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Abstract  

 Diagnostic models using primary care routine clinical variables have been limited in 

their ability to identify Alzheimer’s disease (AD) patients. In this study we sought to better 

understand the effect of mild cognitive impairment (MCI) on the predictive performance of 

AD diagnostic models. We sourced data from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) cohort. CatBoost was used to assess the utility of routine clinical variables 

that are accessible to primary care physicians, such as hematological and blood tests and 

medical history, in multiclass classification between healthy controls, MCI, and AD. Our 

results indicated that MCI indeed affected the predictive performance of AD diagnostic 

models. Of three subgroups of MCI that we found, this finding was driven by a subgroup of 

MCI patients that likely have prodromal AD. Future research should focus on distinguishing 

MCI from prodromal AD as the utmost priority for improving translational AD diagnostic 

models for primary care physicians.  
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Introduction 

 Alzheimer’s disease (AD), the most prevalent dementia accounting for 50-70% of 

cases, is the leading cause of disability among adults over age 65 1. With a rapidly increasing 

prevalence, AD is expected to cost the world economy more than $14.5 trillion international 

dollars over the next 30 years to 2050 2. Improving the ability to accurately diagnose AD is of 

the utmost importance and ensures that patients receive appropriate support, interventions, 

and have the time to employ lifestyle adjustments that prolong independence and quality of 

life 3.  

 Despite this, the timely and accurate diagnosis of AD remains challenging. To date, a 

significant number of diagnostic tools and models of AD have focused on the use of magnetic 

resonance imaging (MRI) and positron emission tomography (PET) scans to detect early 

indicators of AD pathology including Aβ plaques 4-12. Others have relied on cerebrospinal 

fluid (CSF) and plasma biomarkers including Aβ42/Aβ40 ratio, total tau protein, 

phosphorylated tau 181 (p-tau181), p-tau231, p-tau217, neurofilament light (NfL) and glial 

fibrillary acidic protein (GFAP) 13,14. Although these tests show promise for AD diagnostics, 

there are many practical limitations that prevent widespread clinical implementation. Both 

neuroimaging scans and biomarker assays are associated with a high cost both to the 

healthcare system and patient, low availability, and high wait times, especially for those 

patients in rural areas 14-17. Further, collecting CSF is an invasive procedure that requires 

specific technical medical expertise 14. In line with these challenges, a recent Alzheimer’s 

Association Primary Care Physician Dementia Care Training Survey found that half of 

primary care physicians do not feel that they have the local specialist resources to meet 

patient demand 18. In fact, primary care physicians remain better able to identify those 

without AD than those with it 19,20. For many patients with AD, primary care physicians are 

the first point of contact with the healthcare system making them essential for patient triage, 

diagnosis, and management 15. Therefore, ensuring that primary care physicians have the 

skills and tools required for AD diagnostics is critical.  

 To improve diagnostic capabilities among primary care physicians, previous studies 

have used machine learning to examine the potential of routine, easy-to-obtain clinical 

measures. For example, these models include the Cardiovascular Risk Factors, Aging, and 

Dementia (CAIDE) 21, Study on Aging, Cognition and Dementia (AgeCoDe) 22, Australian 

National University Alzheimer’s Disease Risk Index (ANU-ADRI) 23, Rapid Assessment of 
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Dementia Risk (RADaR) for older adults 24, and Brief Dementia Screening Indicator (BDSI) 
25. There are limitations to these previous diagnostic models, however, as they report low 

sensitivities and positive predictive values (PPV), indicating that they are unable to reliably 

identify someone with AD. This was confirmed by a recent study showing existing machine 

learning-based diagnostic models of AD miss 84-91% of incident AD cases and therefore 

have limited clinical utility 26.  

 The factors underlying the inability of these models to reliably diagnose AD remains 

unclear. One possibility is the presence of patients with mild cognitive impairment (MCI), 

which affects 10-15% of the population over age 65 27. Although AD first manifests clinically 

as MCI, not all patients with MCI will go on to develop AD 27-29. Further, MCI is known to 

be characterized by heterogeneous patients with multiple etiologies associated with differing 

clinical presentations 28. In line with this, there is evidence that MCI cases themselves are 

difficult to predict. Previous studies have reported precision, recall, and sensitivity metrics at 

or near chance levels for MCI classification 30,31, distinguishing MCI from AD 32, and 

predicting conversion from MCI to AD 33-36. This suggests that these models would have low 

practical utility in the clinic and are likely to mislabel most MCI cases. Combined, this 

highlights that MCI cases may affect the predictive power of translational AD diagnostic 

models. 

 Leveraging data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

cohort, we sought to better understand the effects of MCI cases on the predictive performance 

of AD diagnostic models using easy-to-obtain clinical variables.   

 

Results 

CatBoost can identify healthy controls and MCI but not AD cases  

 Using baseline diagnosis, we identified patients in the ADNI cohort with AD (N = 

181), MCI (N = 473), and healthy controls (N = 220). There were no differences across the 

groups with respect to age or sex distributions, with all groups having more males than 

females (Supplementary Table 1). The dataset was then randomly split into 80% training and 

validation and 20% withheld testing datasets. We included 120 features of routine, easy-to-

obtain clinical variables (Supplementary Table 1). Using CatBoost, we first sought to 

determine whether any of these features were able to differentiate between healthy control, 
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MCI, and AD patients. Our multiclass classification model was able to successfully identify 

healthy controls, showing high performance metrics > 0.82 (Table 1). Performance metrics 

for MCI identification were lower, however, at > 0.75 (Table 1). In the case of healthy 

controls, performance metrics suggested that the models were largely unable to successfully 

differentiate AD cases, with a very low sensitivity of 0.63 and PPV of 0.65 (Table 1).  

 

Table 1. Performance metrics of a CatBoost model for diagnosing healthy controls, MCI, and 
AD using 120 clinical variables as features  

 Sensitivity Specificity PPV NPV AUC 
Healthy control  0.93 0.93 0.82 0.98 0.98 
MCI patients 0.78 0.79 0.83 0.75 0.86 
AD patients 0.63 0.91 0.65 0.91 0.90 
 

Given that our model was able to successfully identify healthy control cases, we 

hypothesized that it was having difficulty differentiating between MCI and AD cases, 

specifically. A confusion matrix showed that this was indeed the case (Figure 1A). The model 

only misclassified 9 healthy controls as MCI patients. This increased, however, to a 

misclassification of 13 MCI cases as AD and 12 AD cases as MCI (Figure 1A).  

 To better understand which features were being used by our CatBoost model to 

predict between the groups, we performed a SHAP analysis. The five most important features 

for identifying healthy controls included the Logical Memory-Delayed Recall, item 10 of the 

Geriatric Depression Scale that asks about memory problems, years of education, Logical 

Memory-Immediate Recall, and total score on the Geriatric Depression Scale (Figure 1B,C). 

For MCI cases, the total score on the Geriatric Depression Scale was replaced by eosinophils 

(Figure 1D,E) and by psychiatric medical history for AD (Figure 1F,G).  
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Figure 1. Performance of a CatBoost model and feature importance for diagnosis of healthy control, 
MCI, and AD. (A) Confusion matrix showing the true (correct) and false (incorrect) prediction of 
healthy control, MCI, and AD. (B) Absolute SHAP values and (C) heat map of the contribution of the 
main features for predicting healthy controls. (D) Absolute SHAP values and (E) heat map of the 
contribution of the main features for predicting MCI. (F) Absolute SHAP values and (G) heat map of 
the contribution of the main features for predicting AD. Abbreviations: APP: augmented pulse 
pressure; BAT126: vitamin B12; BMI: body mass index; GDMEMORY: item 10 of Geriatric 
Depression Scale; GDTOTAL: total score Geriatric Depression Scale; HMT3: red blood cell count; 
HMT4: mean corpuscular volume; HMT7: white blood cell count; HMT11: eosinophils; HMT15: 
neutrophils; HMT17: white blood cell count; HMT100: mean corpuscular hemoglobin; HMT102: 
mean corpuscular hemoglobin concentration; LDELTOTAL: total number of story units recalled on 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2025. ; https://doi.org/10.1101/2025.02.04.25321694doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.04.25321694
http://creativecommons.org/licenses/by-nc-nd/4.0/


Logical Memory-Delayed Recall; LIMMTOTAL: total number of story units recalled on Logical 
Memory-Immediate Recall; MHPSYCH: psychiatric medical history; PTEDUCAT: education; 
PTNOTRT: retirement; RCT3: gamma-glutamyl transferase; RCT: aspartate aminotransferase (serum 
glutamic-oxaloacetic transaminase); RCT8: serum uric acid; RCT20: cholesterol; RCT1407: alkaline 
phosphatase; RCT1408: lactate dehydrogenase; VSPULSE: seated pulse rate (per minute); VSRESP: 
respirations (per minute).  

 

Feature selection slightly improves the predictive performance of CatBoost for 

identifying MCI and AD patients  

 To identify if we could improve the performance of CatBoost model, we performed 

filter-based feature selection to include only those variables significantly associated with the 

outcome (diagnosis). This resulted in 19 features being included (Supplementary Table 2).  

As before, our model was successfully able to identify healthy controls, with only a 

small reduction in PPV (Table 2). There was also a negligible reduction, relative to the model 

with 120 features, in the predictive performance for identifying MCI cases (Table 2). For AD 

cases, however, filter-based feature selection improved the predictive performance, with 

sensitivity increasing from 0.63 to 0.74 (Table 2).  

 

Table 2. Performance metrics of a CatBoost model for diagnosing healthy controls, MCI, and 
AD following feature selection  

 Sensitivity Specificity PPV NPV AUC 
Healthy control  0.93 0.92 0.78 0.98 0.98 
MCI patients 0.71 0.85 0.85 0.70 0.90 
AD patients 0.74 0.88 0.60 0.93 0.93 

 

These changes in predictive performance were also reflected in the confusion matrix. 

Here, 11 healthy controls were misclassified as MCI whereas only 9 cases of MCI were 

misclassified as AD and 17 AD cases misclassified as MCI (Figure 2A). This resulted in a 

significant drop in PPV of AD cases from 0.65 down to 0.60 here.  

 Across healthy controls, MCI, and AD, a SHAP analysis indicated that the most 

important features for predicting all three groups were Logical Memory-Delayed Recall, 

Logical Memory-Immediate Recall, and years of education, (Figure 2B-G). For healthy 

controls, additional features included memory-related item 10 and total score of the Geriatric 

Depression Scale (Figure 2B-C). For MCI, item 10 of the Geriatric Depression Scale was also 

important and mean corpuscular hemoglobin (Figure 2D-E). The two additional features that 
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were important for predicting AD patients were psychiatric medical history and percent 

neutrophils.  

 

Figure 2. Performance of the CatBoost model and feature importance for diagnosis of healthy control, 
MCI, and AD after filter-based feature selection. (A) Confusion matrix showing the true (correct) and 
false (incorrect) prediction of healthy control, MCI, and AD. (B) Absolute SHAP values and (C) heat 
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map of the contribution of the main features for predicting healthy controls. (D) Absolute SHAP 
values and (E) heat map of the contribution of the main features for predicting MCI. (F) Absolute 
SHAP values and (G) heat map of the contribution of the main features for predicting AD. 
Abbreviations: apoe: apolipoprotein E genotype; GDMEMORY: item 10 of Geriatric Depression 
Scale; GDTOTAL: total score Geriatric Depression Scale; HMT8: neutrophils; HMT15: percent 
neutrophils; HMT16: lymphocytes; HMT100: mean corpuscular hemoglobin; HSI: heart stress index; 
LDELTOTAL: total number of story units recalled on Logical Memory-Delayed Recall; 
LIMMTOTAL: total number of story units recalled on Logical Memory-Immediate Recall; 
MHPSYCH: psychiatric medical history; NXGAIT: gait on neurological exam; PPR: pulse to pressure 
ratio; PTEDUCAT: education; VSPULSE: seated pulse rate (per minute). 

 

Poor predictive performance of CatBoost models is driven by a subgroup of MCI 

patients that are characteristically similar to those with AD   

 Given that MCI is a made up of a highly heterogenous group of patients 27-29, we 

hypothesized that MCI patients may be affecting the predictive performance of AD diagnostic 

models. To identify if this was the case, we first tested the ability of CatBoost to distinguish 

between only healthy control and AD patients using 19 features previously identified using 

filter-based feature selection. Reducing our model to a simple binary classification resulted in 

the ability to readily distinguish between healthy control and AD patients as indicated by high 

performance metrics (>0.98; Table 3).  

 

Table 3. Performance metrics of CatBoost for diagnosing healthy control or AD patients 

 Sensitivity Specificity PPV NPV AUC 
All features  1.00 1.00 1.00 1.00 1.00 
Selected features 1.00 1.00 1.00 1.00 1.00 
 

We next sought to understand why MCI patients were affecting predictive 

performance of our diagnostic models. Using a principal component analysis (PCA) based on 

our 19 identified features, we found that while there was clear group separation between 

healthy control and AD patients MCI patients were distributed across both clusters (Figure 

3A). We identified that the MCI group could be divided into three distinct subclusters: one 

that overlapped healthy controls (MCI-Healthy), one that significantly overlapped with AD 

patients (MCI-AD), and a third that was distinct yet more closely related to AD (MCI-MCI; 

Figure 3B). This was further confirmed by a hierarchical cluster dendrogram (Figure 3C) and 

inertia plot (Figure 3D).  
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Figure 3. Identification of the distinct subgroups of MCI patients. (A) Principal component analysis 
showing clear separation between healthy control and AD patients but significant overlap of MCI. (B) 
Principal component analysis showing that MCI forms three distinct subclusters (MCI-Healthy, MCI-
AD, and MCI-MCI) that have varying amounts of overlap with healthy control and AD. (C) 
Hierarchical cluster dendrogram showing that MCI-Healthy is closely related to healthy control, MCI-
AD is closely related to AD and that MCI-MCI is distinct but more related to AD. (D) Elbow plot 
showing the relationship between the number of clusters and the within-cluster sum of squared 
distances (inertia). The dotted line represents the optimal number of clusters.   

 

 We then looked to characterize the three subgroups of MCI using the top significantly 

different features (see Supplementary Table 3 for statistical analyses). This showed that the 

three MCI subgroups differed on apolipoprotein E ε4 (APOE4) genotype (Figure 4A), 

lymphocyte count (Figure 4B), neutrophils (Figure 4C-D), seated pulse rate (Figure 4E), 

Geriatric Depression Scale item 10 on memory complaints (Figure 4F), and their total scores 

on the Logical Memory Immediate Recall (Figure 4G) and Delayed Recall (Figure 4H) tests. 

We found that MCI-Healthy was the most distinct group across these features relative to 

MCI-MCI and MCI-AD. The MCI-Healthy Group had a lower number of people with at least 

one APOE4 allele, neutrophils, and percent of people that replied yes to having memory 
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complaints on the Geriatric Depression Scale. They also had higher lymphocytes and total 

scores on the Logical Memory tests.  

 

Figure 4. Comparison between the top significantly (p < 0.001) different variables between the three 
MCI groups (MCI-Healthy, MCI-MCI, and MCI-AD). (A) Percent of patients with at least one 
APOE4 allele. (B) Lymphocyte count in blood. (C) Neutrophil count in blood. (D) Percent of 
neutrophils in blood. (E) Seated pulse rate per minute. (F) Percent of patients that replied yes to 
Geriatric Depression Scale item 10 (Do you feel you have more problems with memory than most?). 
(G) Total score on the Logical Memory Delayed Recall test. (H) Total score on the Logical Memory 
Immediate Recall test. 
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There were also differences across the three MCI subgroups with how stable their 

cognitive diagnosis was or whether it changed over time. The MCI-Healthy subgroup was the 

most likely to maintain a stable MCI state (Figure 5A) or revert to being cognitively healthy 

(Figure 5B) over time. The MCI-MCI subgroup was slightly more likely than the MCI-AD 

subgroup to maintain MCI (Figure 5A) or revert to healthy (Figure 5B). The MCI-Healthy 

subgroup relative to both the MCI-MCI (X2 = 13.294, p = 0.0039) and MCI-AD groups (X2 = 

36.483, p < 0.0001) was also less likely to progress to AD. There were no significant 

differences in the rate of progression to AD between MCI-MCI and MCI-AD subgroups 

(Figure 5C).  

 

Figure 5. Percent of MCI patients with cognitive diagnosis stability or change over time across the 
three subgroups: MCI-Healthy, MCI-MCI, and MCI-AD. (A) Percent of MCI patients with a stable 
diagnosis of MCI over time. (B) Percent of MCI patients who revert to cognitively healthy status over 
time. (C) Percent of MCI patients who progress to AD over time.  

 

 Finally, we sought to identify which, if any, of the three MCI subgroups was driving 

poor predictive performance. To do this, we implemented three CatBoost models where one 

of the three MCI subgroups was removed and determined the models’ ability to identify 

healthy controls, MCI, and AD patients. When we removed either the MCI-Healthy or MCI-

MCI groups, our CatBoost models were able to identify healthy controls, as before, but were 
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still unable to identify AD patients (Table 4). When we removed the MCI-AD subgroup, 

however, our CatBoost model was able to identify all patient types (Table 4), suggesting that 

the MCI-AD subgroup, specifically, drives poor predictive performance of our diagnostic 

models. 

 

Table 4. Performance metrics of CatBoost for diagnosing healthy control, MCI, or AD 
patients after removing specific MCI subgroups 

 Sensitivity Specificity PPV NPV AUC 
MCI-Healthy Group Removed 

Healthy control 0.78 0.99 0.96 0.95 0.97 
MCI patients 0.83 0.66 0.76 0.75 0.79 
AD patients 0.56 0.88 0.59 0.87 0.84 

MCI-MCI Group Removed 
Healthy control 0.92 0.97 0.92 0.97 0.99 
MCI patients 0.77 0.78 0.76 0.79 0.85 
AD patients 0.64 0.88 0.66 0.87 0.86 

MCI-AD Group Removed 
Healthy control 0.93 0.89 0.86 0.95 0.96 
MCI patients 0.72 0.92 0.81 0.87 0.91 
AD patients 0.90 0.96 0.90 0.96 0.98 

 

Discussion 

 There is an urgent need to better support primary care physicians in their clinical 

decision making on MCI and AD. To do this, we leveraged data from the ADNI cohort and 

used machine learning to determine the diagnostic potential of 120 easy-to-obtain clinical 

measures for MCI and AD.  

 Using all 120 measures as features, we found that while our model could readily 

identify healthy control cases, it was unable to identify MCI and AD patients and had a high 

level of confusion between these two diagnostic categories. Using filter-based feature 

selection, we narrowed down the measures to 19 that were highly correlated with the 

outcome. Although this led to a degree of improvement in the ability to diagnose MCI and 

AD sensitivities were still low, ranging between 0.71 to 0.74. This suggests that our model 

would likely miss around 25% of MCI and AD cases. Of note, however, was that our model 

outperformed existing ones 21-25,30-32 and we therefore sought to identify the features that were 

most important for diagnostic prediction. Using SHAP analysis, we showed that important 

features included Logical Memory Delayed and Immediate Recall scores, years of education, 
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responses to item 10 (memory) and total score on the Geriatric Depression Scale, eosinophils, 

and psychiatric medical history.  

These findings are in line with previous research. Higher Geriatric Depression Scale 

scores are associated with faster cognitive decline and increased risk of MCI and AD 37-41. In 

line with this, AD and MCI patients have been shown to have increased incidence of 

psychiatric issues including depressive, apathy, and anxiety disorders 42-44. Low levels of 

education are also known to be associated with an increased risk of MCI and AD 45,46. 

Peripheral neutrophil activation and lymphocytes, as well as a neutrophil-to-lymphocyte 

ratio, have been widely implicated in MCI and AD 47-52. Lower levels of hemoglobin in blood 

have also been linked to decreased cognitive function and AD 52,53. Although many studies 

show the importance of Logical Memory Immediate and Delayed Recall test scores for 

identifying healthy controls, MCI, and AD patients 54,55, others have indicated that they have 

a limited diagnostic accuracy 56. The reasons for these different findings are not clear and 

warrant further research.  

An important finding of our study was that our models were confusing MCI and AD 

cases, specifically. To better understand why this was the case, we showed that MCI could be 

divided into three distinct subgroups: a subgroup that overlapped with healthy controls (MCI-

Healthy), a subgroup that overlapped with AD (MCI-AD), and a subgroup that fell in 

between but was more closely related to AD (MCI-MCI). When we characterized these three 

subgroups, we found that they differed on key measures including APOE genotype, 

lymphocytes and neutrophils, seated pulse rate, and memory as measured by item 10 of the 

Geriatric Depression Scale and the Logical Memory Delayed and Immediate Recall tests. To 

date, there has been little consensus in the literature about how many subtypes of MCI exist 
57. In our study, we showed that in the ADNI cohort there are three distinct subgroups. Other 

studies, however, report between two and four to five subtypes ranging from amnesic to non-

amnesic MCI 28,58-61. The discrepancies may lie between using a priori definitions of MCI, 

largely based on the number and type of cognitive domains that are impaired, versus our 

approach of data-driven post hoc definitions. Although a complete comparative assessment 

across both approaches was outside of the scope of our current study, and lack of sufficiently 

powered available data, future research would benefit from examining the merits and pitfalls 

of both.  
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We also found significant differences in the long-term trajectories of patients within 

each of the three MCI subgroups. MCI-AD patients were less likely to maintain a stable MCI 

diagnosis or to revert to being cognitively healthy relative to the MCI-Healthy and MCI-MCI 

subgroups. They were also more likely to progress to AD over time. Our MCI-AD group 

appears to have overlap with amnesic MCI previously reported in the literature. For example, 

studies show that patients with amnesic MCI are more likely to progress to AD over time 62-

64, overlapping with our findings here for MCI-AD. Risk of amnesic MCI also increases in 

patients with at least one copy of the APOE ε4 genetic variant 60, in line with our finding that 

MCI-AD subgroup has the highest percentage of patients with this APOE genotype. Further, 

MCI-AD may be indicative of prodromal AD, as impaired delayed recall is reported to be the 

most early cognitive change in this group 29.  

Interestingly, we showed that the MCI-AD group, specifically, largely drove our 

models’ low ability to distinguish between MCI and AD. This finding has important 

implications because it suggests that only one subtype of MCI leads to poor performance of 

diagnostic AD models. Based on the data presented here, it’s not clear how to get around this 

issue in practice. One solution is to further characterize these three subtypes of MCI and 

develop models that can distinguish between them as well as AD and healthy control cases. 

To do this, however, there is a need to prioritize the establishment of substantially larger, 

well-defined (i.e. many clinical measures obtained) cohorts of patients with MCI and to 

follow their trajectories over time. This is an especially important consideration in the context 

of supporting primary care physicians’ ability to undertake diagnostics. Primary care 

physicians have particular difficulty in correctly identifying MCI cases in their patients and is 

exacerbated by inadequate infrastructure, resources, and equipment 15,65,66. Current diagnostic 

methods for MCI largely rely on clinical judgement include subjective or objective cognitive 

impairment 28,29,67 with a preservation of basic daily functioning 28,29, which distinguishes it 

from AD. However, in practice, there appears to be limitations to clinical judgement. A recent 

study of Medicare data from the US representing >54,000 practices and >226,000 primary 

care physicians showed that only 0.1% of physicians and practices have MCI diagnosis rates 

within the expected range 68. Overall, our work highlights the importance of continuing to 

focus on differentiating MCI cases from prodromal AD to improve the translatability of 

effective diagnostic models of AD that can be used by primary care physicians in the clinic.  

 There are some additional considerations with respect to our findings and 

implementing them in practice. The first is whether primary care physicians are motivated to 
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diagnose MCI, as some previous studies have shown that there is a low motivation due to a 

perceived lack of benefits for the patients 66. This is likely driven by a lack of effective 

treatments that physicians can offer their patients. It is still important, however, to 

acknowledge that providing an MCI, or even an MCI subtype, diagnosis, primary care 

physicians can provide patients and their families with assurances that what they are 

experiencing has a name and give them the knowledge required to plan for the future 69. A 

second consideration of our work is that primary care physicians have reported feeling that 

they do not have sufficient time during a brief consultation to perform broad cognitive 

assessments 66. Further some feel that they lack the neuropsychological training needed to 

complete this type of testing, which may limit widespread translational into the clinic 15,67. 

Our results suggest that rather than needing to learn many complex neuropsychological 

questionnaires, primary care physicians only need to use the Logical Memory Immediate and 

Delayed Recall tests and the Geriatric Depression Scale. A final limitation of our work is that 

we did not examine the diagnostic predictive capabilities of any AD biomarkers. For 

example, previous studies have linked MCI subtypes with changes in cerebrospinal fluid 

(CSF) total tau 59 and phospho-tau181 70. The exclusion of this data, however, was deliberate 

on our part as biomarkers from plasma and CSF are still not widely used, nor are 

recommended for use, in clinical practice especially in the context of MCI 15,71. Further, 

primary care physicians lack the specialized equipment and expertise to routinely collect CSF 

samples from patients and AD biomarker panels remain expensive. Despite this, as AD 

biomarkers increase in popularity and become more widely available, future work would 

benefit from examining the diagnostic potential of these in the context of differentiating 

between subtypes of MCI, AD, and healthy controls.  

 In conclusion, we have identified that a particular subgroup of MCI affects the 

predictive performance of AD diagnostic models using primary care routine clinical 

variables. This subgroup (MCI-AD) was characteristically the most similar to AD and, in line 

with this, were significantly likely to progress to AD over time relative to the other MCI 

subgroups. These findings suggest that MCI-AD cases are likely representative of patients 

with prodromal AD. This work highlights the importance of AD diagnostic models focusing 

specifically on differentiating MCI cases from prodromal AD cases (who are also diagnosed 

as MCI) as the main way to improve their diagnostic predictive power and translatability.  
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Methods 

Data and Patients from the ADNI Cohort  

This retrospective study used data generated from the ADNI cohort, publicly available 

at https://ida.loni.usc.edu/ using data downloaded in April 2024. Patients in the ADNI cohort 

were diagnosed as either cognitively healthy, MCI, or AD based on the presence of subjective 

memory complaints, an MMSE score, and CDR 72. Healthy controls had no subjective 

memory complaints, MMSE range of 24-30, and CDR of 0. Patients with MCI had subjective 

memory complaints, MMSE 24-30 and CDR of 0.5. AD patients similarly had subjective 

memory complaints, a lower MMSE of 20-26, CDR of greater than 0.5, and meet the criteria 

for probable AD based on the National Institute of Neurological and Communicative 

Disorders and Stroke–Alzheimer’s Disease and Related Disorders Association (NINCDS-

ADRDA) criteria 72. Supplementary Table 1 shows the demographic characteristics of this 

cohort. We included continuous (e.g. weight, height, BMI, routine blood tests) and 

categorical (e.g. APOE genotype, physical exam) variables obtained at patients’ baseline 

visits that we determined would be appropriate for a primary care physician to complete 

(Supplementary Table 1). We also created additional variables based on cardiovascular 

metrics including pulse and blood pressure. These included augmented pulse pressure 
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. The ADNI cohort study was approved by the institutional 

review boards of the participating ADNI centers, and all patients provided informed consent.  

Statistical Analyses and Machine Learning  

 In our initial experiments, all 120 clinical variables (Supplementary Table 1) were 

used as features in our multi-class diagnostic model. We also performed a filter-based feature 

selection method to determine the clinical variables that were highly associated with the 

outcome (i.e. diagnosis). Here, we used a Kruskal-Wallis test (p < 0.01) for identifying 

significant continuous features and Cramer’s V (> 0.11) for categorical ones.  

 To evaluate the diagnostic potential of the clinical variables, we used CatBoost 73, a 

gradient boosting framework optimized for both categorical and continuous variables. The 
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complete dataset was initially split randomly into an 80% training set and a 20% held-out 

testing set to evaluate the final models’ performance. To address class imbalances across 

healthy control, MCI, and AD patients, we performed oversampling using the “imblearn” 

library 74 where the underrepresented class was randomly resampled. During model 

development, the training set was further randomly subdivided into training and validation 

datasets using stratified k-fold cross-validation with four folds to ensure balanced 

representation across classes and mitigate potential biases. Hyperparameter fine-tuning was 

performed using the “optuna” library 75, which employs a Bayesian optimization approach to 

efficiently search for the optimal combination of parameters. These included the following, 

with ranges in brackets: maximum number of trees that can be built (iterations; 100-2000), 

learning rate (0.01-0.3), coefficient at the L2 regularization term of the cost function (1-10), 

Bayesian bootstrap parameter (0.5-10.0), randomness for scoring splits (1.0-3.0), depth of the 

trees (3-10), minimum number of training samples in a leaf (1-100), and percentage of 

features to use at each split selection (0.5-1.0).  

To identify the clustering across healthy controls, MCI, and AD patients, we first 

performed a principal component analysis (PCA) using the filter-based selected features. We 

then identified subclusters (subgroups) of MCI patients by taking principal component (PC) 1 

and PC2 and using Gaussian mixture models for clustering. We confirmed these results using 

a hierarchical cluster dendrogram. All experiments and optimizations were conducted using 

python (v.3.11.7) with the libraries listed above and “pandas”, “numpy”, “matplotlib”, 

“seaborn”, “sklearn”, “catboost”, and “scipy” and Google Colab’s GPU-accelerated 

environment, which facilitated faster model training and evaluation. Source code is available 

at https://github.com/Art83/adni_mci.   

Model evaluation 

 Performance of the machine learning models in this study were evaluated using a 20% 

held-out testing dataset. For all models, we report performance metrics including sensitivity 

(correctly identified positive cases), specificity (correctly identified negative controls), PPV 

(or precision; number of positive cases / total number of predicted positive cases (true and 

false)), negative predictive value (NPV; number of negative cases / total number of predicted 

negative cases (true and false)), and AUC (ability to distinguish between positive and 

negative cases). In the current study, we used specificity, NPV, sensitivity, and PPV as the 

main indicators of model performance. We note that while AUC is a commonly used 
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performance metric in machine learning studies, it only provides a limited insight into model 

performance 76. This is further supported by previous AD predictive models reporting high 

AUCs but low sensitivities and are therefore unable to identify incident AD cases 26. We used 

a SHAP (Shapley Additive exPlanations) analysis to evaluate the relative contribution of 

features to our model performance 77. This allowed us to identify those specific features that 

are most likely to act as translational diagnostic variables for primary care physicians. SHAP 

was done in python (v.3.11.7) using the “shap” library.  

 

Data Availability  

The data used in this study is from the ADNI cohort and is available at 

https://ida.loni.usc.edu/. 

Code Availability 

Source code is available on GitHub at https://github.com/Art83/adni_mci.   
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