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Abstract  
Background Long COVID is a major public health burden causing a diverse array of debilitating 
symptoms in tens of millions of patients globally. In spite of this overwhelming disease 
prevalence and staggering cost, its severe impact on patients’ lives and intense global research 
efforts, study of the disease has proved challenging due to its complexity. Genome-wide 
association studies (GWAS) have identified only four loci potentially associated with the 
disease, although these results did not statistically replicate between studies. A previous 
combinatorial analysis study identified a total of 73 genes that were highly associated with two 
long COVID cohorts in the predominantly (>91%) white European ancestry Sano GOLD 
population, and we sought to reproduce these findings in the independent and ancestrally more 
diverse All of Us (AoU) population. 

Methods We assessed the reproducibility of the 5,343 long COVID disease signatures from the 
original study in the AoU population. Because the very small population sizes provide very 
limited power to replicate findings, we initially tested whether we observed a statistically 
significant enrichment of the Sano GOLD disease signatures that are also positively correlated 
with long COVID in the AoU cohort after controlling for population substructure. 

Results For the Sano GOLD disease signatures that have a case frequency greater than 5% in 
AoU, we consistently observed a significant enrichment (77% - 83%, p < 0.01) of signatures that 
are also positively associated with long COVID in the AoU cohort. These encompassed 92% of 
the genes identified in the original study. At least five of the disease signatures found in Sano 
GOLD were also shown to be individually significantly associated with increased long COVID 
prevalence in the AoU population. Rates of signature reproducibility are strongest among self-
identified white patients, but we also observe significant enrichment of reproducing disease 
associations in self-identified black/African-American and Hispanic/Latino cohorts. Signatures 
associated with 11 out of the 13 drug repurposing candidates identified in the original Sano 
GOLD study were reproduced in this study.  

Conclusion These results demonstrate the reproducibility of long COVID disease signal found 
by combinatorial analysis, broadly validating the results of the original analysis. They provide 
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compelling evidence for a much broader array of genetic associations with long COVID than 
previously identified through traditional GWAS studies. This strongly supports the hypothesis 
that genetic factors play a critical role in determining an individual's susceptibility to long 
COVID following recovery from acute SARS-CoV-2 infection. It also lends weight to the drug 
repurposing candidates identified in the original analysis. Together these results may help to 
stimulate much needed new precision medicine approaches to more effectively diagnose and 
treat the disease. 

This is also the first reproduction of long COVID genetic associations across multiple 
populations with substantially different ancestry distributions. Given the high reproducibility 
rate across diverse populations, these findings may have broader clinical application and 
promote better health equity. We hope that this will provide confidence to explore some of 
these mechanisms and drug targets and help advance research into novel ways to diagnose the 
disease and accelerate the discovery and selection of better therapeutic options, both in the 
form of newly discovered drugs and/or the immediate prioritization of coordinated 
investigations into the efficacy of repurposed drug candidates. 

Keywords: Long COVID, Post COVID-19 condition, post-acute COVID-19, SARS-CoV-2, PASC, 
genetics, reproducibility, combinatorial analytics 

 

Introduction 
Post COVID condition, commonly known as long COVID or PASC (post-acute sequelae of SARS-
CoV-2 infection), is a debilitating chronic condition that develops following a SARS-CoV-2 
infection in around 5-15% of patients1. The global prevalence of long COVID is estimated at 
least 65 million people2 and is increasing annually. It’s estimated to now have a cumulative 
global incidence of over 400 million individuals and cost over $1 trillion (or 1% of global GDP) 
annually1, which causes a long-lasting and profound impact on patients’ lives and healthcare 
systems and has created a major public health issue3. 

‘Long COVID’ is a term originally defined by patients to describe the post-acute and long-term 
health effects of COVID-194,5 and the highly variable symptoms associated with the condition. 
The frequency and severity of SARS-CoV-2 infections appears to be correlated with increased 
risk of developing long COVID6.   

Long COVID patients have reported a diverse array of symptoms across multiple organ systems7 

with the most common being post-exertional malaise8, dysautonomia9, cognitive dysfunction10, 
mood disturbances11 and respiratory problems12. Many of these symptoms and signs are also 
observed in other complex neuroimmune disorders such as myalgic encephalomyelitis/chronic 
fatigue syndrome (ME/CFS)13,14,15, postural orthostatic tachycardia syndrome (POTS)16,17 and 
fibromyalgia18,19, all of which, like long COVID, disproportionately affect women20. To advance 
our understanding of the pathophysiological mechanisms underlying these shared clinical 
manifestations, it is important to have a deeper understanding of the genetic similarities 
between long COVID and other neuroimmune conditions. This effort is hampered, as most of 
these diseases, like long COVID, are highly complex and have been intractable for existing 
genomic analysis approaches. 
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More than four years following the global COVID-19 outbreak, patients still often struggle to 
obtain a long COVID diagnosis as agreement on the definition of the disease remains elusive 
beyond self-reported persistence of a wide range of symptoms. Governments also find 
evaluating its prevalence and setting public health policy difficult due to absence of a clear and 
consistent definition of the disease21,22. There are currently no recognized laboratory diagnostic 
tests or disease modifying therapies for long COVID. Research into the biological mechanisms 
of the disease is hindered by the variability in study designs, lack of reproducible findings across 
patient populations, and challenges in accurately capturing the heterogenous clinical 
phenotypes of patient cohorts23. A definitive biological explanation of some of the factors 
causing and defining the disease and a test encompassing these is urgently required to 
overcome this. 

Only a few preliminary GWAS for long COVID have been published to date 24,25,26, likely due to the 
challenges of assembling a sufficiently powered patient cohort and the studies’ consequently 
limited findings. A study by the COVID-19 Host Genetics Initiative (HGI) identified only a single 
significant locus (FOXP4) from an analysis of 6,450 long COVID cases and over 1 million 
population controls aggregated from multiple cohorts25. Another recent meta-analysis of over 
53,000 cases and 120,000 controls from 23andMe identified three significant loci (HLA-DQA1–
HLA-DQB, ABO and BPTF–KPAN2–C17orf58)26. The effect sizes of the latter three loci 
reproduced in the HGI cohort but the associations were not significant, likely due to limited 
statistical power even in such a large cohort. The reported association between FOXP4 and long 
COVID did not reproduce in the 23andMe data.  

Combinatorial Analytics for Complex Diseases 

Combinatorial analytics has been more successful than GWAS in identifying key genetic risk 
factors that capture the complex biology of similarly multifactorial and heterogenous diseases 
like ME/CFS, generating more mechanistic insights and reproducible findings across cohorts27.  

The combinations of genetic variants (‘disease signatures’) identified by combinatorial analyses 
capture both the linear and non-linear effects of interactions between multiple genes. They can 
be used to identify individual patients who have specific disease signatures, enabling the 
identification of associations between the disease signatures associated with a mechanism 
and the symptoms presented by patients with those disease signatures. These can improve our 
understanding of complex diseases beyond the single SNP associations identified by GWAS28,29 
and creates opportunities for clinically actionable diagnostic tests and the targeted trials of 
multiple drug repurposing candidates to provide clinical benefit to specific patient cohorts. 

Aims of Study 

The PrecisionLife combinatorial analytics platform was previously used to identify disease 
signatures for Severe and Fatigue Dominant long COVID cohorts derived from the Sano 
Genetics’ long COVID GOLD (Sano GOLD) study, and to highlight the biological similarities and 
differences between these two patient populations30. At the same time, combinatorial analysis 
was also undertaken on a General long COVID cohort encompassing all patients with a broader 
(and potential less-reliable) definition of the disease. The General cohort’s results were not 
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described in the original publication, which instead focused on the most well phenotyped 
cases. 

The Severe cohort in this study was comprised of cases who self-reported the greatest variety 
and severity of symptoms, while the Fatigue Dominant cohort was comprised of cases who self-
reported predominantly fatigue-associated long COVID symptoms. The study identified a total 
of 73 genes that were highly associated with at least one of these long COVID populations. Of 
these genes at the time of publication, 9 genes were linked to acute COVID-19, 14 genes were 
differentially expressed in a previous transcriptomic analysis of long COVID patients31 and 9 
genes were found that had been associated with ME/CFS in the previous combinatorial analysis 
of this disease27. 

In this study, we assessed the findings of all three of the original long COVID combinatorial 
analyses of the Sano GOLD cohorts in an independent, more ancestrally diverse patient 
population. We used genomic, clinical, and questionnaire data from the All of Us (AoU) 
population32 to generate a long COVID cohort (using ICD-10 code U09.9) and evaluated the 
reproducibility of the findings from the original Sano GOLD study. We investigated the genes and 
mechanisms underlying the reproducible disease signatures, and evaluated the clinical 
phenotypes associated with each. 

Materials and Methods 
Generation of long COVID cohorts 

For this study, we identified a cohort of long COVID patients and matching controls from the 
AoU dataset (accessed on December 10th 2024). AoU provides data33 for nearly 850,000 
American participants, including genomic data derived from the Illumina Global Diversity Array 
(GDA)34 (n=312,925), electronic health records (EHR, n=254,700), health questionnaires 
(n=412,220), and COPE COVID-19 survey (n=100,220)35. The AoU dataset was designed to 
capture data for a diverse group of individuals, including non-European ancestry groups often 
underrepresented in genomic datasets, and the cohort selected for this study reflects this 
diversity.  

The baseline long COVID cohort was created by selecting all 458 individuals with GDA 
genotyping data who have a diagnosis of long COVID, using ICD-10 code U09.9 (post-acute 
COVID-19). We note that this criterion, which implies a prevalence of long COVID less than 
0.2%, almost certainly excludes many patients with long COVID based on published estimates 
of long COVID prevalence of between 6.9% to 14%36,37,38. 

The control cohort was generated by selecting individuals with GDA genotyping data who have 
evidence of SARS-CoV-2 infection, either based on a reported positive COVID-19 test in the 
COPE COVID-19 survey (n=3,615) or presence of ICD-10 codes B97.21 or U07.1 (n=17,024). We 
excluded individuals with long COVID based on ICD-10 code U09.9 as well as any individual 
with a history of symptomatic phenotypes consistent with long COVID or other post-viral fatigue 
syndromes (see Supplemental Table 1). Applying these criteria, our maximum control 
population included 9,774 individuals.  
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We used the sex-imputation functionality of PLINK39 to identify the genetic sex of each of the 
individuals in the full GDA dataset. 2.9% of total samples could not be reliably identified as 
male or female and were excluded from the study. 57.6% were identified as female and 39.5% 
were identified as male, which broadly agrees with the self-reported distribution of sex at birth 
from the AoU demographics questionnaire (59% female, 39% male, 2% skip/unknown).  

Case and control matching using stratified sampling  

To create a balanced dataset and reduce potential confounding effects of population 
substructure, we created a subset of controls that match the demographic distribution (i.e., sex 
and self-reported race/ethnicity) of the long COVID cases. We used genetic sex inferred by 
PLINK (using the command --check-sex) as well the answers to the demographics survey on 
self-reported race and ethnicity to split the cohort into subgroups, and we compared the 
percentage of the baseline cases and potential controls that fall in each category. The results 
showed that some subgroups were over- or under-represented in cases vs controls, e.g. white, 
female, non-Hispanics accounted for 38.5% of cases but only 29.7% of controls.  

We adjusted our long COVID cohort by removing all individuals whose sex was undetermined 
during PLINK sex-imputation. We also removed all individuals whose self-reported race and/or 
ethnicity was coded as “None of these/I prefer not to answer/PMI:Skip” as these demographics 
do not allow accurate ‘matching’ with the control population. This created a final long COVID 
case population of 413 individuals (see Table 1 for demographic distribution). 

The set of potential controls allowed us to create a final study cohort with a 1:10 case:control 
ratio and similar demographic splits in the case and control sub-cohorts. We used a 
probabilistic function to apply a stratified sampling technique using granular subgroups based 
on three demographic values (as illustrated in Table 2) to the baseline potential controls and 
match the distribution of the demographic subgroups in the long COVID cases as closely as 
possible.  

Prior to sampling, we also removed any age-based outliers from the control cohort (i.e., any 
individuals whose age was outside the range of ages in the long COVID case cohort). Additional 
information on the demographic breakdown of cases and controls, including prevalence of 
comorbidities is included in Supplemental Table 2. The concordance between the self-reported 
demographic data and the AoU genetic ancestry predictions33 was very high (88.0-99.4% for 
matched groups) in the study cohort (Supplemental Table 3). 
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Table 1. The distribution by genetic sex, self-reported race, and self-reported ethnicity of cases and 
controls in the final All of Us long COVID cohort 

Demographic Subgroup Final cases % 
(n=413) 

Baseline Controls % 
(n=8,683) 

Stratified Sampled 
Controls % (n=4,130) 

Genetic sex F 69.7% 65.2% 68.3% 

Genetic sex M 30.3% 34.8% 31.7% 

Self-reported 
race 

Asian or None 
Indicated 

15.7% 24.9% 17.0% 

Self-reported 
race 

Black or 
African-
American 

18.6% 19.5% 19.5% 

Self-reported 
race 

White 65.6% 55.6% 63.5% 

Self-reported 
ethnicity 

Hispanic or 
Latino 

17.2% 26.4% 18.5% 

Self-reported 
ethnicity 

Not Hispanic or 
Latino 

82.8% 73.6% 81.5% 

 

Table 2. Two examples of how stratified sampling balances the frequency of granular subgroups (full 
breakdown is not available due to reporting restrictions imposed by AoU for rare subgroups).  

Sex Self-reported 
race 

Self-reported 
ethnicity 

Final Cases 
(%) 

Baseline 
Controls (%) 

Stratified Sampled 
Controls (%) 

F Black or African-
American 

Not Hispanic or 
Latino 

14.5 13.0 14.7 

F White Not Hispanic or 
Latino 

42.6 33.2 40.2 

 

We used principal component analysis (PCA) to model any remaining population substructure 
within the AoU study cohort. We first removed all SNPs that are associated with the sex 
chromosomes or the MHC region on chromosome 6 or that have minor allele frequency less 
than 0.05. We then conducted LD-pruning in PLINK 1.9 (--indep-pairwise 50 5 0.2) before 
generating genetic PCs using the PLINK --pca command, as recommended elsewhere40,41,42. 
We selected the top 5 PCs for use in our analyses based on the associated eigenvalues 
(Supplemental Table 3) 

Long COVID Disease Signatures 

We previously identified long COVID associated disease signatures in two patient cohorts 
derived from the Sano GOLD study cohort, as described in the original Taylor et al. (2023) 
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paper30, and a third unreported patient cohort using a broader definition of the disease 
(Supplemental Table 4). This resulted in: 

1. 1,188 signatures mapped to 43 genes, from a ‘Severe’ cohort of patients who reported 
the greatest variety and severity of long COVID symptoms. 

2. 1,435 signatures mapped to 35 genes, from a ‘Fatigue Dominant’ cohort of patients who 
reported predominantly fatigue-associated long COVID symptoms. 

3. 6,445 signatures mapped to 165 genes, from a ‘General’ cohort of patients who reported 
they were still suffering continuation or development of new symptoms 12 weeks after 
the initial SARS-CoV-2 infection, with these symptoms lasting for at least 2 months with 
no other explanation.  

In contrast to the diverse AoU American study cohort, the Sano GOLD study cohort was 
comprised of British patients of predominantly white European ancestry (>91% of the cohort), 
with Asian ancestry (~4%) as the largest non-white European demographic. 

Evaluating Enrichment of Reproducing Long COVID Disease Signature in AoU Cohort 

We used a logistic regression approach to evaluate the disease association of each of the 
previously identified disease signatures in the AoU study population. Individuals were coded as 
1 if they possessed the exact combination of SNP genotypes comprising a signature and 0 if 
they did not. This term was included in the regression as an independent variable alongside 
covariates representing the top 5 genetic PCs (see Supplementary Table 5), with case-control 
status of the patients in the population (1 = case, 0 = control) as the dependent variable.  

The limited number of patients with ICD-10 codes for long COVID provides very limited power to 
replicate, i.e. statistically validate individual disease signatures’ disease associations in AoU, 
especially given the need for false discovery rate correction when testing the many signatures 
identified in the Sano GOLD dataset. Instead, we began by testing whether we observed a 
statistically significant enrichment of disease signatures that are also positively correlated with 
long COVID in the AoU cohort after controlling for population substructure. 

For each of the three sets of disease signatures identified in the original Sano GOLD study 
(Severe, Fatigue Dominant, and General), we first counted the number of signatures where the 
logistic regression returns a positive coefficient (i.e., odds ratio > 1) for the independent ‘genetic 
signature’ variable. Below we use the term ‘reproducing’ to denote signatures with odds ratio > 1 
in the AoU test cohort, and ‘reproducibility rate’ to denote the percentage of tested signatures 
that have odds ratio > 1.   

Some of the original signatures could not be evaluated in AoU because one or more of their 
component SNP genotypes are not included in the dataset. These were excluded from the 
analysis (see Supplemental Table 6). Most of these missing SNPs are represented on the 
Illumina GDA but we believe these data were likely filtered out during the AoU dataset’s QC 
processes.  

Many of the long COVID disease signatures are non-independent due to shared component 
SNP genotypes and linkage disequilibrium, preventing us from using standard statistical tests to 
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evaluate the significance of our observed reproducibility rates. We therefore used a 
permutation-based approach to generate the expected distribution of observed reproducibility 
rates under the null hypothesis (i.e., no association between signatures and disease). We 
randomly shuffled the case-control vector 100 times, reran the logistic regression analysis for 
every signature and counted the number of disease signatures that have odds ratio greater than 
1 for each random permutation. The p-value of the observed results is equal to the number of 
permutations in which the number of signatures with odds ratios above 1 is greater than or 
equal to the number of signatures with odds ratios above 1 in the original analysis.  

From previous experience with other diseases, we have found that reproducibility rates for 
disease signatures are positively correlated with the frequency of the signature in the 
population. To test whether this is true for long COVID we filtered each of the three sets of 
disease signatures from the original analysis to the subsets that occur in at least 4% or 5% of 
total cases in the AoU cohort (based on observations of reproducibility rates from prior 
unpublished studies in other diseases). We then reran the reproducibility analysis for each of 
these ‘high frequency’ subsets of signatures.  

Finally, we evaluated the impact of signature complexity (i.e., number of SNP genotypes in the 
signature) on reproducibility rates. We split the set of signatures into sets comprised of 2, 3, 4, 
and 5 SNP genotypes and reran the analysis of reproducibility on each separately, with and 
without applying filtering by case-frequency. 

Ancestry-Specific Analyses 

To test whether the observed rates of disease signature reproducibility broadly apply across 
traditionally under-served patient cohorts, we created three ancestry-specific sub-cohorts 
consistent with the demographic categories used to match cases with controls: 

1. White – patients who self-identify as ‘white’ 
2. Black / African-American – patients who self-identify as ‘black’ and/or ‘African-

American’  
3. Hispanic / Latino - patients who self-identify as ‘Hispanic’, ‘Latino’, and/or ‘Latina’ 

Note that these cohorts are not all mutually exclusive, as AoU includes separate questionnaire 
questions for self-reported race and Hispanic/Latino identification.  

We again used genetic principal components to control for any indirect relationships between 
signature frequency and disease prevalence resulting from population substructure (including 
relatedness or broader shared ancestry between patients). We conducted separate PCAs for 
each sub-cohort dataset using the approach described above for the whole cohort. We then 
selected the first five PCs as covariates for each ancestry-specific analysis after confirming that 
they explained sufficient variance in the dataset (see Supplementary Table 5).  

We restricted the ancestry-specific analyses to the sets of signatures that occur in more than 
5% of cases. Given the small sample size and low statistical power for ancestry-specific sub-
cohorts, it is most appropriate to assess differences in reproducibility rate for the sets of 
signatures that exhibit the strongest reproducibility statistics in the full cohort.  

Evaluating Enrichment of Reproducing Long COVID Disease Signature in AoU Cohort 
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Finally, we tested whether any of the original disease signatures replicate, i.e., are individually 
significantly associated with long COVID in AoU. To minimize the FDR correction required for 
multiple tests, we restricted the analysis to the sets of high-frequency signatures that occur in 
more than 5% of cases. Output for the three original combinatorial analyses were assessed 
separately. Uncorrected p-values were obtained from the logistic regression with genetic PC 
covariates. ‘Reproducing’ signatures have p-values < 0.05 after FDR correction via the 
Benjamini-Hochberg procedure43. We also assessed significance using the more conservative 
Bonferroni adjustment44.  

The SNPs in the disease signatures associated with long COVID in AoU were mapped to genes 
using an annotation cascade process against the human reference genome (GRCh38), as 
detailed in Das et al. (2022)27. SNPs located within the coding region of a gene (or genes) were 
mapped directly to the gene(s) and any remaining SNPs within 2kb upstream or 0.5kb 
downstream were mapped to the closest gene(s). 

Results  
Reproducibility of Overall Long COVID Disease Associations in AoU Cohort 

We were able to test 5,343 of the 9,068 long COVID disease signatures originally identified in the 
three Sano GOLD sub-cohorts. The untested signatures all contained at least one SNP genotype 
that was not present in the post-QC AoU genotype dataset. Of the tested signatures, 1,766 
occur in greater than 5% of cases and 3,100 occur in greater than 4% of cases in AoU.  

When we restricted the analysis to signatures with case frequency greater than 5%, we 
consistently observed a significant enrichment of signatures (77% - 83%, p < 0.01) that are 
positively associated with long COVID in the AoU cohort, across all three sets of disease 
signatures (Table 3). Notably, the percentage of signatures with odds ratios greater than 1 in AoU 
is much larger than observed in any of the permutations where cases and controls were 
randomly assigned to patients (e.g., 82% vs. a maximum of 57% in the random permutations for 
the Severe cohort). This result confirms that many disease signatures are non-randomly 
associated with increased long COVID prevalence in AoU. 

Overall reproducibility rates are lower when we apply a less stringent 4% frequency cutoff, but 
the enrichment is still highly significant (60% - 71%, p < 0.01). That is, the observed number of 
signatures with odds ratios greater than 1 in AoU exceeds the maximum number of signatures 
with odds ratio greater than 1 in the random permutations. We did not observe any significant 
enrichment of reproducing signatures when we included low-frequency signatures in our 
analysis.  
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Table 3. Reproducibility statistics in AoU for long COVID disease signatures derived from three Sano 
GOLD sub-cohorts 

Case 
Frequency 

Filter 
Sub-Cohort 

# 
signatures 

tested 

% signatures 
with odds ratio 

> 1 in AoU 

% signatures with odds 
ratio > 1 in permutations 

mean (range) 
p-value 

5% 

Severe 109 82% 42% (31% - 57%) <0.01 

Fatigue Dominant 35 83% 43% (23% - 71%) <0.01 

General 1,622 77% 44% (30% - 59%) <0.01 

4% 

Severe 243 67% 41% (30% - 56%) <0.01 

Fatigue Dominant 85 71% 43% (21% - 59%) <0.01 

General 2,772 60% 43% (30% - 59%) <0.01 

none 

Severe 668 35% 43% (32% - 53%) 0.96 

Fatigue Dominant 740 34% 46% (33% - 57%) 0.98 

General 3,935 44% 42% (33% - 51%) 0.36 

 

The distributions of odds ratios for the reproducing high-frequency (>5%) signatures are shown 
in Figure 1. 89% and 90% of the reproducing signatures from the Severe and Fatigue Dominant 
studies respectively have odds ratios greater than 1.1 in AoU, while 17% and 48% have odds 
ratios greater than 1.5. The mean odds ratio for the Severe signatures is 1.35 and the maximum 
is 2.09, while the mean odds ratio for the Fatigue Dominant signatures is 1.49 and the maximum 
is 2.22. Thus, the reproducing disease signal from these studies largely represents signatures 
that are individually strongly associated with increased disease prevalence. 

The reproducing signatures from the General study tend to have lower odds ratios than the other 
studies (Figure 1). 75% of reproducing signatures have odds ratios greater than 1.1 in AoU and 
5% have odds ratio greater than 1.5. The mean odds ratio is 1.21 and the maximum is 2.10. 
Thus, although these signatures included many with relatively weak disease associations, they 
also include signatures with strong effect sizes. 

The relative enrichment of low odds ratios for signatures from the General study likely reflects 
the greater number of cases (Supplemental Table 4) and greater statistical power associated 
with the Sano GOLD study cohort. That is, the General study was better suited to detect 
signatures with lower effect sizes relative to the smaller Severe and Fatigue Dominant cohorts. 
The weaker disease associations may also reflect the relative reliability of the criteria used to 
define the Sano GOLD cohorts, as we believe that the case definition criteria for the General 
cohort is less accurate than the criteria used to identify patients with Severe and Fatigue 
Dominant long COVID subtypes.  
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Figure 1. Distribution of observed odds ratios in AoU for reproducing signatures with high case 
frequencies (>5%)  

Reproducibility statistics are strongest for high case frequency (>5%) signatures comprised of 4 
or 5 SNP genotypes, as measured both by percent reproducing (i.e., odds ratio >1) and p-value 
(Table 4). Notably, across all three analyses, roughly twice as many 4- and 5- SNP signatures 
have odds ratios greater than 1 in AOU than would be expected due to random chance based on 
the mean reproducibility rates for the random permutations.  

We similarly observed that reproducibility statistics are strongest for higher complexity 
signatures when applying a frequency cut-off of 4% (Supplemental Table 7). We observed no 
clear association between signature complexity and reproducibility rates for low frequency 
signatures (Supplemental Table 8).   
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Table 4. Reproducibility statistics by signature complexity (i.e., number of SNP genotypes comprising 
disease signatures) in AoU for high case frequency (>5%) long COVID disease signatures derived from 
three Sano GOLD sub-cohorts 

Signature 
Complexity 

Sub-Cohort 
# 

signatures 
tested 

% signatures 
with odds ratio 

> 1 in AoU 

% signatures with odds 
ratio > 1 in permutations 

mean (range) 
p-value 

2 

Severe 1 100% 40% (0% - 100%) 0.43 

Fatigue Dominant 6 67% 47% (0% - 100%) 0.29 

General 14 43% 45% (7% - 86%) 0.58 

3 

Severe 20 55% 47% (5% - 80%) 0.34 

Fatigue Dominant 16 81% 43% (13% - 88%) 0.01 

General 784 76% 44% (22% - 67%) <0.01 

4 

Severe 30 90% 41% (23% - 60%) <0.01 

Fatigue Dominant 7 86% 42% (0% - 100%) 0.05 

General 325 82% 44% (26% - 58%) <0.01 

5 

Severe 58 86% 42% (22% - 60%) <0.01 

Fatigue Dominant 6 100% 42% (0% - 100%) 0.01 

General 501 77% 43% (30% - 53%) <0.01 

 

To ensure that the sets of long COVID disease signatures are broadly reproducible across 
patients, we conducted separate analyses for self-reported white, black/African-American, and 
Hispanic/Latino sub-cohorts (Table 5).  

We observed a highly significant enrichment of positively correlated disease signatures among 
self-reported white patients. This result confirms that the observed enrichment of reproducible 
disease associations in the all-ancestry cohort does not simply reflect population substructure 
in the dataset (i.e., indirect correlations between disease prevalence and signature frequency 
that arise due to shared correlations with ancestry).  

Reproducibility rates were lower in the self-reported black/African-American and 
Hispanic/Latino sub-cohorts relative to the self-reported white sub-cohort, but consistently 
above the mean values observed in the random permutations. Two of the observed enrichment 
values were statistically significant (p < 0.05) despite the very small number of cases (71 and 
77) and consequent weak statistical power in these sub-cohorts.  
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Table 5. Reproducibility statistics in AoU for high case frequency long COVID disease signatures (>5% of 
cases) derived from three Sano GOLD sub-cohorts, broken down by self-reported ancestry.  

Self-
reported 
Ancestry 

Sub-Cohort 
# 

signatures 
tested 

% signatures 
with odds 
ratio > 1 in 

AoU 

% signatures with odds 
ratio > 1 in permutations 

mean (range) 
p-value 

White 

(271 cases) 

Severe 109 78% 46% (33% - 61%) <0.01 

Fatigue Dominant 35 86% 46% (20% - 71%) <0.01 

General 1,622 75% 48% (34% - 65%) <0.01 

Black / 
African 

American 

(77 cases) 

Severe 109 57% 47% (31% - 62%) 0.06 

Fatigue Dominant 35 51% 45% (20% - 66%) 0.33 

General 1,622 56% 46% (33% - 59%) 0.05 

Hispanic / 
Latino 

(71 cases) 

Severe 109 66% 48% (32% - 61%) <0.01 

Fatigue Dominant 35 57% 46% (23% - 80%) 0.15 

General 1,622 54% 47% (35% - 60%) 0.14 

 

More than 85% of the long COVID genes identified across the three Sano GOLD long COVID 
cohorts mapped to one or more disease signatures that have >4% case frequency and were 
also positively associated with long COVID in the AoU cohort (see Table 6). Out of the 73 genes 
published in Taylor et al. (2023)30 15 genes could not be tested due to missing SNPs in the AoU 
dataset. 76% (44/58) of the remining genes also map to disease signatures that reproduced in 
AoU. These genes are linked to a wide range of biological processes and mechanisms including 
dysregulated immune response and metabolic pathways, development of chronic 
inflammation, and cognitive dysfunction.  

Of the 13 repurposing gene candidates identified in Taylor et al. (2023), 11 (85%) map to at least 
one disease signature that reproduces in AoU (see Supplemental Table 9). These genes include 
TLR4 which Taylor et al. (2023) noted has been shown to protect against long-term cognitive 
impairment pathology caused by SARS-CoV-245. Inhibition of TLR4 in a mouse model was 
shown to prevent long term cognitive pathology including synapse elimination and memory 
deficits that are caused by the SARS-CoV-2 Spike protein. Previous clinical studies have shown 
that antagonizing TLR4 signaling has the effect of dampening the pathological cytokine storm 
observed in patients with severe acute COVID-19 and reduces mortality rates in hospitalized 
COVID-19 patients46,47. 
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Table 6. Reproducibility statistics in AoU for genes associated with high case frequency (> 4% and >5%) 
long COVID disease signatures identified in three Sano GOLD sub-cohorts 

Sub-
Cohort 

# Genes 
identified 

in Sano 
GOLD 

cohort 

# Genes 
evaluated 

in AoU  

# Genes 
mapped to 
signatures 

with >4% 
case 

frequency 

# (%) of Genes 
mapped to 

signatures with 
>4% case 

frequency that 
have odds ratio 

>1 in AoU 

# Genes 
mapped to 
signatures 

with >5% 
case 

frequency 

# (%) of Genes 
mapped to 

signatures with 
>5% case 

frequency that 
have odds ratio 

>1 in AoU  

Severe 43 35 35 30 (85.71%) 25 22 (88%) 

Fatigue 
Dominant 

35 28 16 15 (93.75%) 6 5 (83.3%) 

General 165 151 150 140 (93.33%) 138 128 (92.8%) 

 

Replication of Individual Disease Signatures in All of Us 

The above analyses focused on demonstrating an overall enrichment of disease signatures and 
genes that are positively correlated with long COVID in AoU, recognizing that the small size of 
the AoU cohort severely limits wide-scale replication. To achieve sufficient power to statistically 
validate individual signatures, we limited our replication analysis to the subset of signatures 
with case frequencies above 5%.  

Four high-frequency disease signatures from the Severe Sano GOLD analysis were significantly 
associated with increased prevalence of long COVID in AoU, one of which was still significant 
after applying the more conservative Bonferroni FDR correction (Table 6). All four signatures are 
comprised of five SNP genotypes, each of which contributes to the overall association with 
disease in AoU (i.e., removing any of the SNP genotypes from the signature results in a lower 
odds ratio). This observation highlights the utility of the combinatorial analysis approach for 
identifying genetic disease associations.  

Two of the replicating disease signatures from the Severe analysis mapped to the gene 
CCDC146 and one mapped to D2HGDH. These genes have different functions and affect 
different potential mechanism of action hypotheses for their role in the development of long 
COVID. CCDC146 is a ubiquitous centriole and microtubule-associated protein linked to 
cognitive functioning and type 2 diabetes48. D2HGDH is an enzyme involved in mitochondrial 
functioning, also exhibits anti-inflammatory effects49. 

Two disease signatures from the Fatigue Dominant Sano GOLD analysis were significantly 
associated with increased prevalence of long COVID in AoU, one of which was still significant 
after applying the more conservative Bonferroni FDR correction (Table 6). The latter is 
comprised of two SNP genotypes, while the other is comprised of five SNP genotypes. Each of 
the individual SNP genotypes contribute to the signatures’ association with disease in AoU.  

None of the signatures from the General cohort in the Sano GOLD analysis were significantly 
associated with increased prevalence of long COVID in AoU. Although this output includes the 
signature most strongly associated with long COVID (by uncorrected p-value), it does not 
survive the stringent FDR correction for the large number of signatures from this analysis.  
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Finally, if we pool the signatures from the Severe and Fatigue Dominant cohorts into a single 
analysis (excluding the large number of signatures from the General cohort to avoid the need for 
stringent FDR correction), then 5 of signatures in Table 7 remain significant under the combined 
Benjamini-Hochberg FDR correction. These include all four significant signatures from the 
Severe analysis and the top signature from the Fatigue Dominant analysis. 

Table 7. Replicating disease signatures that exhibit statistically significant associations with long COVID 
in AoU using Bonferroni-Hochberg FDR procedure. p-values in bold are also significant under Bonferroni 
FDR correction. Signatures from each cohort analysis were evaluated separately. Odds ratios reflect the 
number of total case and controls with genotype data for all component SNPs, which differs between 
signatures.  

Signature # Cases # Controls 
Odds 
Ratio 

p-value 

Severe cohort 

(rs17035343 T/T)(rs1872513 C/C)(rs9312595 A/G) 
(rs4936114 A/G)(rs12454570 C/C) 30 149 2.09 0.0004 

(rs17035343 T/T)(rs1872513 C/C)(rs9312595 A/G) 
(rs58438895 A/A)(rs4936114 A/G) 29 144 2.09 0.0005 

(rs17035343 T/T)(rs1872513 C/C)(rs9312595 A/G) 
(rs1109968 A/A)(rs4936114 A/G) 29 144 2.09 0.0005 

(rs6716743 G/G)(rs2010874 T/T)(rs13096228 A/G) 
(rs67844017 A/A)(rs79853277 T/T) 28 136 2.15 0.001 

Fatigue Dominant cohort 

(rs9515203 C/C)(rs11633336 A/A) 27 120 2.33 0.0004 

(rs10914896 G/G)(rs10229643 A/A)(rs9960341 A/A) 
(rs2076584 C/C)(rs17702926 C/C) 

23 117 2.02 0.003 

 

Discussion 
Studies using traditional GWAS and meta-GWAS approaches on large patient populations 
(6,450 cases and 53,764 cases) respectively identified a single locus and three loci associated 
with long COVID25,26, although there was no statistical replication of the findings between these 
studies.  

The original combinatorial analysis of Sano’s GOLD cohort identified 9,068 genetic disease 
signatures and 73 genes that were significantly enriched in two small UK-based long COVID 
patient cohorts (Severe n_cases=459 and Fatigue Dominant n_cases=477)30. In this original 
analysis, 28/43 genes found in the Severe cohort were also significantly associated with disease 
in the Fatigue Dominant cohort, and 25/35 genes from the original Fatigue Dominant analysis 
were also associated in the Severe cohort. 25 genes (15 from Severe and 10 from Fatigue 
Dominant) were found to be unique to those cohorts. 

92% of the genes and 60-83% of the medium/high-frequency disease signatures from the Sano 
GOLD results that are also represented in the AoU dataset were positively correlated with long 
COVID in this independent US-based population. For disease signatures that occur in at least 
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5% of patients, between 77%-83% were positively correlated with long COVID prevalence in 
both the Sano GOLD and AoU cohorts, far more than we would expect to randomly observe if 
the signatures were uncorrelated with disease biology. Although we defined a ‘reproducing’ 
signature as one that has any odds ratio greater than 1, most reproducing signatures have 
relatively large odds ratios in AoU, indicating a strong association with increased disease 
prevalence.    

At least five of the disease signatures found in Sano GOLD were individually significantly 
associated with increased prevalence of long COVID in the AoU population. The significant 
enrichment of positively-associated disease signatures further confirms that many additional 
signatures are non-randomly associated with disease but cannot be individually validated due 
to the very low statistical power provided by the small number of long COVID patients in the 
dataset (n=413). Together these results demonstrate a significant enrichment and reproduction 
of disease signal, broadly validating the results of the original analysis. 

Importantly, the results of this paper provide strong supporting evidence for a much broader 
range of genetic associations with long COVID than has been uncovered by GWAS studies to 
date. This provides evidence highly consistent with a strong biological basis of the disease and 
the hypothesis that patients’ genetics influence their susceptibility to developing long COVID 
(and their predominant symptoms) following recovery from acute SARS-CoV-2 infection. 

The AoU ancestry distribution differs significantly from the mainly (>91%) white British patient 
cohort used in the original combinatorial analysis. Disease signature reproducibility rates are 
very strong in the sub-cohort of self-identified white patients, as expected given the similarity in 
ancestry between that cohort with the original Sano GOLD dataset. Signature reproducibility 
rates are lower in sub-cohorts of self-identified black/African-Americans and Hispanic/Latinos, 
but we still observe significant enrichment of disease signatures despite very small sample 
sizes. 

This therefore represents the first reproduction of long COVID genetic associations across 
multiple populations with substantially different ancestry distributions. Given the degree of 
reproducibility of results across diverse populations, these findings may have broad clinical 
application which could promote better health equity. 

The lower signature reproducibility rates among the self-identified black/African American and 
Hispanic/Latino sub-cohorts relative to the self-identified white sub-cohort highlight a pressing 
need to identify large, diverse, well-phenotyped cohorts of long COVID patients. Many long 
COVID specific datasets such as Sano GOLD are comprised predominantly of patients with 
white European ancestry. In contrast, All of Us includes a highly diverse patient cohort, but lack 
of reliable data identifying which participants have a history of long COVID prevents us from 
reliably obtaining sufficient sample sizes to conduct a combinatorial analysis aimed at 
identifying novel disease signatures.  

Having access to larger and more diverse populations with a confirmed diagnosis is essential to 
enabling primary analysis within these ancestry cohorts and adding to our understanding of the 
factors underpinning disease in those populations. In turn this would also help us build more 
inclusive and transferrable disease risk models. 
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Combinatorial analysis of diverse long COVID patient cohorts could potentially identify disease 
signatures that were not detected in predominantly white European cohorts due to low relative 
case frequencies, but which have greater frequency and importance for disease biology in other 
patient cohorts. Such signatures could be used to better estimate patients’ relative 
susceptibility to developing long COVID.  

Alternatively, the disease signatures identified in the Sano GOLD cohort may have reduced 
effect sizes in non-white European cohorts due to an increased frequency of ‘actively protective’ 
signatures in those populations, i.e., one or more SNP genotypes that wholly or partially mitigate 
the disease associations of a set of ‘causative’ disease signatures50. The combinatorial analysis 
published in Taylor et al. (2023) focused only on causative disease signatures and did not 
include any analysis of protective signatures30 Incorporating actively protective features into the 
set of disease signatures should increase their predictivity for identifying ‘high-risk’ patients and 
improve reproducibility statistics.  

Evaluating the Output of the PrecisionLife Combinatorial Analysis Platform 

We observed high rates of reproducibility among disease signatures derived from all the Sano 
GOLD cohorts and showed that these rates of disease signature reproducibility were strongly 
correlated with the frequency of signatures in the original study cohort. We observed slightly 
higher overall rates of reproducibility in the Severe and Fatigue Dominant cohorts which have 
fewer high case frequency disease signatures relative to the broader ‘General’ long COVID 
cohort. 

Rates of reproducibility were highest for disease signatures comprised of four or five SNP 
genotypes, suggesting that combinatorial genetic interactions play an important role in the 
biology of long COVID. This also provides supporting evidence for the combinatorial analytic 
approach’s ability to detect a broad and clinically informative set of genetic disease 
associations in otherwise intractable complex diseases.  

The Predictive Value of Common vs Rare Signatures 

In contrast to these mid/high case frequency signatures, when analyzing the entire set of 
disease signatures from the original analyses including low frequency signatures, only 34%-44% 
were consistently correlated with long COVID prevalence. This implies that rarer signatures may 
replicate between populations more poorly, an observation that is consistent with similar 
findings in GWAS and polygenic risk score studies51,52,53,54,55. There are a several explanations for 
this observed correlation between signature frequency and reproducibility rates.  

First, statistical power is proportional to sample size, which is already limited in the 
reproducibility analysis due to the very small number of confirmed long COVID patients in AoU. 
Signatures with frequencies below 5% are expected to occur in 21 or fewer AoU cases. This 
small sample size results in large variance in expected rates of reproducibility under the null 
model and a high probability of observing odds ratios less than one due to random sampling 
even when signatures are biologically relevant to disease.  

Second, due to the high case: control skew (1:10) in our dataset, rare signatures were often 
more likely to be negatively correlated with disease under the null model. In the most extreme 
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scenario, a signature that occurs in one person in the dataset is 10 times more likely to 
randomly occur in a control (resulting in a negative odds ratio) than a case (resulting a positive 
odds ratio). This bias caused the mean numbers of signatures that randomly exhibit odds ratios 
above 1 in the null model permutations to range between 41%-46%, below the 50% expectation 
for a balanced dataset. 

Third, rare signatures appeared to be more reflective of subpopulation structure in the original 
Sano GOLD dataset. Including genetic principal components as covariates resulted in 4% fewer 
high-frequency signatures (i.e., those that occur in >5% of total cases) that are positively 
correlated with long COVID, relative to a logistic regression that did not include covariates for 
population substructure. In contrast, including genetic principal components in the analysis 
resulted in 52% fewer replicating low-frequency signature (i.e., those that occur in <4% of total 
cases).  

Finally, more complex disease signatures (i.e., those comprised of 4 or 5 SNP genotypes) 
generally occur at lower frequencies in the population simply because there are more possible 
genotype combinations for a larger set of SNPs. The risk of overfitting to a dataset is known to 
increase with tree depth when applying tree-based machine learning algorithms56 and the same 
potentially holds true for higher layer disease signatures derived from a layer-based mining 
approach. Applying a frequency filter therefore potentially mitigates the impacts of false 
positive SNPs by removing higher-order signatures.  

We found no evidence, however, that increased signature complexity was associated with 
reduced reproducibility among high-frequency signatures. Rather, overall reproducibility rates 
were highest for 4-SNP and 5-SNP signatures relative to the small number of 2-SNP signatures. 
We also did not observe a correlation between signature complexity and reproducibility rate 
among low-frequency signatures. These results suggest that outputs of the combinatorial 
analyses of the Sano GOLD cohorts were not excessively overfitted to the original datasets and 
that presence of any false positive component SNP genotypes does not significantly affect the 
overall association with disease. 

Although the results of this analysis suggests that false positive component SNP genotypes do 
not have a major effect on signature reproducibility, we could potentially improve the effect 
sizes and predictivity of these signatures by using AoU to further refine the set of signatures. 
This step entails testing each signature individually and removing any component SNP genotype 
that does not enhance the signature’s association with disease in AoU. We have not included 
any refinement analysis in this study because it can potentially overfit the new set of signatures 
to the training dataset (AoU). A third cohort of long COVID patients would be required to 
properly evaluate the improvement in disease signature reliability that results from this 
refinement process. 

Limitations of Analysis 

Reliably identifying which patients in AoU have a history of long COVID is currently challenging 
as we needed to rely on ICD-10 codes, which are known to be inconsistently and inaccurately 
applied, to identify known cases. As noted above, published estimates of long COVID 
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prevalence in the United States range between 6.9% to 14%, yet fewer than 0.2% of individuals 
in AoU have ICD-10 codes associated with long COVID.  

This suggests that many long COVID patients have not been assigned the appropriate ICD-10 
code. As a result, more than 10% of the controls in our AoU study cohort potentially could 
represent misclassified cases with unreported long COVID.  

This type of phenotypic misclassification in datasets will generally weaken the observed effect 
sizes by artificially inflating the similarity between cases and controls57. This behavior is 
potentially problematic for reproducibility analyses, as the dilution of signal decreases the 
statistical power of the analysis58. For example, phenotypic misclassification increases the 
probability that a signature that is biologically correlated with increased disease risk will 
nonetheless exhibit an odds ratio less than 1 due to random sampling effects.  

We therefore expect that the high degree of phenotypic misclassification in our dataset will have 
worked to reduce the overall rates of observed signature reproducibility. As such, the 
reproducibility statistics presented in this paper probably represent a low-end estimate of the 
true reproducibility rate.  

Applications for healthcare 

The identification of a set of genetic signatures that are consistently associated with increased 
prevalence of long COVID offers many opportunities for improving treatment of this poorly 
understood but highly prevalent and debilitating disease. 

Firstly, although we have insufficient power to validate the full set of individual signatures in 
AoU, demonstrating that reproducing signatures are significantly enriched in a second dataset 
provides important confirmatory evidence of the original findings of the combinatorial analytics 
approach. To provide insights into potential drug therapies for long COVID, we further tested 
whether the signatures associated with novel drug targets and their related drug repurposing 
candidates are significantly correlated with increased long COVID prevalence in AoU. 27/30 
(90%) of the genes represented in the >5% disease signatures and 11 out of the 13 drug 
repurposing candidates identified in the original study were reproduced in this study. This lends 
weight to their prioritization in clinical efficacy trials especially for those with generic drugs.  

Controlled open-label studies of similar design to the RECOVERY trial in Covid-19, which rapidly 
identified dexamethasone as an effective frontline therapy59, can be undertaken on this set of 
generic drugs, benefiting from the additional evidence that one or more selected therapies is 
more likely to help the subset of patients who have those mechanisms’ disease signatures in 
their genetic makeup. 

Secondly, we can use the insights into disease biology that are reflected by the reproducing 
disease signatures to construct a combinatorial risk score that evaluates an individual patient’s 
relative genetic susceptibility towards developing long COVID. Although genetic risk scores are 
not strictly diagnostic, especially in a pathogen triggered disease, they have substantial 
potential to be used by physicians for differential triage, i.e., to rapidly gauge the relative 
likelihood of different diagnoses when presented with ambiguous or indistinct symptoms and 
refer patients and/or select treatment options accordingly. As the utilization of large-scale 
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COVID-19 testing fades, alternative tests that can help differentiate patients with long COVID 
from patients with other illnesses with similar symptoms will become increasingly useful in 
healthcare settings. 

Constructing a combinatorial risk score from disease signatures is a more complex challenge 
than a conventional polygenic risk model – the latter assumes that all features (SNPs) act 
independently, whereas combinatorial disease signatures are often inherently correlated due to 
the sharing of SNP genotypes. Machine learning approaches can disentangle this complexity 
and non-independence and combine features such as disease signatures and their component 
SNP genotypes into a single predictive model. Although the small sample size of the AoU 
dataset is sufficient to train a combinatorial risk score using machine learning, a third (currently 
unavailable) independent dataset would be required to properly evaluate the relative increase in 
long COVID prevalence between subsets of patients flagged as having high and low genetic 
susceptibility.  

Finally, the set of replicating disease signatures can be used to mechanistically stratify patients 
based on the causative etiologies most likely associated with their form of long COVID. This first 
entails assigning disease signatures to one or more mechanism-of-action (MoA) cluster/s based 
on the gene(s) associated with the component SNP genotypes. We can then assess whether a 
patient has a significant excess or lack of disease signatures associated with a given MoA 
relative to the distribution of signature counts in the larger long COVID community. In essence, 
this mechanistic stratification tool is comprised of multiple combinatorial risk scores, each for 
a different set of mechanism related disease signatures. This can provide insight in the clinic 
into the selection of therapies that are matched to a patient’s personal genetic makeup. 

Unlike standard risk scores, which can be used to inform public health applications but 
provides more limited utility for personalized precision medicine60, a mechanistic stratification 
tool would potentially ultimately enable healthcare practitioners to identify individualized 
treatment regimens including single- or multi-drug therapies that are most likely to generate a 
positive outcome for a given patient. In the case of long COVID these mechanistic insights also 
have other potential applications, as the Taylor et al. (2023) combinatorial analysis also found 
evidence for substantial overlap in disease biology between long COVID and myalgic 
encephalitis / chronic fatigue syndrome (ME/CFS)30. 

Conclusion 
The level of reproducibility of results from the original Sano GOLD long COVID study in the All of 
Us population to the extent demonstrated is highly encouraging for the study of long COVID and 
other similarly complex diseases. These findings redefine our understanding of long COVID by 
uncovering a broad spectrum of reproducible genetic signatures, laying the foundation for new 
diagnostic innovations and targeted therapies that have the potential to revolutionize care for 
millions suffering from this debilitating condition worldwide. 

The study demonstrates the level of reproducibility of results achievable using combinatorial 
analysis, even across very small populations with diverse ancestries in highly heterogenous 
diseases. Increasing reproducibility across patients with different ancestries is critically 
important for improving equitable representation and access to healthcare solutions. All of 
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these studies would nonetheless obviously benefit from larger datasets with a wider population 
diversity, more secure diagnosis, more harmonized health/symptom surveys and deeper 
genomic, longitudinal clinical, immunological and metabolic data. 

The results provide further compelling evidence for the detailed description of the genetic 
components of long COVID’s complex disease biology that was presented in the original 
combinatorial analysis study30. We hope that this will provide confidence to explore some of 
these mechanisms and drug targets and help advance research into novel ways to diagnose the 
disease and accelerate the discovery and selection of better therapeutic options, both in the 
form of newly discovered drugs and/or the immediate prioritization of coordinated 
investigations into the efficacy of repurposed drug candidates.  

We also hope that these findings will better establish a stronger appreciation of the role of 
genetic contributions to the etiology and lived experience of disease in long COVID patients and 
prove its underlying biological basis to the clinical community.  

For the first time, a definitive test for the disease would enable clinicians to rapidly and 
accurately identify and triage patients, ensuring they receive timely and equitable access to 
care, and reducing the potential for misdiagnosis. It would also establish a definitive framework 
for measuring the public health impact of the disease, informing health policy and helping 
strategically prioritize research initiatives to make more rapid progress in addressing this 
massive global challenge and improve patients’ lives. 
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