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Abstract

Background. Metapopulation models, which consider epidemic spread across intercon-
nected regions, can provide more accurate epidemic predictions with respect to country-
specific models. Still, their added complexity and data requirements raise questions about
their tangible benefits over simpler, localized models.

Aim. Our goal is to develop and validate networked metapopulation SIRS models, in-
tegrated with an Extended Kalman Filter (EKF), for predicting influenza-like illness (ILI)
across Europe, which enables accurate forecasts, missing data imputation, and actionable
insights.

Methods. We constructed two different metapopulation SIRS models: a detailed network-
based model, including inter-country travel dynamics, and a simpler mean-field model,
aggregating average regional data. Both were calibrated based on decade-long data of
European mobility and ILI incidence, using EKF to estimate disease dynamics and fore-
cast epidemic progression. The forecasting performance was benchmarked against isolated
country-specific models.

Results. Network models outperformed isolated models in forecasting ILI progression,
particularly during critical periods such as wave onsets and peaks, and maintained reli-
ability during COVID-19-affected seasons. The full network model provided up to 25%
improvement in peak predictions and demonstrated robustness in imputing missing data,
even when up to 40% of the input data was unavailable. The models are fully interpretable
and align with epidemiological dynamics across borders.

Conclusion. Our findings unveil the advantages of metapopulation models for epi-
demic forecasting in interconnected regions. Our framework, combining network models
with EKF, offers improved accuracy, resilience to missing data, and enhanced interpretabil-
ity. Our methodology provides a versatile tool for global public health applications, adapt-
able to other diseases and geographic scales.

1 Introduction

Modern epidemiology increasingly relies on mathematical models to integrate empirical data,
perform advanced analytics, and provide quantitative predictions that help forecast and con-
trol the spread of infectious diseases [1]. These models not only predict epidemic progression
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and future scenarios, but also support the development of early warning systems [2], the as-
sessment of the impact and effectiveness of restrictions [3], and the estimation of unreported
cases [4] or cryptic transmission [5]. Hence, advancing forecasting methodologies is crucial to
enable timely and effective public health responses, as testified by initiatives like Influcast [6],
aimed at developing and testing cutting-edge approaches for influenza-like illnesses (ILI).

Traditional epidemiological models often focus on individual countries, without capturing
the broader dynamics of interconnected regions. In contrast, metapopulation models [7, 8],
based on the theory of epidemic spreading on complex networks [9, 10, 11] and multi-patch
mathematical models [12, 13], can predict the spatiotemporal progression of infectious diseases
across large interconnected areas by incorporating mobility networks [14, 15].

Recent studies have successfully employed network-based metapopulation models to fore-
cast real-world epidemic dynamics, including COVID-19 across Italian regions [16, 17], in-
fluenza across U.S. states [18, 19], and dengue in China’s Guangdong province [20]. Despite
the significant potential of metapopulation models, a critical question persists: do they offer
substantial improvement in forecasting accuracy compared to isolated models [21]?

Here, we investigate whether a network-based metapopulation model improves epidemic
forecasts for ILI over multiple seasons in Europe. Forecasting ILI is essential for preparedness
of healthcare systems and resource allocation. The European Centre for Disease Prevention
and Control (ECDC) has a long tradition of data sharing and model evaluation [22]: initiatives
such as Respicast [23] provide a platform for integrating and benchmarking diverse forecasting
models. We develop novel metapopulation models and evaluate their performance against
corresponding country-specific models. These country-specific models were among the top-
performing methods in the Respicast dashboard during the season 2023–2024.

Our approach uses ten years of weekly ILI incidence and empirical data on European mo-
bility to construct two models of increasing complexity: a mean-field model focuses on the
epidemic evolution within a country and the average incidence in Europe, requiring relatively
few data; a detailed network-based model accounts for inter-country travel dynamics and re-
quires additional data on the network structure of mobility between countries. To estimate
and predict disease dynamics, both models use an Extended Kalman Filter (EKF), an approach
already used in epidemiological studies, such as [4, 18, 19, 20, 21, 24].

Our results reveal the benefits of metapopulation models for epidemic forecasting in in-
terconnected regions, offering probabilistic forecasts and scenario modelling at a continental
scale. Our findings demonstrate that augmenting localized information with network-based
data improves prediction accuracy and resilience to missing data. Moreover, our framework
can be adapted to other diseases and geographic scales, and thus offers a versatile tool for
global public health applications.

2 Materials and methods

2.1 Network generation using mobility data

To construct the metapopulation model, we first developed a mobility network representing
population flows between European countries; see Figure 1a. The network was built using
publicly accessible data sources, ensuring consistency and comprehensive coverage. Alterna-
tively, the network could be inferred from epidemic data, but this has been shown to be a
severely ill-posed problem [25]. Each country was modeled as a node, with links representing
three key types of travel flows: air and ferry travel, cross-border commuting, and other forms
of land-based movement between neighbouring countries. These components account for di-
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verse modes of mobility, providing a realistic depiction of cross-border interactions. Here, we
provide an overview of the network structure; further details are in Supplement S1.

Air and ferry travel. Data on air travel were sourced from the Eurostat Data Browser (see
the “Data sources” section below). Ferry traffic statistics were obtained from the Finnish Port
Association and the UK Department for Transport. The air travel data, available quarterly, were
averaged to estimate annual levels. While COVID-19 disrupted air and ferry travel patterns,
we used a fixed network for the entire period based on either pre- or post-pandemic data.

Cross-border commuting. Cross-border worker flows were extracted from reports by the Euro-
pean Commission’s Directorate-General for Employment, Social Affairs and Inclusion [26] and
the Economic and Social Research Institute [27]. These flows were calculated based on daily
commuting patterns via road and trains, adjusted to reflect weekends, public holidays, leave
periods, and travel in both directions. Commuter flows between non-neighbouring regions
were excluded, as they are typically captured within the air and ferry travel data.

Land-based movement. For neighbouring countries, land-based movement was estimated us-
ing border region population densities and border lengths, using the NUTS 3 regional classi-
fication (https://doi.org/10.2785/714519). This approach accounts for informal and
unregistered travel, which is not available in public databases. While this method provides
reasonable approximations, future improvements could incorporate more granular datasets to
refine these estimates.

Network structure and parameters. Our network matrix integrates the three mobility com-
ponents, weighted by tuning parameters �1 and �2, to account for the relative contributions
of different forms of travel. The population fluxes corresponding to air-and-ferry and com-
muting flows, denoted by matrices G(1) and G(2), were combined and scaled by �1, while the
land-based movement component, denoted by G(3), was scaled by �2. The resulting network
matrix

G = �1
�
G(1) +G(2)

�
+ �2G

(3) (1)

captures the influence of mobility on epidemic dynamics, enabling detailed modelling of in-
terconnected populations. The complete network is visualized in Figure 1b as the heatmap
of the row-wise normalized adjacency matrix Gi,j/max(Gi,·) between countries of origin and
destination. The network captures detailed inter-country interactions. For example, the strong
connectivity between Austria and Slovakia reflects their shared borders and economic ties,
which influence mutual epidemic progression.

Regional impacts of the network. In almost all countries, the contribution of traveling people
to the spread of ILI diseases is estimated to be less than 5% (Figure 1c). An exception is Luxem-
bourg, where cross-border workers represent an important fraction of the effective population.
For island countries, or those where the major urban areas are close to shores (e.g., Iceland, UK,
or Finland), the largest effect is due to air and ferry travel.

By combining diverse mobility data sources into a unified framework, our network gener-
ation approach provides a foundational framework to simulate disease spread across Europe.
The methodology is flexible and can be extended to other countries or regions as new data
become available.

2.2 Incidence data

Data sources and preprocessing. Influenza-like illness (ILI) incidence data were obtained from
the “Respicast – European respiratory diseases forecasting hub” project [23], which consoli-
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Figure 1: a: The countries included in the network are highlighted in light red. The 15 busiest
travel connections (by plane or ferry on any route between the indicated countries) are indi-
cated with black lines (>10,000 passengers/day/direction). Red arrows show the 15 busiest
cross-border worker flows (>3,000 workers), and blue arrows show the 15 strongest neighbour
connections of other types. b: Visualization of the network matrix G. Each row has been nor-
malized to have maximum value one. Darker color indicates stronger effect. c: The effect from
the outside for each country, calculated as the row sums of the network matrices �1G(1), �1G(2),
and �2G(3) shown as percentages of the respective countries’ populations. Only effects from
other countries included in the network are considered.

dates data from the ECDC’s European Respiratory Virus Surveillance Summary (ERVISS) and
the World Health Organization’s (WHO) FluID global influenza program. The dataset spans
ten epidemic seasons, from week 40 of 2014 to week 16 of 2024, providing a broad temporal and
spatial overview of ILI progression across Europe. Reported incidences are provided as weekly
cases per 100,000 inhabitants. To enable integration into the metapopulation model, these in-
cidences were scaled to estimate the actual number of detected infections for each country.
For the United Kingdom, data were aggregated from England, Wales, Scotland, and Northern
Ireland to align with available mobility data, which were reported for the whole UK.

Data characteristics. Figure 2 illustrates the population-weighted average ILI incidence across
Europe over the study period, highlighting wave onsets and peaks. These critical periods were
used to evaluate forecasting performance in our analysis. The dataset provides a comprehen-
sive basis for model calibration and evaluation, offering insight into the seasonal dynamics of
ILI at a continental scale.

2.3 Model development

After constructing the mobility network, we developed a dynamical model to simulate the
spread of ILI across 28 European countries. The model is based on a stochastic discrete-time
Susceptible-Infectious-Removed-Susceptible (SIRS) framework, which describes the time evo-
lution of the disease spread in homogeneous and well-mixed populations [28, 29, 30, 31], ex-
tended to incorporate network effects. This captures both local epidemic dynamics within each
country and the influence of cross-border interactions. The model, schematically represented
in Figure3, is described in detail in Supplement S2.

Network-based SIRS dynamics. The model represents each country as a node in the network,
with epidemic dynamics described by SIRS equations. Every country has a specific epidemic
evolution that is affected by the epidemic states of other countries. The number of new in-
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Figure 2: Population-weighted average incidence of influenza-like illness (ILI) across Europe
over ten epidemic seasons (2014–2024). Blue-shaded areas indicate wave onset periods, while
red-shaded areas mark epidemic peaks. These critical periods were used for evaluating fore-
casting performance in subsequent analyses. The data were aggregated from weekly reports
and adjusted for population differences across reporting countries. The figure highlights the
seasonal dynamics of ILI and the variation in timing and intensity of waves over the study
period.

fections in country i, that is, the flux from the susceptible population Si(t) to the infectious
population Ii(t) at time t, is given by

FSi!Ii(t) =
�i(t)Si(t)

Ni

0

@Ii(t) +
28X

j=1

Gi,j
Ij(t)

Nj

1

A , (2)

where �i(t) is the transmission rate within country i, Gij is the flux of individuals from country
j to country i, and Nj is the population of country j. The other fluxes are as in the standard
SIRS model, FIi!Ri(t) = µIi(t) and FRi!Si(t) = 'Ri(t).

Mean-field approximation. To explore the trade-off between data availability and model com-
plexity, we implemented a simpler “mean-field” version of the model, where the detailed net-
work matrix G is replaced with

Ĝi,j = �
NiNjP28
k=1Nk

, (3)

where � is a tuning parameter. When this is substituted into Eq. (2), the outside effect reduces
to the average incidence over all countries. This approach is less granular, but requires fewer
data and is suitable for scenarios with incomplete mobility information.

Individual models. The performances of the network-based and mean-field models were com-
pared against country-specific isolated models that do not consider cross-border interactions,
that is, G is set to zero in Eq. (2).

2.4 Data integration by the Extended Kalman filter

To estimate epidemic parameters and make accurate predictions, the network-based SIRS model
was implemented in a stochastic framework and coupled with an Extended Kalman Filter
(EKF) [32], described in Supplement S3. The EKF integrates real-world observations with the
model dynamics, providing robust state estimation and allowing for dynamic adjustments as
new data become available.
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Figure 3: Model scheme. The network data panel shows daily fluxes above 10,000 with black
lines, and the two strongest connections for each country with gray lines. Parameter tuning is
described in Supplement S4.

State estimation. The EKF tracks the evolution of the state variables (susceptible, S; infectious,
I ; removed, R) and of transmission rate (�) at each node in the network. For each country,
the EKF optimally combines noisy observational data with the model’s predictions to estimate
the most likely epidemic state. This recursive process involves a prediction step using the
model, and then an update of the state vector based on discrepancies between predictions and
observations, ensuring that the model evolution is close to real-world dynamics.

Stochastic dynamics. To account for uncertainties in epidemic progression, the model incorpo-
rates stochastic noise into the transitions between compartments. For example, following the
derivation of the Langevin equation in [33], infections are modeled as independent stochastic
events, leading to a binomial distribution for the number of new infections, reflecting the in-
herent variability in disease spread. Similarly, case detections are modeled as stochastic events
giving rise to a measurement noise model. The EKF framework explicitly accounts for these
uncertainties through covariance matrices for both state noise and measurement noise. These
matrices, calibrated to reflect the variability in the underlying data, are updated dynamically
to capture changing epidemic conditions.

Dynamic transmission rates. The transmission parameters �i(t) in (2) are modeled as time-
varying variables influenced by both local and network-level factors. Changes in �i(t) can
reflect shifts in population behaviour, interventions, or seasonal effects. The dynamics of �i(t)
are governed by

�i(t+�t) = �i(t) + k1

"
k2

P
j Gi,j�j(t)P

j Gi,j
+ (1� k2)k3µ� �i(t)

#
+ w�(t), (4)
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where the term inside the brackets acts as a nudge towards a reference value that depends on
the weighted average of �j in the neighbours of country i, while k1, k2, and k3 are tuning pa-
rameters, µ is the rate parameter for the fluxes Ii ! Ri, and w�(t) is Gaussian noise. In isolated
models, k2 is zero. Including network effects in the -parameter dynamics differs significantly
from previous models [19, 20, 21] as it allows regional waves to influence neighbouring coun-
tries, thus enhancing the model’s ability to anticipate epidemic patterns.

Probabilistic forecasting. The stochastic model can generate ensembles of future scenarios to
generate probabilistic forecasts. We generate probabilistic forecasts by simulating 1,000 epi-
demic trajectories forward in time, starting from an initial state sampled from a multivariate
normal distribution defined by the current state estimate as the mean and its error covariance
matrix obtained from the EKF. Both stochastic dynamics and measurement noise are incorpo-
rated. This approach enables the quantification of uncertainties in the model’s predictions.
An additional noise calibration step is required for the probabilistic forecasts, as described in
Supplement S6.

Model implementation and validation. The SIRS model was implemented with a one-day
time step (�t = 1/7, since we use a week as a time unit). Observational data, provided as
weekly aggregated case numbers, were incorporated into the model through detection proba-
bilities (ci(t)) that link reported cases to the underlying epidemic state by yi(t) = ci(t)Ii(t) for
t 2 N, thereby adjusting for under-reporting (see Supplement S4 for details). These probabil-
ities are estimated adaptively. In total, 11 parameters are used as tuning parameters (Supple-
mentary Table S1), fitted with simulated annealing (Supplementary Table S2). Data from the
first four epidemic seasons (2014–2018) are used for parameter fitting, and the remaining six
seasons (2018–2024) are used for evaluations, with a special focus on critical periods such as
wave onsets and epidemic peaks.

3 Results

3.1 Including network effects improves forecasting performance

Evaluation metrics and setup. Similarly to earlier works such as Influcast [6], we evaluated
forecasting performance using 4-week-ahead predictions for influenza-like illnesses (ILI) across
Europe. Forecasting performance was assessed from the adjusted average error between model
predictions and actual data. Performance gain was quantified as the percentual reduction in
error compared to a reference forecast, which uses the most recent observed incidence as the
future prediction (details in Supplement S5). This evaluation was conducted over ten years
of data, with separate analyses for training and test datasets, and for critical periods, namely
wave onsets and epidemic peaks (Figure 2).

Model comparisons. Figure 4 illustrates the performance of the network model, mean-field
model, and isolated models for 4-week-ahead forecasts. The network model consistently out-
performed isolated models across all periods. Around epidemic peaks, the network model
achieved up to a 25% improvement in forecasting performance. Wave onset remains difficult
to forecast, but in these periods, the network model clearly outperformed the mean-field and
isolated models.

Regional and temporal analysis. Performance gains varied by region and epidemic season
(Figure 5). The network model provided the highest gains in countries with strong cross-
border interactions, such as Austria and Slovakia. Predictions were more accurate during pre-
pandemic seasons (2018–2019) compared to COVID-affected years, where reduced mobility
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Figure 4: Comparison of 4-week-ahead forecasts across different models for the 2017–2018 epi-
demic season in Latvia. a, b, c: Forecasts generated by the network model, mean-field model,
and isolated model, respectively. The network model accurately captures the wave onset, out-
performing the other models, which either underestimate or misalign the timing of the initial
wave. In this epidemic season, the epidemic wave reached the Baltic states later than elsewhere
in Europe (cf. Figure 2), which explains the differences in the forecasts. d: Performance gain of
each model compared to the reference forecast, across training and test data, as well as during
wave onset and peak periods. These results highlight the largely superior predictive accuracy
of the network model with respect to isolated models, particularly during critical epidemic
phases.

and reporting inconsistencies impacted performance: since the mobility network is assumed to
be static, it was less accurate when travel restrictions were in place. Also, the adaptive estima-
tion scheme for the detection parameters ci(t) may be inadequate in extreme situations. Future
improvements could incorporate a dynamic network evolution to reflect real-time changes in
mobility patterns.

We also fitted model parameters using all ten years of data, to check whether providing
longer time series improved model predictions. The performance did not change considerably,
and the same drop in the performance gain for test data period compared to training data
period could still be observed. This confirms that the pandemic was the main cause of this
performance drop, rather than potential overfitting. A similar performance was obtained even
when only the first two years of data were used for parameter fitting. This is indicative of the
parsimony of our model, and suggests that some country-specific parameters might be fitted
based on forecasting performance without risk of overfitting. Details of these experiments are
in Supplement S7 and Supplementary Figure S3.
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Figure 5: a: Performance gain for each country over the entire ten-year period. b: Season-by-
season performance gains.

3.2 Including network effects improves forecasting with missing data

It is crucial for an epidemic model to provide robust forecasts, even with missing data. Our
network-based models leverage information from interconnected regions to impute missing
data and provide accurate predictions, even when substantial portions of the dataset are un-
available.

Experiment setup. We simulated missing data scenarios by randomly deleting 20%, 40%, 60%,
and 80% of the ILI data across all countries. Data that followed a period of at least three weeks
of missing data were “protected” from deleting. Each scenario was repeated 20 times to account
for variability. Forecasting performance was evaluated as described above, throughout the ten
years considered. In addition, we measured how well the deleted data could be reconstructed
using all available data until the reconstruction time. To enable direct comparison, the same
error metric is used as for the forecasts.

Performance analysis. As shown in Figure 6a, the forecasting performance of the network-
based model is robust to increasing percentages of missing data: prediction errors are ris-
ing only modestly. For example, with 40% data missing, the error increased by just 11.6%,
compared to 15.1% for isolated models. The network model thus shows its ability to utilize
inter-country dynamics to compensate for missing information. The reconstructed data closely
aligned with true infection trends. Notably, reconstruction errors remained significantly lower
than forecasting errors.

Benefits of network integration. The performance gain of the network model over the refer-
ence forecast increased with higher deletion levels, rising from 23% to 27.5% as data availabil-
ity decreased from 100% to 40% (Figure 6b), while the performance gain of the isolated models
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Figure 6: Performance of the models with different percentages of missing data. Confidence
intervals show the 90th percentiles over different randomized evaluations. a: Total error for
different percentages of deleted data; the network model has a consistently better performance,
the error remaining relatively low even with 80% missing data. b: Performance gain with
missing data compared to the reference forecast. c: Example of data reconstruction for Austria
over three epidemic seasons with 60% of the data deleted. The network model effectively
reconstructs the missing data while maintaining confidence intervals. Observe the increasing
width of the confidence interval in periods when data are missing.

remained roughly constant at around 17%. Figure 6c shows an example for three epidemic
seasons in Austria with 60% of the data deleted.

Our findings demonstrate the value of integrating information from neighbouring coun-
tries, particularly in scenarios with incomplete datasets, and hence the utility of network-based
models for improving forecasts and imputing missing data, which is particularly relevant for
epidemic monitoring in regions with uneven surveillance or reporting practices.

3.3 Probabilistic forecasts

Uncertainty quantification provided by the Extended Kalman Filter allows the network-based
model to provide valuable insight into the potential future trajectory of epidemics, accounting
for inherent uncertainties and generating confidence intervals and probabilistic scenarios to
guide decision-making.

10

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 7, 2025. ; https://doi.org/10.1101/2025.02.06.25321780doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.06.25321780
http://creativecommons.org/licenses/by/4.0/


a b
FR

35/23 40/23 45/23 50/23 2/24 7/24

Time (week/year)

0

50

100

150

200

250

300

350

400

In
ci

d
e
n
ce

Point estimate
30% confidence interval
60% confidence interval
90% confidence interval
Data

CH

35/23 40/23 45/23 50/23 2/24 7/24 12/24

Time (week/year)

0

20

40

60

80

100

120

140

160

180

In
ci

d
e
n
ce

Figure 7: Probabilistic forecasts for the 2023–2024 epidemic season in France and Switzerland.
a: 4-week-ahead probabilistic forecasts for France. b: Long-term probabilistic scenario simula-
tion for Switzerland.

Figure 7 illustrates examples of probabilistic forecasts for France and Switzerland during
the 2023–2024 epidemic season. The model provides point estimates and different confidence
intervals, capturing the uncertainty in the disease progression. The forecasts demonstrate the
ability of the network model to anticipate epidemic trends, including wave peaks and dura-
tions, while offering actionable ranges for public health planning.

3.4 Insights into model mechanisms and interpretability

One of the strengths of the network-based model lies in its mechanistic design, which allows
for a detailed inspection of the factors driving its performance. To better understand these
dynamics, we conducted additional experiments, described in detail in Supplement S7.

Firstly, we investigated the role of population sizes by scaling the network matrix G row-
wise. The results indicated that population size does not significantly influence forecasting
performance, suggesting that the model’s accuracy stems primarily from the structural and
dynamic properties of the network itself.

Secondly, the inclusion of network effects in the dynamics of the transmission parameter
� was found to play a crucial role in enhancing forecasting capabilities. When this effect was
removed by setting k2 = 0 in (4), the model’s performance dropped markedly.

Finally, we tested a hybrid model where the mean-field network informed only the �-
parameter dynamics, while the S ! I transitions were governed by isolated models. The
performance of this model was mostly comparable to the full network model. Interestingly, the
detailed network model outperformed all alternatives during wave onset periods, highlighting
its strength in capturing the early dynamics of epidemic waves.

4 Discussion

Summary. We demonstrated the advantages of a networked metapopulation SIRS model, in-
tegrated with an Extended Kalman Filter (EKF), for forecasting influenza-like illnesses (ILI)
across Europe. The model leverages empirical data on mobility and disease incidence to in-
corporate both local dynamics and cross-border interactions and thus improve forecasting
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accuracy. Comparative analyses show that the network-based model outperforms isolated
and mean-field models, particularly during critical periods such as wave onsets and epidemic
peaks. Additionally, the model is robust to missing data and provides reliable forecasts even
with substantial data unavailability.

Conclusions and future impact. Our findings highlight that integrating mobility data into
network-based epidemic models improves accuracy and interpretability. In a probabilistic fore-
casting framework, the EKF enables the model to adapt dynamically to new data, providing
real-time forecasts with quantified uncertainty that is critical for proactive responses. Our pro-
posed framework is highly relevant for epidemic monitoring and regional and global public
health decision-making, with several applications in forecasting. By providing a spectrum of
plausible epidemic trajectories, it supports scenario analysis and planning, including: 1) Early
warnings: identifying potential wave onsets and peak periods with quantified uncertainty; 2)
Resource allocation: informing healthcare capacity planning by projecting worst-case and best-
case scenarios; 3) Scenario modelling: evaluating the impact of interventions, such as travel
restrictions or vaccination campaigns, by simulating alternative futures.

The demonstrated benefits of network-based approaches are expected to influence the de-
sign of future epidemic forecasting systems, particularly in interconnected regions. Our results
encourage the adoption of similar frameworks for diseases such as COVID-19, dengue, and
seasonal influenza. The reconstructed European mobility network can also serve as a founda-
tion for further studies, fostering collaboration and data sharing among public health agencies.

Limitations and future work. Static network structures limit the accuracy of predictions dur-
ing periods of rapid mobility changes, such as those caused by pandemics or natural disasters.
Incorporating dynamic network adjustments, informed by real-time mobility data, could en-
hance model adaptability and performance. Our pipeline also implicitly assumes that data
collection is consistent between epidemic seasons. The adaptive scheme for estimating the
detection parameters ci(t) may not be able to cope with drastic changes that are sometimes
observed in the data. Any knowledge on changes can be manually incorporated to improve
performance.

Moreover, the model currently assumes homogeneous mixing within populations, which
may oversimplify complex interactions, particularly in urban areas. Future work could inte-
grate finer-grained data, such as inter-city mobility patterns, or other complementary data such
as holiday schedules like in [30], or humidity data like in [4, 18, 21, 30]. Additionally, the ab-
sence of certain countries from the network, due to data unavailability, may introduce regional
biases. Expanding public databases and standardizing data collection practices across Europe
would address this issue.

Lastly, while the model performs well for ILI, its applicability to other diseases with differ-
ent transmission dynamics, such as vector-borne or chronic diseases, remains to be explored.
Adjusting the framework to accommodate diverse epidemiological characteristics would broa-
den its impact.

Data and code availability

The code is available at gitlab.com/uniluxembourg/lcsb/systems-control/epinetekf together
with a user guide and the data used for the results in this article.
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