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Abstract: 
High-throughput proteomics has emerged as a potentially rich data source to improve 
capacity to forecast disease. This study explores the utility of plasma proteomics for 
identifying novel predictors of Multiple myeloma (MM), combining machine learning with 
statistical approaches. Utilising data from the UK Biobank, including proteomic profiles 
of over 50k participants, we applied an “extreme gradient boosting” (XGBoost) algorithm 
with SHapley Additive exPlanation (SHAP) feature-importance measures to identify key 
proteomic biomarkers to predict onset of MM. At least seven of the top 10 identified 
proteins are related to immune function and activation of lymphoid cells; two are 
validated MM targets with approved therapies.  The top 10 proteins along with key clinical 
predictors were further analysed using Cox proportional hazards models to assess their 
contribution to incident MM risk. 10 proteomic biomarkers ranked by SHAP value 
substantially outperformed traditional clinical predictors. This superior performance 
was maintained over the 12-year follow-up period, demonstrating the predictive ability 
of these proteomic biomarkers for early detection of MM. The demonstration of the 
dysregulated expression of proteins in serum from healthy individuals, if confirmed in 
prospective cohorts and independent datasets, could lead to novel approaches to 
screening for MM and precursor conditions.   
 
Background 
Multiple myeloma (myeloma) represents a significant clinical challenge due to its 
symptom burden at diagnosis, often due to delayed presentations1. There are few 
specific risk factors for myeloma and diagnosis is often only made following 
complications such as anaemia, bone lesions, renal failure, and immune dysregulation.2 
While myeloma remains incurable, early diagnosis is critical to improving outcomes.3  
 
Proteomics has emerged as a pivotal tool in cancer research, offering insights into the 
molecular basis of various malignancies.4 Early myeloma and its pre-cursor disease 
states have high quantity of immunoglobin paraprotein in blood as a key marker of 
disease.2 In addition, levels of albumin, b2 microglobulin (B2M), and lactate 
dehydrogenase are assessed to risk-stratify patients.5 However, a proteomics-based 
diagnostic has not been developed for myeloma. It is also plausible that plasma from 
healthy individuals may contain proteins from organs and or cells that serve as 
biomarkers of physiological dysregulation that precedes the onset of disease. 
Availability of Olink plasma proteomic data6 of 2932 unique proteins from 54219 healthy 
participants with a long-term clinical follow up in the UK Biobank7 (UKB) allowed us to 
explore the latter.  
 
Abbreviated Methods 
Our study population includes participants with baseline plasma proteomics data, 
excluding prevalent myeloma cases (those with existing diagnoses at baseline). Our 
disease outcome is defined as incident myeloma cases (diagnoses of myeloma after the 
baseline date) ascertained via linked cancer registry, death registry and in-patient 
hospital records. To identify the top 10 proteins predictive of myeloma we employ a  
machine learning based feature selection pipeline (Figure 1a) using an “extreme gradient 
boosting” (XGBoost) algorithm with a Cox loss function and SHapley Additive 
exPlanations8 (SHAP). These were then used with, and in comparison to, the best 
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available clinical variables known to predict myeloma in the general population9 
(Supplemental Method 1). To do this, three Cox models (one using clinical variables, one 
with proteomic biomarkers, and a third combined model incorporating both) were 
developed in 80% of the data and tested on the remaining 20%, with performance 
assessed using time-dependent receiver operating characteristic curves and 
concordance indexes. Detailed statistical methods are described in Supplemental 
Method 2.  
 
Results and Discussion 
Incident myeloma was diagnosed in 174 (0.3%) of the cohort participants (Supplemental 
Table 1) with a median time to diagnosis of 7.2 years and whole cohort median follow up 
of 13.2 years. Participants diagnosed with myeloma were older and more likely to be 
male. Further baseline clinical characteristics are shown in Supplemental Table 1. 
 
The top 10 of the 2920 features from the optimised XGBoost model, as ranked by mean 
absolute SHAP value, are demonstrated in Figure 1b, and Supplemental Table 2 
describes the function10, location11, single cell expression11, and role in myeloma 
therapeutics12 of these proteins. It is notable that at least seven of these proteins have 
known biological function in lymphoid cells. This includes three signalling lymphocytic 
activation molecule (SLAM) family receptors, multiple of which are either current or 
potential targets for anti-myeloma immunotherapies.13 Also identified by the algorithm 
are the interacting ligands and receptors B-cell activating factor (BAFF), a proliferation-
inducing ligand (APRIL), B-cell maturation antigen (BCMA), and transmembrane 
activator and calcium modulating ligand interactor (TACI) which have known relevance 
to myeloma pathophysiology.14,15 While QPCT and CNTN5 are not currently known to 
have any clear function related to B-cell biology or myeloma development, both have 
been noted to be upregulated in plasma cells from some myeloma patients at the single 
cell level.16,17 TIMP1 is a non-specific metalloprotease inhibitor involved in innate 
immunity.  
 
The individual SHAP values (Figure 1c) show the marginal contribution of each protein to 
the log-relative hazard (i.e. risk score) from baseline for individuals. The top seven 
proteins found show a positive association where high relative protein concentrations 
are associated with higher predicted risk of future myeloma. Curiously, APRIL/TNFSF13 
and BAFF/TNFSF13B show the opposite effect where higher relative concentrations are 
associated with lower risk scores. This appears in contrast with previous literature that 
suggests APRIL and BAFF are potential markers of myeloma disease activity18, however 
given that these proteins are involved in normal B-cell functioning this may highlight the 
complex role in the immune dysregulation that precedes the clonal proliferation of 
malignant plasma cells. When SHAP plots were used to explore interactions 
(Supplemental Figure 1), there was a clearer interaction pattern identified between TACI 
and APRIL than between TACI and BAFF despite both these ligands being known to bind 
TACI. 
 
The distributions of the relative concentrations of the top protein predictors stratified by 
incident myeloma status are shown in Figure 2a. We use these proteins to construct our 
first cox model (red, Figure 2b), in which multiple proteomics markers were statistically 
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significant predictors of myeloma. Notably, SLAMF7, TNFRSF17 (BCMA), QPCT, SLAMF1, 
and CNTN5 were associated with statistically significant higher hazard ratios. 
Conversely, BAFF (TNFSF13B) had a protective effect in keeping with the SHAP findings. 
In the clinical model (black, Figure 2b) higher age, male sex, and lower haemoglobin were 
associated with higher risk. In the combined model (grey, Figure 2b), age remained a 
significant predictor, while notably sex lost statistical significance, potentially 
suggesting variance clinically attributable to sex is captured by the proteomics features. 
The proteomic markers remained significant and almost identical in magnitude to the 
proteomics model, underscoring their robust association with disease. In a sensitivity 
analysis excluding cases diagnosed within 5 years (Supplemental Figure 2), the noted 
proteomic associations largely persisted.  
 
The clinical model had the lowest performance on both the training and test data with C-
indexes of 0.69. In contrast, the proteomics and combined models performed very 
similarly, substantially outperforming the clinical model. Both had C-indexes of 0.86 and 
0.90 in the training and test data. Model performance improved in the test data for both 
the proteomics and combined models at each 4-year time interval until 12 years of follow 
up. These results suggest plasma may contain biomarkers that long precede disease 
defining events.  
 
This analysis shows that a hypothesis free and data-driven approach may capture 
patterns that are reflecting biological B-cell dysregulation that precedes the onset of 
clinical disease in myeloma. In the context of recent literature potentially supporting 
population monoclonal gammopathy of undetermined significance (MGUS) screening19, 
better understanding of the mechanisms that lead to progression to myeloma is 
increasingly important. An important limitation of this study in this respect is the inability 
to comprehensively describe participant MGUS status or baseline paraprotein 
concentrations. To attempt to understand what impact this may make, we re-fitted our 
Cox models excluding all prevalent and incident cases of MGUS (Supplemental Figure 
3). This analysis showed that proteomic associations were largely unaffected by the 
removal of all MGUS cases. Given it has recently been shown that MGUS detected via 
screening and incidental finding have similar progression risk19, this finding gives us more 
confidence that the identified proteomic associations are important independent of 
underlying MGUS status.  
 
The increasing attention to MGUS highlights the need for further research to understand 
how these markers change dynamically as individuals move from a healthy baseline 
through various precursor states and into clinical disease. In addition, this work should 
be further developed to explore whether predictive performance can be maintained with 
fewer proteins and including protein interactions identified by XGBoost, as well as 
exploring interactions with more commonly measured clinical markers such as total 
protein and albumin. Orthogonal biological approaches also need to be considered to 
identify and understand the source and biological implications of the proteins identified. 
Finally, in future it will be key to distinguish between and optimise models for time-
windows relevant to specific clinical questions.  
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Figures: 
 

 
Figure 1: Model development pipeline and top proteomic machine learning model 
features 
Panel A outlines the pipeline used to predict myeloma by integrating proteomic and 
clinical data from the UK Biobank. Starting with 2920 potential proteomic predictors, a 
tree-based XGBoost algorithm combined with SHAP values was employed to rank and 
identify the top 10 predictors. These were then used to develop a proteomics Cox 
model. Clinical predictors including age, sex, symptoms, and haematological 
parameters were used to develop a clinical Cox model. Finally, the top proteomic and 
clinical predictors were combined to create a  combined Cox model. All models were 
evaluated on test dataset, with performance assessed using the concordance index (C-
index) and time-dependent area under the receiver operating characteristic curve. This 
pipeline demonstrates the combination of advanced machine learning with traditional 
modelling to enhance the prediction of myeloma. 
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Panel B displays a bar plot of the mean absolute SHAP values for the top 10 features. In 
the context of a model with a Cox-loss function, a SHAP value represents the marginal 
contribution of each feature to the log-relative hazard (i.e. risk score) from baseline for 
an individual. This panel provides a summary of the average of all individuals 
contributions to the model’s predictions. The features are ranked, with higher values 
indicating greater importance in influencing the model’s output, providing a comparison 
of which proteomic markers are most critical in ranking myeloma hazard.  
Panel C displays a scatter (“beeswarm”) plot where each dot represents an individual 
data point in the dataset. The points are distributed horizontally along the x-axis 
according to their SHAP value. Where there is a high density of similar SHAP values, 
points are stacked vertically. The colour of the dots reflects the feature value, with red 
indicating high feature values and blue indicating low feature values. The plot provides a 
granular view of how each feature contributes to the prediction at an individual level. It 
shows the distribution of SHAP values for each feature, revealing how consistently (or 
inconsistently) a feature affects the model’s output across different data points. 
Features with a wide range of SHAP values indicate a strong but varied impact on the 
model’s predictions, while a narrow range suggests a more uniform influence. 
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Figure 2: Associations between proteomic and clinical features for incident Multiple 
myeloma 
Panel A displays box plots of the Normalized Protein expression (NPX) values of each of 
the top 10 proteomic features at baseline (enrolment into UKB) values stratified by 
incident myeloma status. The plots are arranged in order of SHAP importance. Box plot 
lines represent median NPX value, edges 1th and 3rdth quartiles and whiskers 1.5 times 
interquartile range with dots as outliers outside this range. 
Panel B shows a forest plot of the Hazard Ratios estimated from the three cox models 
developed; proteomics in red, clinical, in black, and combined in grey. Hazard ratios 
point estimates are represented by the dot and 95% confidence intervals are 
represented by the whiskers.  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 5, 2025. ; https://doi.org/10.1101/2025.02.04.25321690doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.04.25321690


Panel C is a comparison of the performance of the three Cox models on the training and 
held-out test datasets. The line plot displays the time-dependent area under the receiver 
operator characteristic curves (AUCs) for each of the three models at years 4, 8, 12, and 
16 since enrolment in UKB with the mean AUCs and overall C-indexes in the training and 
test data summarised below. The tables below present the number of participants in the 
training and test datasets at risk at years 4, 8, 12, and 16 respectively as well as the 
number events (myeloma diagnoses) occurring between years 0-4, 4-8, 8-12, and 12-16 
respectively.  
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