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Abstract 34 

Background 35 

While associations of antibiotic resistance traits are not random in multidrug-resistant (MDR) 36 
bacteria, clinically relevant resistance patterns remain relatively underexplored. This study 37 
used machine learning, specifically association-set mining, to explore resistance associations 38 
within E. coli isolates from community-acquired urinary tract infections (UTIs). 39 

Methods 40 

We analysed antibiograms of community-acquired E. coli UTI isolates collected from 2018 to 41 
2022 by France’s national surveillance system. Association-set mining was applied separately 42 
to extended-spectrum beta-lactamase-producing E. coli (ESBL-EC) and non-ESBL-EC. MDR 43 
patterns that had expected support (reflecting pattern frequency) and conditional lift (reflecting 44 
association strength) higher than expected by chance (p-value≤0.05) were used to construct 45 
resistance networks, and analysed according to time, age and gender.  46 

Findings 47 

The number of isolates increased from 360 287 in 2018 (10 150 ESBL-EC, 350 137 non-ESBL-48 
EC) to 629 017 in 2022 (18 663 ESBL-EC, 610 354 non-ESBL-EC). More MDR patterns were 49 
selected in ESBL-EC than non-ESBL-EC (2022: 1770 vs 93 patterns), with higher respective 50 
network densities (2022: 0.230 vs 0.074). Fluoroquinolone, third-generation cephalosporin and 51 
penicillin resistances were strongly associated in ESBL-EC. The median densities of 52 
resistance association networks increased from 2018 to 2022 in both ESBL-EC (0.238 to 53 
0.302, p-value=0.06, Pearson test) and non-ESBL-EC (0.074 to 0.100, p-value=0.04). Across 54 
all years, median network densities were higher in men than women in both ESBL-EC (2022: 55 
0.305 vs 0.276) and non-ESBL-EC (2022: 0.128 vs 0.094); they were also higher in individuals 56 
over 65 years old than under 65 in ESBL-EC (2022: 0.289 vs 0.275) and non-ESBL-EC (2022: 57 
0.103 vs 0.088).  58 

Interpretation 59 

These findings, which show increasing MDR associations, especially in men and older 60 
individuals, highlight the importance of ongoing resistance surveillance to understand the 61 
future evolution of resistance patterns. 62 

Funding 63 

This work received funding from the French government through the National Research 64 
Agency project COMBINE ANR–22-PAMR-0003. 65 

Keywords: Machine learning, Community-acquired E. coli UTI (urinary tract infection), 66 
multiresistance pattern, antibiotic resistance, network analysis 67 
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Research in context 69 

Evidence before this study 70 

We searched Pubmed for previously published articles without any date or language 71 
restrictions using the search terms (multiresistan* OR “multidrug-resistan*”) AND ("data 72 
mining” OR "machine learning" OR "artificial intelligence") AND (pattern* OR associat*). We 73 
found three studies that used machine learning to identify multiresistance patterns in various 74 
pathogens (chicken-associated Escherichia coli, human-associated Staphylococcus aureus 75 
and cattle-associated Salmonella enterica) in the United States. However, to our knowledge, 76 
no machine-learning studies to date have explored multiresistance patterns in human-77 
associated Enterobacterales, especially within European contexts.  78 

Added value of this study 79 

Our study provided a novel and detailed analysis of multiresistance patterns in community-80 
acquired E. coli urinary tract infection collected from a French national surveillance system. 81 
Our findings confirmed that association-set mining is effective for identifying resistance 82 
associations in antibiotic resistance surveillance data. We explored the temporal evolution of 83 
resistance associations, gender-specific and age-specific differences, which to our knowledge, 84 
had not been previously analysed.  85 

Implications of all the available evidence 86 

Our results suggest a temporal increase of resistance associations in community-acquired E. 87 
coli UTI and identify key patterns in different subpopulations. In the context of rising antibiotic 88 
resistance, optimizing the use of current medications is crucial, as few new antibiotics have 89 
been developed in the past two decades. With further research, this work could provide insight 90 
for targeted antibiotic stewardship strategies.  91 
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Introduction 93 

Antimicrobial-resistance (AMR) is an increasing public health issue, notably due to the 94 
extensive use of antibiotics and increasing global mobility. Infections caused by multidrug-95 
resistant bacteria are challenging to treat, resulting in increased mortality, prolonged hospital 96 
stays and higher healthcare costs (1). Initially regarded as a hospital-specific issue, AMR is 97 
now recognized as a major problem in community settings and a one-health issue (2). In 2021, 98 
AMR-associated infections were directly responsible for approximately 1.14 million deaths 99 
globally (3). Multiple studies forecast an increase in resistance to available antibiotics, which 100 
could cause >8 million deaths in 2050 (3). The global burden of AMR is driven by a few leading 101 
microorganisms, among which resistant E. coli infections caused the highest number of deaths 102 
in 2019 (4).  103 

Multidrug resistance (MDR) does not result from individual drug resistances occurring together 104 
by chance, as documented in multiple bacteria (5). Beyond selection pressure, several 105 
biological mechanisms are known to contribute to MDR emergence, including horizontal gene 106 
transfer (6), non-specific mechanisms like efflux pumps and specific mechanisms like beta-107 
lactamases (5).  108 

Here, we use association-set mining, a method that has proven effective in identifying patterns 109 
of antibiotic resistance traits in chicken-associated Escherichia coli, human-associated 110 
Staphylococcus aureus and cattle-associated Salmonella enterica (7–9), to identify 111 
multiresistance patterns in community-acquired E. coli urinary tract infections (UTIs) collected 112 
by the French national surveillance system of antibiotic resistance. We create graphical 113 
networks from the patterns detected by the algorithm in order to highlight resistance 114 
associations of interest. By comprehensively studying MDR patterns, we aim to better 115 
understand their evolution over time and potential differences across subpopulations.  116 

  117 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 8, 2025. ; https://doi.org/10.1101/2025.02.05.25321745doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.05.25321745
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

Methods 118 

Data source 119 

This study used retrospective data collected via PRIMO (Surveillance and Prevention of 120 
Antibiotic Resistance in Primary Care and Nursing Homes), a French nationwide surveillance 121 
system of clinical laboratories participating on a voluntary basis (742 laboratories in 2018, 1773 122 
laboratories in 2022) (10). Data included antibiotic susceptibility testing (AST) results, patient’s 123 
age, gender, and administrative region. We restricted the analyses to AST collected from E. 124 
coli UTI collected in community laboratories between January 1st, 2018 and December 31st, 125 
2022.  126 

AST and Extended-spectrum beta-lactamases (ESBL) testing were carried out and assessed 127 
according to the recommendations of the AST committee of the French Microbiology Society 128 
(11). Each isolate was tested against 3 to 35 antibiotics and categorized in a Susceptible, 129 
Susceptible to increased exposure or Resistant format. For this analysis, Susceptible to 130 
increased exposure and Resistant were grouped as Resistant. We excluded antibiotics that 131 
were tested on less than 10% of isolates on average across all years, and included a single 132 
representative antibiotic when several antibiotics had similar resistance patterns. This process 133 
resulted in the inclusion of 27 antibiotics (Supplementary Table 1). Carbapenemase-producing 134 
isolates were excluded from the analysis as their low frequency did not allow for a robust 135 
analysis of their specific multiresistance patterns. To avoid duplicates, when multiple isolates 136 
with the same susceptibility pattern were collected from the same individual (same date of birth 137 
and sex) within a single clinical laboratory, only the first isolate in the dataset was included. 138 

Because the analysis was performed using anonymized surveillance data, ethical consent was 139 
not required according to the French Data Protection Act. The dataset was accredited by the 140 
French National Data Protection Commission (CNIL 1,685,003), and the fully anonymized data 141 
waiver for informed consent of study participants was applied. 142 

Data stratification 143 

We classified isolates into two phenotype categories: ESBL-producing E. coli (ESBL-EC), 144 
either alone or combined with another phenotype, and non-ESBL-producing E. coli (non-ESBL-145 
EC). We conducted analyses separately for each year and phenotype dataset. To explore 146 
potential gender- and age-based differences in multiresistance patterns, we also conducted 147 
stratified analyses by sex and separate analyses for individuals aged under and over 65. 148 

Testing the independence of individual resistances 149 

We first assessed the independence of individual resistances (8). In the following, H0 refers to 150 
the hypothesis that assumes all resistance traits to antibiotics are mutually independent. We 151 
simulated 100 datasets under H0, that matched the observed datasets in size, resistance 152 
prevalence, and positions of missing AST results. Resistance traits were generated as 153 
independent binomial random variables (n = number of isolates tested; p = resistance 154 
prevalence). To evaluate the likelihood of the observed MDR prevalence under H0, we 155 
compared the distribution of resistance counts per isolate between observed and simulated 156 
data using a Kolmogorov-Smirnov test.  157 

Multiresistance patterns identification 158 

We identified MDR patterns from our datasets using association-set mining with the Apriori 159 
algorithm, as previously proposed by Cazer et al. (8,12). Briefly, we first explored the datasets 160 
to select all patterns present with a given frequency, setting the required initial minimum 161 
frequency at 0.01 for ESBL-EC and 0.001 for non-ESBL-EC. In a second step, we pruned 162 
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patterns for which two important metrics, expected support (eSup) and conditional lift (cLift), 163 
were significantly lower than expected by chance. To do this, we determined the 5th percentile 164 
of eSup and cLift under the resistance independence hypothesis H0 using the previously 165 
described 100 datasets simulated under H0. eSup measures the pattern frequency within the 166 
dataset, while cLift assesses the frequency of a pattern relative to its expected frequency under 167 
the assumption that resistance to antibiotics within the pattern are independent. More details 168 
on multiresistance pattern identification and accounting for missing data are provided in 169 
Supplementary Text 2.  170 

Construction and analysis of resistance associations networks 171 

We decomposed the MDR patterns remaining after pruning into pairwise associations, and 172 
built resistance association networks, where nodes represent antibiotics and edges represent 173 
resistance associations between two antibiotics. 174 

For each reconstructed network, we computed network density. Confidence intervals were 175 
estimated using: (i) for 2018, 10 datasets generated by a bootstrap procedure of the original 176 
dataset, (ii) for 2019 to 2022, 10 random subsamples of the original datasets, each created to 177 
match the size of the 2018 dataset. We calculated the 95% confidence intervals from the 2.5th 178 
and the 97.5th percentiles of the results. Time changes in network density were assessed using 179 
these constant-size yearly samples, and a Pearson trend test. 180 

Networks were also compared between men and women, and individuals under or over 65 181 
years old. Similarly to between-year comparisons, we generated 10 random subsamples of 182 
the women’s (resp. over-65) dataset to match the size of the men’s (resp under-65) dataset 183 
and computed 95% confidence intervals from either bootstrapped data or these subsamples.  184 

Sensitivity analysis 185 

The regional contributions to the national dataset varied over the years. To investigate the 186 
impact of these variations on our results, we created a dataset where the number of isolates 187 
from each region was proportional to its population (details in Supplementary Text 3), and 188 
replicated our analyses using this dataset. 189 

All analyses were performed in R 4.3.2, notably using the package “arules” for association-set 190 
mining (Hahsler et al., 2018). 191 
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Results 193 

Data description 194 

The number of isolates increased over time, from 360 287 in 2018 to 628 993 in 2022 (Table 195 
1; p-value=0.01, Pearson trend test). The proportion of ESBL isolates was comprised between 196 
2.8% and 3.0%, with no increasing or decreasing trend across the years (p-value=0.79). 197 
Throughout all years, between 84.0% and 84.5% of isolates came from women. The mean age 198 
ranged from 58 to 60. The isolates came from all regions of metropolitan France, with varying 199 
proportions across the years (Figure S1).  200 

Table 1: Summary of PRIMO datasets for E. coli UTI samples from 2018 to 2022. 201 

 2018 2019 2020 2021 2022 
Number of 

isolates 360 287 450 820 450 135 571 126 628 993 

ESBL 10 150  
(2.8%) 

13 559  
(3.0%) 

13 265  
(2.9%) 

16 006  
(2.8%) 

18 663  
(3.0%) 

 Non-ESBL 350 137 
(97.2%) 

437 261 
(97.0%) 

436 870 
(97.1%) 

555 120 
(97.2%) 

610 330 
(97.0%) 

Women 276 220 
(84.5%) 

356 002 
(84.4%) 

361 758 
(84.0%) 

457 789 
(84.3%) 

520 081 
(84.1%) 

Men 50 706 
(15.5%) 

66 000 
(15.6%) 

68 730 
(16.0%) 

85 444 
(16.7%) 

98 055  
(15.9%) 

Mean age 58 59 59 60 60 
 202 

Individual antibiotic resistance prevalence in ESBL-EC and non-ESBL-EC 203 

Regarding penicillins, nearly all ESBL isolates were resistant to ampicillin, amoxicillin and 204 
ticarcillin (Figure 1A). Most ESBL isolates were resistant to second- and third-generation 205 
cephalosporins, including cefuroxime (100%, 1 535/1 535 tested in 2022), ceftriaxone (99.6%, 206 
18 592/18 663 tested) and cefotaxime (99.6%, 18 592/18 663 tested). For fluoroquinolones, 207 
between 70% and 85% of isolates were resistant to ciprofloxacin, levofloxacin, norfloxacin and 208 
ofloxacin. However, most ESBL isolates were sensitive to first-line antibiotics including 209 
fosfomycin (4.9%, 834/17 180 tested), nitrofurantoin (1.9%, 348/18 259 tested), mecillinam 210 
(10.8%, 1 800/16 684 tested) and cefoxitin (11.1%, 2035/18 380 tested). 211 

Non-ESBL isolates were often resistant to penicillins including ampicillin (41.8%, 203 547/486 212 
592 tested), amoxicillin (42.3%, 251 107/593 743 tested) and ticarcillin (40.9%, 223 404/546 213 
477 tested) (Figure 1B). Less than 1% of isolates were resistant to third generation 214 
cephalosporins including ceftazidime, cefixime, ceftriaxone and cefotaxime. For 215 
fluoroquinolones, between 5% and 15% of isolates were resistant to ciprofloxacin, levofloxacin, 216 
norfloxacin and ofloxacin. Similar individual antibiotic resistance prevalences were found from 217 
2018 to 2021 (Figure S2). 218 
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 219 

Figure 1: Resistance prevalence and AST frequency for all antibiotics in 2022 in (A) 220 
ESBL-EC and (B) non-ESBL-EC. See supplementary Table 1 for a complete list of antibiotics 221 
with their full name. 222 

 223 

Independence of individual resistance traits 224 

The observed distribution of the number of resistances per isolate significantly differed from 225 
the simulated distribution under the hypothesis of independence (p-value = 6.81.10-3, 226 
Kolmogorov-Smirnov test), suggesting that individual resistances were not independent 227 
(Figure 2). In the observed dataset, 39% of isolates were pansusceptible, compared to 9% in 228 
the simulated dataset. Similar results were obtained when comparing the distributions of the 229 
number of resistances per isolate in observed and simulated data from 2018 to 2021 (Figure 230 
S3). We also compared the distributions separately for ESBL-EC and non-ESBL-EC from 2018 231 
to 2022 (Figure S4), underlining that the difference was mostly driven by non-ESBL-EC. 232 
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 233 

Figure 2: Distribution of the number of resistances per isolate in 2022 for all isolates. 234 
The red line represents the observed dataset, and the grey lines represent the simulated 235 
datasets. 236 

 237 

Multiresistance pattern selection 238 

For ESBL-EC, the Apriori algorithm initially identified 52 824 patterns in 2018 and 123 116 239 
patterns in 2022, with an increasing trend over the years (p-value=0.01, Pearson test) (Table 240 
2). For non-ESBL-EC, the algorithm initially generated 2 529 patterns in 2018 and 4 515 241 
patterns in 2022, with a non-significant increasing trend (p-value=0.06, Pearson test).  242 

For 2022, the eSup cut-off values were 0.271 for ESBL-EC isolates and 0.034 for non-ESBL-243 
EC, meaning that a pattern was selected if it appeared in at least 27.1% of ESBL-EC or 3.4% 244 
of non-ESBL-EC. This value was relatively stable over time for both ESBL (range: 23.6-27.1%, 245 
p-value=0.22, Mann-Kendall test) and non-ESBL-EC (range: 2.9-3.4%, p-value=0.13, Mann-246 
Kendall test).  247 

The cLift cut-off value for ESBL-EC and non-ESBL-EC was respectively 1.058 and 1.041 in 248 
2022, meaning that a pattern was selected if it was 5.8% (resp. 4.1%) more frequent than 249 
expected by chance under the assumption of resistance independence in ESBL-EC (resp. non-250 
ESBL-EC). These cut-offs were again relatively stable over time for both ESBL-EC (p-251 
value=0.46, Mann-Kendall test) and non-ESBL-EC (p-value=0.09, Mann-Kendall test). 252 

The pruning step selected respectively 1 770 (1.43% of patterns) and 93 (2.06%) patterns for 253 
ESBL-EC and non-ESBL-EC in 2022. The number of selected patterns had an increasing trend 254 
from 2018 to 2022 for both ESBL-EC (p-value=0.03, Pearson test) and non-ESBL-EC (p-255 
value=0.05, Pearson test). 256 

 257 

Table 2: Number of multiresistance patterns selected by association-set mining for each 258 
year and phenotype subset. For example, in 2018 ESBL-EC, 52 736 patterns were identified. 259 
Cut-off values were set at eSup ≥ 0.257 and cLift ≥ 1.076, meaning that a pattern was retained 260 
if it appeared in at least 25.7% of isolates and occurred 7.6% more frequently than expected 261 
under the assumption of independence between resistance traits. After pruning, 483 patterns 262 
were selected. 263 

Phenotype Year 
Number of 
patterns 
initially 

eSup 
cut-off 
value 

cLift 
cut-off 
value 

Number of 
patterns 
selected 
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generated 
by the 
Apriori 

algorithm 

after 
pruning 

ESBL 

2018 52 736 0.257 1.076 483 
2019 86 454 0.236 1.070 1 234 
2020 106 625 0.242 1.073 1 268 
2021 115 425 0.262 1.065 1 921 
2022 123 116 0.271 1.058 1 770 

Non-ESBL 

2018 2 527 0.030 1.056 59 
2019 3 936 0.029 1.051 82 
2020 3 756 0.030 1.052 75 
2021 4 945 0.031 1.045 88 
2022 4 502 0.034 1.041 93 

 264 

 265 

Networks of resistance associations 266 

Resistance associations networks have higher density for ESBL-EC 267 

Resistance associations networks were much denser in ESBL-EC than non-ESBL-EC, with 268 
densities of respectively 0.301 and 0.100 in 2022 (Figure 3). As expected, resistance 269 
associations in ESBL-EC involved mainly penicillins, third-generation cephalosporins and 270 
fluoroquinolones. In non-ESBL-EC, strong resistance associations were found between 271 
penicillins, combinations of penicillin and beta-lactamase inhibitor and quinolones. Regarding 272 
first-line antibiotics, almost no significant association involving nitrofurantoin, fosfomycin, 273 
mecillinam nor any aminoglycoside was found in both ESBL- and non-ESBL-EC. However, 274 
trimethoprim/sulfamethoxazole was associated with third-generation cephalosporins in ESBL-275 
EC and with penicillins in non-ESBL-EC. 276 

 277 
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 278 

Figure 3: Networks generated from ESBL-EC (A) and non-ESBL-EC (B) in 2022. Patterns 279 
were decomposed into nodes (antibiotics) and edges. Nodes are colored with a pie chart: the 280 
grey part is the proportion of isolates not tested for this antibiotic, the white part is the proportion 281 
of isolates susceptible to this antibiotic and the colored part is the proportion of isolates 282 
resistant to this antibiotic. Node color reflects the antibiotic class. Edge color is darker with a 283 
high cLift value, meaning that the two antibiotics are substantially more frequently together in 284 
a resistance pattern than expected if resistance traits were independent. Edge width is higher 285 
with a high eSup value, meaning that the two antibiotics are frequently found together in a 286 
resistance pattern. See supplementary Table 1 for a complete list of antibiotics with their full 287 
name. 288 

 289 

Network density increases over time for both ESBL-EC and non-ESBL-EC 290 

Network density increased over time, from 0.238 [0.234; 0.249] in 2018 to 0.301 [0.294; 0.302] 291 
in 2022 for ESBL-EC (p-value=0.06, Pearson test), and from 0.074 [0.074; 0.074] in 2018 to 292 
0.100 [0.100; 0.103] in 2022 for non-ESBL-EC (p-value=0.04, Pearson test) (Figure 4).  293 
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 294 

Figure 4: Networks of resistance associations from 2018 to 2022. Median density and 95% 295 
confidence interval calculated using: (i) for 2018, 10 bootstrapped datasets, (ii) for 2019 to 296 
2022, 10 subsamples randomly drawn to match the size of the 2018 dataset. See 297 
supplementary Table 1 for a complete list of antibiotics with their full name. 298 

 299 

Network density is higher in 65+ years old 300 

For non-ESBL-EC, resistance associations networks were denser in individuals aged 65 and 301 
over than in individuals under 65, with median densities of respectively 0.103 [0.103; 0.105] 302 
and 0.088 [0.088; 0.091] in 2022 (Figure 5B). For ESBL-EC, the median network density was 303 
not significantly different between 65+ years old, at 0.289 [0.280; 0.301], and –65 years old, at 304 
0.275 [0.261; 0.294]. The ESBL-EC networks of 65+ individuals mainly involved additional 305 
associations of cefuroxime with penicillins (amoxicillin, ampicillin), third and fourth generation 306 
cephalosporin (cefotaxime, cefepime) and fluoroquinolones (ciprofloxacin, levofloxacin, 307 
norfloxacin) (Figure 5A). Similar results were found when analysing data from 2018 to 2021 308 
(Figure S5). 309 
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 310 

Figure 5: (A) Networks of resistance associations for individuals under 65 and 311 
individuals 65 and over in 2022. (B) Barplots of median network density for both age 312 
groups. Error bars indicate confidence interval: for individuals over 65, calculated using 10 313 
subsamples randomly generated at the size of the dataset of individuals under 65; for 314 
individuals under 65, calculated using 10 bootstrapped datasets from the complete dataset of 315 
individuals under 65. See supplementary Table 1 for a complete list of antibiotics with their full 316 
name. 317 

 318 

Network density is higher in men 319 

In 2022 for ESBL-EC, network density was higher in men than in women, with respective 320 
medians of 0.305 [0.291; 0.322] and 0.271 [0.266; 0.276] (Figure 6B). The same result was 321 
observed in non-ESBL-EC, with median densities of 0.128 [0.125; 0.133] and 0.094 [0.090; 322 
0.096] for men and women respectively. The ESBL-EC networks of men mainly involved 323 
additional associations of cefuroxime with penicillins (amoxicillin, ampicillin), third and fourth 324 
generation cephalosporin (cefotaxime, cefepime) and fluoroquinolones (ciprofloxacin, 325 
levofloxacin, norfloxacin) (Figure 6A). Similar results were found when analysing data from 326 
2018 to 2021 (Figure S6). 327 
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 328 

Figure 6: (A) Networks of resistance associations for men and women in 2022. (B) 329 
Barplots of the median network density for men and women. Error bars indicate 330 
confidence intervals: for women, calculated using 10 datasets generated at the size of the 331 
men's dataset; for men, calculated using 10 bootstrapped datasets from the complete men's 332 
dataset. See supplementary Table 1 for a complete list of antibiotics with their full name. 333 

 334 

Sensitivity analysis 335 

Figure S7 depicts resistance association networks from 2019 to 2022, obtained with resampled 336 
datasets to ensure that the relative contribution of each region is constant over time and 337 
proportional to its population. As in the main analysis, networks reconstructed for ESBL-EC 338 
isolates were much denser than for non-ESBL-EC. For ESBL-EC, a significant increase in 339 
density was again observed over time, from 0.240 to 0.300 (p-value=0.004, Pearson test), 340 
although this was not the case any more for non-ESBL-EC. 341 

  342 
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Discussion 343 

In this study we identified resistance associations in community-acquired UTI E. coli isolates, 344 
using a large French surveillance database. Across all years, and as expected, ESBL-EC 345 
showed a higher number of resistance associations, particularly involving penicillins, 346 
fluoroquinolones and third-generation cephalosporins. In both ESBL and non-ESBL-EC, the 347 
number of resistance associations increased from 2018 to 2022, and men and individuals aged 348 
65 and over showed more resistance associations across all years.  349 

We compared the observed distribution of the number of resistances per isolate with a 350 
simulated dataset assuming the hypothesis of mutual independence of resistance traits (8) and 351 
found significant differences. This finding aligns with Chang et al., 2015, which reported that 352 
MDR occurred at frequencies inconsistent with the hypothesis of mutual independence of 353 
resistance traits for multiple bacteria including E. coli (5). It provides further evidence for 354 
biological or genetic mechanisms favouring the co-occurrence of multiple resistance traits in 355 
E. coli.  356 

Resistance rates were generally low for first-line antibiotics recommended in France for 357 
community-acquired UTIs, such as fosfomycin, pivmecillinam or nitrofurantoin (13). Analysis 358 
of ESBL-EC resistance associations networks highlighted major associations between 359 
penicillins (+/- inhibitors), cephalosporins, fluoroquinolones and cotrimoxazole. This pattern 360 
may correspond to CTX-M, the most prevalent ESBL in E. coli, as well as TEM or SHV 361 
enzymes, which all hydrolyse penicillins and cephalosporins. CTX-M are mostly susceptible to 362 
piperacillin-tazobactam (~80–90%), while this is more variable in TEM/SHV. They are both 363 
highly resistant to fluoroquinolones (80–90%), and moderately resistant (~50%) to 364 
cotrimoxazole. Although the mechanisms of resistance to beta-lactams and fluoroquinolones 365 
are distinct, fluoroquinolone resistance genes (e.g., qnr or aac(6’)-Ib-cr) are present on mobile 366 
genetic elements that also carry beta-lactam resistance genes, which allows multiple 367 
resistances to be transmitted jointly (14). Association-set mining may represent an efficient 368 
approach to better understand the dynamics of E. coli multiresistance patterns and make 369 
hypothesis regarding the underlying genetic evolutions, to be confirmed by whole genome 370 
sequencing analysis. 371 

Using association-set mining, we found that the number of resistance associations increased 372 
from 2018 to 2022 in both ESBL-EC and non-ESBL-EC. Despite this overall increasing trend, 373 
a temporary decrease was observed in 2020, consistently with the observed reduction in MDR 374 
E. coli during the Covid-19 pandemic in France (15). We explored the impact of spatial 375 
resistance epidemiology on our findings through a sensitivity analysis using datasets where 376 
the number of isolates from each region was proportional to its population. This approach 377 
confirmed the nationwide increase of resistance associations within community-acquired 378 
ESBL-EC UTIs. However, in this sensitivity analysis, the increase in non-ESBL-EC isolates 379 
disappeared. Consequently, the changes in regional relative contributions may have played a 380 
role in the temporal increase of the number of resistance associations we observed in non-381 
ESBL-EC isolates. In particular, the contribution of several densely-populated and 382 
internationally-connected French regions, including Ile-de-France (Paris area), increased over 383 
time. Isolates from these regions may present more resistance associations.  384 

During 2018-2022, the global consumption of antibiotics in primary care decreased in France 385 
from 22.9 to 21.6 defined daily doses (DDD) per 10,000 inhabitant per day. This trend was 386 
observed for large-spectrum penicillins, cephalosporins and quinolones, but not for 387 
associations of penicillins, sulphonamides and trimethoprim which remained stable. In this 388 
context, the increasingly dense MDR patterns we observe among community E. coli may be 389 
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driven not only by antibiotic use but also by other multiple human, animal, and environmental 390 
factors (16). 391 

Isolates coming from men and individuals older than 65 had more resistance associations, 392 
even after adjusting for different sample sizes. This finding is consistent with multiple studies 393 
showing that older individuals are particularly exposed to MDR bacteria notably because of 394 
immunosenescence, frequent multiple chronic comorbidities and the associated requirement 395 
for care. They are more frequently exposed to hospitals and other healthcare facilities, 396 
increasing their contact with resistant bacteria (17,18). In contrast, limited data is available 397 
regarding gender-specific differences in MDR, although some studies suggested that men 398 
have more risks than women to be infected with resistant bacteria (19–21). In our study, men-399 
specific networks had additional associations involving cefuroxime. In hospital settings, 400 
cefuroxime is routinely used as surgical prophylaxis to reduce the risk of postoperative 401 
infections, particularly in prostate resection, a frequent procedure in older men (22). Moreover, 402 
UTIs in men are more commonly associated with structural abnormalities like renal stones and 403 
malignancies, which can complicate the treatment, lead to increased antibiotic use and 404 
contribute to the development of resistance (23). This could partially explain the additional 405 
associations.  406 

Our study is subject to certain limitations that should be taken into account.  407 

First, the size of the PRIMO datasets generally increased every year, notably due to the 408 
increase of the scope of the PRIMO mission. However, the 2020 dataset was slightly smaller 409 
than the 2019 one (450 135 vs. 450 820 isolates). This could be partially explained by the 410 
COVID-19 pandemic which disrupted healthcare systems and microbiological surveillance 411 
practices in 2020. Community clinical laboratories prioritized COVID-19 management, 412 
potentially reducing their capacity to collect and record AST (24). While network size is known 413 
to impact its density (25), in our analyses, we accounted for varying dataset sizes by randomly 414 
drawing subsamples at the size of the 2018 dataset.  415 

Second, the PRIMO surveillance system contained isolates that were collected in community 416 
clinical laboratories; however, we cannot be certain that it was representative of the total 417 
community-acquired E. coli UTI in France between 2018 and 2022. Some isolates could have 418 
been acquired in healthcare settings, especially for older individuals who are frequently 419 
hospitalized. Moreover, while we were unable to collect clinical information, some E. coli were 420 
potentially isolated from asymptomatic bacteriuria of colonised patients.  421 

Third, our results are valid for E. coli isolates only, and not for other Enterobacterales, 422 
potentially limiting their generalizability. We chose to focus the study on E. coli as it represented 423 
85.0% of all isolates in the dataset.  424 

Fourth, in the PRIMO database, some antibiotics were tested on a very small number of 425 
isolates. To minimize bias, we included only antibiotics tested on at least 10% of isolates 426 
across all datasets. We found stable results for most antibiotics over time. However, this 427 
limitation may explain the changing results regarding ampicillin from 2018 to 2019. In 2018, 428 
ampicillin was tested on only 2% of isolates, which likely prevented the algorithm from 429 
identifying significant associations involving this antibiotic. By 2019, ampicillin was tested on 430 
more isolates, allowing the algorithm to detected such associations. Moreover, the antibiotics 431 
tested were determined by the laboratories, and might not align with hospital practices, while 432 
consistent with practices in outpatient care. 433 

Fifth, the Apriori algorithm is a highly efficient method supported by multiple studies (7–9). 434 
However, combining multiple data mining approaches, as recently suggested (9), could have 435 
enhanced our understanding of MDR. In addition, Apriori generates numerous patterns, 436 
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requiring careful pruning with appropriate quality measures and cut-off values. While many 437 
studies rely solely on support (26), this would have favoured frequent resistance patterns, such 438 
as those involving amoxicillin, while overlooking rarer but significant associations. We therefore 439 
chose lift as  a robust complementary metric (7); however, numerous other metrics or metric 440 
combinations could be proposed (27,28), potentially yielding slightly different results. Missing 441 
data may also have influenced Apriori results by altering resistance prevalence distributions 442 
and associations (29), although this was addressed by the use of adapted quality measures 443 
(eSup and cLift) (30). Finally, cut-off values also influence pattern selection (26). Our 444 
percentile-based approach led us to exclude patterns with a lift below 1, which could have 445 
highlighted MDR patterns occurring less frequently than expected. 446 

Despite these limitations, our study provided a novel and detailed analysis of multiresistance 447 
patterns in community-acquired E. coli UTI collected from a French national surveillance 448 
system. We explored the temporal evolution of resistance associations, gender-specific and 449 
age-specific differences, which to our knowledge, had not been previously analysed. Our 450 
findings confirmed that this method is effective for identifying resistance associations in 451 
antibiotic resistance surveillance data. With further research, this work could provide insights 452 
for antibiotic stewardship strategies in alignment with known resistance associations in 453 
community-acquired E. coli UTIs. In the context of rising antibiotic resistance, optimizing the 454 
use of current medications is crucial, as few new antibiotics have been developed in the past 455 
two decades (31).  456 

Future research could use other machine learning approaches to further analyse the PRIMO 457 
datasets and get a deeper understanding of resistance associations. Moreover, it would be 458 
interesting to examine the evolution of resistance associations in future years. In addition, 459 
extending our approach to other pathogens beyond E. coli could offer a broader perspective 460 
on multiresistance dynamics. Finally, future work could investigate the potential linkage 461 
between these phenotypic resistance associations and genetic co-resistance mechanisms. 462 

 463 

List of abbreviations 464 

AMR: Antimicrobial-resistant 465 

AST: Antibiotic susceptibility testing 466 

cLift: conditional lift 467 

DDD: defined daily dose 468 

ESBL-EC: Extended-spectrum beta-lactamase producing E. coli 469 

eSup: expected support 470 

MDR: multidrug-resistant 471 

UTI: urinary tract infection 472 

473 
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