methodological considerations to enhance rigor and clinical interpretability in 
multi-organ aging research. Subsequently, we comprehensively compared the genetic overlap 
between the 11 multi-organ ProtBAGs and the 9 PhenoBAGs. By constructing a three-layer 
causal network, we connected genetics, proteomics, imaging/phenotypic endophenotypes, and 
disease outcomes, providing an integrative framework for understanding these complex 
interactions. Finally, we delivered compelling evidence of the clinical potential of the ProtBAGs, 
PhenoBAGs, and their PRSs in predicting disease categories and mortality, positioning these 
biomarkers as powerful tools for translational medicine. 
 
Reproducible and systematic evaluation of ProtBAG generation 
We addressed several critical considerations for developing and applying ProtBAG. First, we 
emphasized the importance of age bias correction, a technique that enhances the clinical 
relevance of ProtBAG models. In neuroimaging-based brain age research, age bias correction has 
been extensively investigated13,14,6,15. We provided specific scenarios using proteomics data to 
emphasize the importance of practicing this in ProtBAG. For instance, Oh et al.5 and Argentieri 
et al.16 did not explicitly correct this bias, although they included age as a covariate in their 
downstream association analyses. 

Our findings also demonstrated the significance of biologically-driven feature selection in 
alleviating overfitting. Focusing on organ-specific proteins, such as brain tissue-enriched 
proteins, we achieved better generalizability to unseen data than models using broader, less 
specific protein sets. Methodologically-driven feature selection algorithms, such as the Boruta 
algorithm used by Argentieri et al.16, offer valuable tools for refining predictive models. 
However, several critical considerations must be addressed. First, complex feature selection 
should be incorporated within the (nested) cross-validation framework to prevent potential "data 
leakage," as highlighted in prior research on AD classification36. Second, integrating feature 
selection within cross-validation can complicate the application of trained models to unseen data, 
as the features selected may vary across different folds. Moreover, increasing the training sample 
size reduced overfitting, emphasizing the importance of large and diverse training populations 
for enhancing model performance. However, diseased populations may obscure clinical 
interpretation, and increased data heterogeneity remains a critical area for further investigation37. 
In addition, we noted that a tighter model fit, reflected in lower MAE, does not necessarily 
equate to stronger clinical associations, as shown in our analysis of cognitive prediction using the 
brain ProtBAG. This observation aligns with findings from a previous study that reported similar 
results using neuroimaging-derived brain age models38.  
 
The genetic overlap and associations between the 11 ProtBAGs, 9 PhenoBAGs, and 525 
DEs 
Our findings underscore the substantial genetic overlap between ProtBAGs and PhenoBAGs, 
offering perspectives on the shared and distinct genetic architectures underlying proteomics-
driven and phenotypic aging profiles. The identification of hundreds of significant genomic loci 
linked to these BAGs, along with strong cross-omics and cross-organ genetic correlations, 
emphasizes the interconnected nature of systemic and organ-specific processes in aging1,2,5,4. 
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Notably, the observed associations, such as those between the renal PhenoBAG and immune and 
pulmonary ProtBAGs, suggest the existence of genetic networks that transcend traditional organ 
boundaries. Our previous research3,1 explored the genetic overlap across organs among the 9 
PhenoBAGs. Building on that foundation, the current study expands this scope by integrating 11 
ProtBAGs with cross-omics data spanning multiple organs, offering a comprehensive multi-scale 
framework for understanding human aging and disease.  

The superior predictive performance of ProtBAG-PRSs compared to PhenoBAG-PRSs 
underscores the potential of proteomics-based approaches to advance precision medicine in 
genetic aging research10,39,11,40. The observed differences suggest that ProtBAG may capture 
distinct genetic signals with stronger biological relevance. This supports the growing recognition 
of proteomics as a critical component in aging studies, offering deeper insights into novel 
biomarkers and pathways that may remain elusive through traditional phenotypic analyses. Since 
proteomics is more closely linked to the underlying genetics and etiology of aging, it offers a 
valuable molecular layer for studying human aging.  

Causal inference analyses provided further insights into the intricate relationships 
between BAGs and DEs. The colocalization signal of a shared causal variant in the hepatic and 
renal BAGs exemplifies how integrating proteomic and phenotypic dimensions can uncover 
biologically relevant loci with translational potential. Similarly, the causal pathway linking 
obesity, renal PhenoBAGs, and renal ProtBAGs highlights the systemic impact of metabolic 
factors on organ-specific aging processes. These findings emphasize our understanding of how 
systemic and organ-specific factors drive age-related phenotypes and diseases.  

In summary, we demonstrated the value of integrative analyses for BAGs for uncovering 
the genetic and causal underpinnings of aging across multiple scales. Expanding sample sizes 
and incorporating diverse ancestries will be critical to enhancing the generalizability of these 
findings. In addition, exploring the functional consequences of shared loci and causal pathways 
may provide actionable insights for therapeutic interventions targeting age-related conditions41. 

 
The prediction power of the 11 ProtBAGs, 9 PhenoBAGs, and their PRSs 
The observed differences in predictive power for systemic disease categories between 
PhenoBAG, ProtBAG, and PRS can be attributed to the nature of the data we integrate and how 
they relate to disease categories versus mortality outcomes. For disease category prediction, 
PhenoBAG, which incorporates phenotypic traits directly linked to specific diseases, is likely 
more predictive because these traits often represent the clinical manifestation of disease, offering 
immediate and tangible insights into disease risk. Clinical features such as biomarkers, imaging 
data, and medical history are more directly associated with disease effects, which makes 
phenotypic data more informative for predicting disease outcomes. In contrast, PRS, based on 
genetic predisposition, and ProtBAGs, which rely on proteomic data, may not effectively capture 
disease-specific features. In particular, the current study focused exclusively on common genetic 
variants, excluding rare ones typically associated with larger effect sizes42. These omics layers 
provide broader insights into genetic risk and molecular pathways, but their relationships to 
specific disease categories may be more complex and indirect, making them less predictive for 
disease classification. Similarly, a recent study showed that multi-omics data and biomarkers can 
be effectively integrated to outperform PRS in disease predictions43.  

For mortality prediction, however, ProtBAG and PhenoBAGs show strong predictive 
power. This is likely because a complex interplay of molecular and clinical factors influences 
mortality. ProtBAG, which captures proteomic profiles, offers a more direct measure of the 
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molecular processes that underlie aging and disease, such as inflammation, cellular stress, and 
metabolic dysfunction. These processes are key contributors to mortality, especially in aging 
populations16,44. PhenoBAG, incorporating clinical traits, also reflects the cumulative effects of 
health deterioration and is strongly correlated with mortality outcomes13. PRS, while valuable for 
predicting genetic susceptibility, may not fully capture the dynamic and multifactorial nature of 
mortality risk, which involves genetic predisposition, lifestyle factors, physiological markers, 
and environmental factors45. 

Interestingly, combining multi-omics BAGs did not significantly improve disease 
prediction, suggesting that integrating multiple omic layers does not necessarily lead to enhanced 
performance for disease categories. This may be because disease prediction requires biomarkers 
specifically relevant to each disease or the broad category, and the multi-omics approach may 
still lack the necessary disease-specific biomarkers29. However, when predicting mortality, the 
multi-organ BAGs and PRS improved prediction, highlighting the importance of integrating 
different biological layers across multiple organs. Mortality is a more complex outcome that 
involves systemic processes across the entire body, making multi-organ and multi-omic 
approaches more effective. This suggests that combining various molecular layers across 
organs/omics for comprehensive risk prediction is crucial for capturing the full spectrum of 
biological processes that influence aging and mortality. 
 
Outlook 

This study investigates several pivotal aspects of biological age research. Future research should 
expand on this foundation by integrating epigenetic, transcriptomic, and metabolomic data. This 
will enrich the causal pathways from genetics to disease outcomes, providing a more holistic 
view of human aging and disease46,47.  
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Methods 

Method 1: The MULTI consortium  
The MULTI consortium is an ongoing initiative to integrate and consolidate multi-organ data 
(e.g., brain and heart MRI and eye OCT) with multi-omics data, including imaging, genetics, and 
proteomics. Building on existing consortia and studies, MULTI aims to curate and harmonize the 
data to model human aging and disease across the lifespan. This study used individual-level and 
summary-level multi-omics data from UKBB, FinnGen, and PGC to derive the multi-omics and 
multi-organ BAGs. Supplementary eTable1 details the sample characteristics. 
 
UK Biobank 
UKBB48 is a population-based research initiative comprising around 500,000 individuals from 
the United Kingdom between 2006 and 2010. Ethical approval for the UKBB study has been 
secured, and information about the ethics committee can be found here: 
https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/governance/ethics-advisory-
committee. This study used brain MRI, eye OCT, and clinical phenotypes (e.g., physiological 
and physical biomarkers) to derive the 9 PhenoBAGs; our previous studies1,2 detailed the 
generation and the phenotypes used for each organ-specific PhenoBAGs. The 11 ProtBAGs were 
derived from 2448 plasma proteomics data derived from the Olink platform. Imputed genotype 
data covering the populations of ProtBAG and PhenoBAG were used for all genetic analyses. 
 
FinnGen 
The FinnGen30 study is a large-scale genomics initiative that has analyzed over 500,000 Finnish 
biobank samples and correlated genetic variation with health data to understand disease 
mechanisms and predispositions. The project is a collaboration between research organizations 
and biobanks within Finland and international industry partners. For the benefit of research, 
FinnGen generously made their GWAS findings accessible to the wider scientific community 
(https://www.finngen.fi/en/access_results). This research utilized the publicly released GWAS 
summary statistics (version R9), which became available on May 11, 2022, after harmonization 
by the consortium. No individual data were used in the current study.  

FinnGen published the R9 version of GWAS summary statistics via REGENIE software 
(v2.2.4)49, covering 2272 DEs, including 2269 binary traits and 3 quantitative traits. The GWAS 
model encompassed covariates like age, sex, the initial 10 genetic principal components, and the 
genotyping batch. Genotype imputation was referenced on the population-specific SISu v4.0 
panel. We included GWAS summary statistics for 521 FinnGen DEs in our analyses.  
 
Psychiatric Genomics Consortium 
PGC31 is an international collaboration of researchers studying the genetic basis of psychiatric 
disorders. PGC aims to identify and understand the genetic factors contributing to various 
psychiatric disorders such as schizophrenia, bipolar disorder, major depressive disorder, and 
others. The GWAS summary statistics were acquired from the PGC website 
(https://pgc.unc.edu/for-researchers/download-results/), underwent quality checks, and were 
harmonized to ensure seamless integration into our analysis. No individual data were used from 
PGC. Each study detailed its specific GWAS models and methodologies, and the consortium 
consolidated the release of GWAS summary statistics derived from individual studies. In the 
current study, we included summary data for 4 brain diseases for which allele frequencies were 
present. 
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Method 2: Phenotype analyses to derive the 9 PhenoBAGs 
We derived the 9 PhenoBAGs in our previous study1,2, and we also present the final included 
phenotypes for the 9 human organs in Supplementary eTable 1. In summary, we selected brain 
MRI, physical and physiological measures indicative of key organ systems’ function, structure, 
or general health, including the brain (e.g., brain volume), cardiovascular (e.g., pulse rate), 
pulmonary (e.g., peak expiratory flow), musculoskeletal (e.g., BMI), immune (e.g., leukocytes), 
renal (e.g., glomerular filtration), hepatic (e.g., albumin), and metabolic systems (e.g., lipid). 
Data were processed to ensure reliability: averages were calculated for bilateral measures (e.g., 
handgrip strength), repeated tests (e.g., blood pressure), or the best performance from multiple 
attempts (e.g., lung function via spirometry). The eye PhenoBAG was subsequently derived in 
our follow-up study using eye OCT data1. 
 To derive the 9 PhenoBAGs, we used a linear support vector regressor (SVR) and fit the 
organ-specific phenotypes as features with a 20-fold cross-validation procedure. Optimization of 
the SVR’s hyperparameters (box constraint, kernel function, and ε) did not substantially improve 
performance. Critically, the SVR models were trained exclusively on healthy individuals, 
defined as those without self-reported or healthcare-documented lifetime chronic medical 
conditions. This approach supports the clinical interpretation of the trained models when applied 
to disease groups, with deviations in these PhenoBAGs presumed to reflect specific pathological 
factors. 
 
Method 3: Proteomics analyses to derive the 11 ProtBAGs 
(a) Additional quality checks: We downloaded the original data (Category code: 1838), which 
were analyzed and made available to the community by the UKB-PPP50. The initial quality 
check was detailed in the original work51; we performed additional quality check steps as below. 
We focused our analysis on the first instance of the proteomics data ("instance"=0). 
Subsequently, we merged the Olink files containing coding information, batch numbers, assay 
details, and limit of detection (LOD) data (Category ID: 1839) to match the ID of the proteomics 
dataset. We eliminated Normalized Protein eXpression (NPX) values below the protein-specific 
LOD. Furthermore, we restricted our analysis to proteins with sample sizes exceeding 10,000. 
This resulted in 2448 proteins in 43,498 participants. 
 
(b) Missing protein NPX imputation: We observed a substantial missing rate for the 2448 
proteins (1229 proteins with > 10% missing values), which made it challenging to employ 
downstream AI/ML models for age prediction because many of these models do not directly 
handle missing features. We used the AutoComplete52 deep learning algorithm to impute the 
missing proteins to overcome this. In the original paper, the authors have thoroughly evaluated 
the impact of the missing rate on the imputation accuracy. Here, we followed the same approach 
proposed in the paper, assessed the impact of the probability of an individual’s being masked 
during training, and found that this impact is minimal for the imputation accuracy 
(Supplementary eFigure 2). We observed a mean R2 value of 0.45 between the imputed values 
and the ground truth for the 2448 proteins, showing improved model performance compared to 
the original study on cardiometabolic and psychiatric phenotypes (0.14<R2<0.30). 
 
(c) Organ-specific profiles of the 2448 plasma proteins: We used the Human Protein Atlas 
(HPA) project (https://www.proteinatlas.org/humanproteome/tissue) to profile the over-
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expression of a specific protein at both RNA-seq and protein levels. HPA highlights the 
expression profiles of genes in human tissues at both the mRNA and protein levels. Protein 
expression data from 44 normal human tissue types were obtained through antibody-based 
protein profiling using conventional and multiplex immunohistochemistry. Accompanying the 
resource are annotated protein expression levels and all images of immunohistochemically 
stained tissues. Protein data encompass 15,302 genes (76%) with available antibodies. 
Additionally, mRNA expression data were generated through RNA sequencing (RNA-seq) of 40 
different normal tissue types. In our primary analyses to derive the 11 organ-specific ProtBAGs, 
we considered defining whether a protein is over-expressed in a particular organ/tissue using the 
following criterion: tissue-enriched genes are characterized by mRNA expression levels at least 
four times higher in the tissue or organ of interest compared to all other tissues. This approach 
aligns with the definition employed by Oh et al.5, which relied solely on data from the Genotype-
Tissue Expression (GTEx) project. In contrast, the Human Protein Atlas (HPA) integrates 
resources from multiple consortia, extending beyond GTEx data. 
 An important yet unexplored question is the relative lack of organ specificity in plasma 
proteins circulating throughout the human body compared to clinical phenotypes, such as brain 
MRI features. Many proteins are frequently over-expressed across multiple tissues or organs, 
akin to the pleiotropic effects observed in genetics. This observation is biologically plausible, as 
proteomics is more closely linked to underlying genetic mechanisms, whereas clinical 
phenotypes are more directly associated with disease endpoints. Additionally, Argentieri et al.16 
demonstrated through feature selection that 204 out of 2,897 proteins from the UKBB Olink 
platform could accurately predict chronological age. However, the impact of protein organ-
specificity definitions on model overfitting remains an unresolved question. In this study, we 
explored this issue by systematically relaxing the organ-specific profiles of proteins under three 
distinct scenarios. Using the brain ProtBAG as an example, we assessed how varying the number 
of proteins included in the training of AI/ML models influences performance and overfitting 
phenomena. 

• Tissue-enriched genes/proteins: At least four-fold higher mRNA level in the tissue of 
interest than in other tissues (N=53 proteins). 

• Tissue-enhanced genes/proteins: At least four-fold higher mRNA level in the tissue of 
interest compared to the average level in all other tissues (N=146 proteins). 

• Tissue-elevated genes/proteins: tissue-enriched genes (including group-enriched genes) 
and tissue-enhanced genes (N=255 proteins). 

 
(d) Three AI/ML models: We systematically benchmarked age prediction performance using 4 
AI/ML models on multi-modal brain MRI features in our previous study3. Using the same 
methodology, we assessed the performance of models in deriving the 11 ProtBAGs using two 
linear approaches (Lasso regression and SVR) and one non-linear method (neural networks). For 
the linear models, hyperparameter selection (e.g., the C parameter for SVR) was conducted 
through nested, repeated hold-out cross-validation17 with 50 repetitions (80% training/validation 
and 20% testing). Nested cross-validation was not applied to the neural network due to the 
impracticality of exhaustively exploring hyperparameter combinations.  
 
(e) Population selections: To rigorously train the AI/ML models, we have split the CN data 
(N=5089) into the following datasets (Supplementary eFigure 1 and eTable 1): 
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• CN independent test dataset: 500 participants were randomly drawn from the CN 
population; 

• CN training/validation dataset: 80% of the remaining 4589 CN were used for the inner 
loop 10-fold CV for hyperparameter selection;  

• CN cross-validation test dataset: 20% of the remaining 4589 CN were used for the 
outer loop 50 repetitions; 

• PT dataset: 38,409 participants that have at least one ICD-10-based diagnosis. 
Model evaluation metrics included mean absolute error (MAE) and Pearson’s r. 

Importantly, consistent with our prior studies, only healthy control participants were included in 
the training/validation dataset, while individuals with any disease diagnosis were reserved for the 
independent test dataset. 
 
Method 4: Influence of key components in deriving the brain ProtBAG 
We systematically evaluated key factors influencing model performance using the brain 
ProtBAG as a case study. These factors included i) the choice of AI/ML models (i.e., SVR, 
Lasso, and neural networks), ii) the impact of age bias correction on downstream clinical 
applications, such as group differences between CN and PT groups, iii) the effect of protein 
organ specificity on model overfitting, comparing enriched, enhanced, and elevated gene 
categories, iv) the influence of model fitting tightness on cross-domain prediction, particularly 
associations with cognitive outcomes at various epochs (i.e., 500, 1000, 1500, 2000, and 2500 
epochs), and v) the impact of feature type on model performance, comparing brain imaging-
derived features with brain over-expressed plasma proteins. These analyses provide practical 
guidance for using plasma proteins to develop ProtBAGs while enhancing clinical 
interpretability and methodological rigor. 
 
Method 5: Genetic analyses 
We used the imputed genotype data for all genetic analyses. Our quality check pipeline focused 
on European ancestry in UKBB (6,477,810 SNPs passing quality checks), and the quality-
checked genetic data were merged with respective organ-specific populations for GWAS. We 
summarize our genetic quality check steps. First, we skipped the step for family relationship 
inference53 because the linear mixed model via fastGWA54 inherently addresses population 
stratification, encompassing additional cryptic population stratification factors. We then removed 
duplicated variants from all 22 autosomal chromosomes. Individuals whose genetically identified 
sex did not match their self-acknowledged sex were removed. Other excluding criteria were: i) 
individuals with more than 3% of missing genotypes; ii) variants with minor allele frequency 
(MAF; dosage mode) of less than 1%; iii) variants with larger than 3% missing genotyping rate; 
iv) variants that failed the Hardy-Weinberg test at 1x10-10. To further adjust for population 
stratification,55 we derived the first 40 genetic principle components using the FlashPCA 
software56. Details of the genetic quality check protocol are described elsewhere57,3,1,58,59.  
 
(a) GWAS:  
We applied a linear mixed model regression to the European ancestry populations using 
fastGWA54 implemented in GCTA60.  
 
PhenoBAG GWAS: In our initial investigation, we conducted GWAS for the 9 PhenoBAGs 
using a linear model in PLINK, with fastGWA employed as a sensitivity analysis. For 
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consistency with the ProtBAG GWASs in this study, we used the fastGWA summary statistics 
for the 9 PhenoBAGs in all post-GWAS analyses. The fastGWA GWAS accounted for key 
confounders, including age, dataset status (training/validation/test or independent test), age-
squared, sex, interactions of age with sex, and the first 40 genetic principal components. For the 
brain BAG GWAS specifically, additional covariates for total intracranial volume and brain 
position in the scanner were included. A genome-wide significance threshold (5�×�10��/9), 
was applied. 
 
ProtBAG GWAS: We used fastGWA to perform the 11 ProtBAGs, adjusting age, dataset status 
(training/validation/test or independent test), age-squared, sex, interactions of age with sex, 
systolic/diastolic blood pressure, BMI, waist circumstance, standing height, weight, and the first 
40 genetic principal components. We applied a genome-wide significance threshold 
(5�×�10��/11) to annotate the significant independent genomic loci. 
 
Annotation of genomic loci: For all GWASs, genomic loci were annotated using FUMA61. For 
genomic loci annotation, FUMA initially identified lead SNPs (correlation r2 ≤ 0.1, distance < 
250 kilobases) and assigned them to non-overlapping genomic loci. The lead SNP with the 
lowest P-value (i.e., the top lead SNP) represented the genomic locus. Further details on the 
definitions of top lead SNP, lead SNP, independent significant SNP, and candidate SNP can be 
found in Supplementary eMethod 1. For visualization purposes in Fig. 3, we have mapped the 
top lead SNP of each locus to the cytogenetic regions based on the GRCh37 cytoband. 
 
(b) Genetic correlation: We estimated the genetic correlation (gc) between each PhenoBAG-
ProtBAG pair using the LDSC software. We employed precomputed LD scores from the 1000 
Genomes of European ancestry, maintaining default settings for other parameters in LDSC. It's 
worth noting that LDSC corrects for sample overlap, ensuring an unbiased genetic correlation 
estimate62. We also computed the pairwise Pearson’s r correlation coefficient to understand 
whether the genetic correlation largely mirrors the phenotypic correlation (pc). Statistical 
significance was determined using Bonferroni correction (0.05/9/11).  
 
(c) PRS calculation: PRS was computed using split-sample sensitivity GWASs (split1 and 
split2) for the PhenoBAG and ProtBAG GWASs. The PRS weights were established using 
split1/discovery GWAS data as the base/training set, while the split2/replication GWAS 
summary statistics served as the target/testing data. Both base and target data underwent rigorous 
quality control procedures involving several steps: i) excluding duplicated and ambiguous SNPs 
in the base data; ii) excluding high heterozygosity samples in the target data; and v) eliminating 
duplicated, mismatching, and ambiguous SNPs in the target data. 

After completing the QC procedures, PRS for the split2 group was calculated using the 
PRS-CS63 method. PRC-CS applies a continuous shrinkage prior, which adjusts the SNP effect 
sizes based on their LD structure. SNPs with weaker evidence are "shrunk" toward zero, while 
those with stronger evidence retain larger effect sizes. This avoids overfitting and improves 
prediction performance. No clumping was performed because the method takes LD into account. 
The shrinkage parameter was not set, and the algorithm learned it via a fully Bayesian approach. 

 
(d) Bayesian colocalization: We used the R package (coloc) to investigate the genetic 
colocalization signals between two traits (i.e., hepatic ProtBAG vs. hepatic PhenoBAG, and 
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hepatic ProtBAG vs. renal PhenoBAG) at each genomic locus. We employed the Fully Bayesian 
colocalization analysis using Bayes Factors (coloc.abf). This method examines the posterior 
probability (PP.H4.ABF: Approximate Bayes Factor) to evaluate hypothesis H4, which suggests 
the presence of a single shared causal variant associated with both traits within a specific 
genomic locus. To determine the significance of the H4 hypothesis, we set a threshold of 
PP.H4.ABF>0.835. All other parameters (e.g., the prior probability of p12) were set as default. For 
each pair of traits, the genomic locus (N>100 SNPs) was defined by default from FUMA for one 
trait, and then the coloc package extracted and harmonized the GWAS summary statistics within 
this locus for the other trait.    
 
(e) Two-sample bidirectional Mendelian randomization: We constructed a multi-layer causal 
network linking ProtBAG, PhenoBAG, and DE using a bi-directional Mendelian randomization 
approach. In total, 4 bi-directional causal networks were established: i) ProtBAG2PhenoBAG, ii) 
PhenoBAG2ProtBAG, iii) PhenoBAG2DE, and iv) DE2PhenoBAG. These networks used 
summary statistics from our ProtBAG and PhenoBAG GWAS in the UKBB, the FinnGen30, and 
the PGC31 study for the 525 DEs. For example, the ProtBAG2PhenoBAG causal network 
employed the 11 ProtBAG as exposure variables and the 9 PhenoBAGs as outcome variables. 
The systematic quality-checking procedures to ensure unbiased exposure/outcome variable and 
instrumental variable (IVs) selection are detailed below. 

We used a two-sample Mendelian randomization approach implemented in the 
TwoSampleMR package64 to infer the causal relationships within these networks. We employed 
five distinct Mendelian randomization methods, presenting the results of the inverse variance 
weighted (IVW) method in the main text and the outcomes of the other four methods (Egger, 
weighted median, simple mode, and weighted mode estimators) in the supplement. The 
STROBE-MR Statement65 guided our analyses to increase transparency and reproducibility, 
encompassing the selection of exposure and outcome variables, reporting statistics, and 
implementing sensitivity checks to identify potential violations of underlying assumptions. First, 
we performed an unbiased quality check on the GWAS summary statistics. Notably, the absence 
of population overlapping bias66 was confirmed, given that FinnGen and UKBB participants 
largely represent populations of European ancestry without explicit overlap. PGC GWAS 
summary data were ensured to exclude UKBB participants. For the ProtBAG2PhenoBAG and 
PhenoBAG2ProtBAG networks from UKBB, we reran the ProtBAG GWAS and ensured no 
overlapping populations with PhenoBAG. Furthermore, all consortia's GWAS summary statistics 
were based on or lifted to GRCh37. Subsequently, we selected the effective exposure variables 
by assessing the statistical power of the exposure GWAS summary statistics in terms of 
instrumental variables (IVs), ensuring that the number of IVs exceeded 7 before harmonizing the 
data. Crucially, the function "clump_data" was applied to the exposure GWAS data, considering 
LD. The function "harmonise_data" was then used to harmonize the GWAS summary statistics 
of the exposure and outcome variables. Bonferroni correction was applied to all tested traits 
based on the number of effective ProtBAGs, PhenoBAGs, or DEs, whichever was larger. 

Finally, we conducted multiple sensitivity analyses. First, we conducted a heterogeneity 
test to scrutinize potential violations in the IV's assumptions. To assess horizontal pleiotropy, 
which indicates the IV's exclusivity assumption67, we utilized a funnel plot, single-SNP 
Mendelian randomization methods, and the Egger estimator. Furthermore, we performed a leave-
one-out analysis, systematically excluding one instrument (SNP/IV) at a time, to gauge the 
sensitivity of the results to individual SNPs. 
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Method 6: Prediction analyses for 14 systemic disease categories and the risk of mortality  
We investigated the clinical promise of the 11 ProtBAGs, 9 PhenoBAGs, and their PRSs in two 
sets of prediction analyses: i) classification tasks for predicting 14 systemic disease categories 
based on the ICD-10 code (Supplementary eTable 7) and ii) survival analysis for the risk of all-
cause mortality. 
 
(a) Support vector machines to classify patients of disease categories vs. controls: We 
applied SVM with ProtBAG, PhenoBAG, and their PRS, implementing a nested cross-validation 
procedure17 to optimize the hyperparameter C and predict individual-level outcomes. Unlike 
previous studies29, we did not set aside an independent test dataset due to the relatively small 
sample size of the control population without any disease diagnoses (N=1651); patients for each 
disease category were defined by the ICD-10 code (Field-ID: 41270). Brain and eye PhenoBAGs 
were excluded from the analysis due to insufficient sample sizes after integrating all features. 
Figure 5a-b reports the balanced accuracy (BA) obtained from the nested test data. The nested 
cross-validation procedure involved an outer loop repeated 50 times, with 80% of the data 
randomly allocated for training/validation and 20% for testing. Within the inner loop, the 
training/validation data underwent a 10-fold split for model optimization. Supplementary 
eTable 7 provides detailed metrics, including balanced accuracy, sensitivity, specificity, negative 
predictive value, positive predictive value, and sample sizes for the training/validation/test 
datasets.  
 
(b) Survival analysis for mortality risk: we employed a Cox proportional hazard model while 
adjusting for covariates(i.e., age and sex) to test the associations of the 11 ProtBAGs, 9 
PhenoBAGs, and their PRS with all-cause mortality. The covariates were included as additional 
right-side variables in the model. The hazard ratio (HR), exp(βR), was calculated and reported as 
the effect size measure that indicates the influence of each biomarker on the risk of mortality. To 
train the model, the "time" variable was determined by calculating the difference between the 
date of death (Field ID: 40000) for cases (or the censoring date for non-cases) and the date 
attending the assessment center (Field ID: 53). Participants who passed away after enrolling in 
the study were classified as cases. 
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Data Availability 

The GWAS summary statistics corresponding to this study are publicly available on the 
MEDICINE knowledge portal (https://labs-laboratory.com/medicine/). Our study used data 
generated by the human protein atlas (HPA: https://www.proteinatlas.org). GWAS summary data 
for the DEs were downloaded from the official websites of FinnGen (R9: 
https://www.finngen.fi/en/access_results) and PGC (https://pgc.unc.edu/for-
researchers/download-results/). Individual data from UKBB can be requested with proper 
registration at https://www.ukbiobank.ac.uk/. Certain sensitive data (e.g., allele frequency 
information) supporting the findings are also available from the author upon request. 
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Code Availability 

The software and resources used in this study are all publicly available:  
• MLNI: https://github.com/anbai106/mlni, ProtBAG generation and classification for 

disease categories; 
• AutoComplete: https://github.com/sriramlab/AutoComplete, Proteomics imputation; 
• FUMA: https://fuma.ctglab.nl/, Gene mapping, genomic locus annotation; 
• GCTA: https://yanglab.westlake.edu.cn/software/gcta/#Overview, fastGWA; 
• LDSC: https://github.com/bulik/ldsc, genetic correlation 
• TwoSampleMR: https://mrcieu.github.io/TwoSampleMR/index.html, Mendelian 

randomization; 
• PRScs: https://github.com/getian107/PRScs, PRS calculation; 
• Lifelines: https://lifelines.readthedocs.io/en/latest/, Survival analysis;  
• coloc: https://github.com/chr1swallace/coloc; Bayesian colocalization. 
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