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Abstract 
Soft tissue sarcomas (STS) histopathological classification system has several 

conceptual caveats, impacting prognostication and treatment. The clinical and 
molecular-based tools currently employed to estimate prognosis also have limitations. 

Clinically driven molecular profiling studies may cover these gaps. We performed DNA 
sequencing (DNAseq) and RNA sequencing (RNAseq), portraying the molecular profile 

of 102 samples of 3 of the most common STS subtypes. The RNAseq data was analyzed 

using unsupervised machine learning models, unravelling previously unknown molecular 
patterns and identifying 4 well-defined transcriptomic clusters. These transcriptomic 

clusters have a clear prognostic value, a finding that was externally validated. This 
transcriptomic cluster-based classification’s prognostic value is superior to the 

prognostic accuracy of currently used clinical-based (SARCULATOR nomograms) and 
molecular-based (CINSARC) prognostication tools. The analysis of DNAseq data from 

the same cohort of samples revealed a plethora of unique and, in some cases, never 
documented molecular targets for precision treatment across different transcriptomic 

clusters.  
 

Keywords 

Soft tissue sarcomas, RNAseq, DNAseq, unsupervised machine learning, consensus 
clustering, prognosis, SARCULATOR, CINSARC, therapeutic targets.  
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Introduction 
Sarcomas are, biologically, rooted deeply in vertebrates evolutionary history, as 
consubstantiated in a paleopathology study that documented findings compatible with 
an osteosarcoma on the femur of a 240-million-year-old stem-turtle from the Triassic 
period [1]. Even though sarcomas are not modern vertebrate and human physiological 
defects or recently discovered pathological entities, the poor descriptive depth and the 
immutability of the attributes that are used to portray them throughout the last decades 
reflect our scarce comprehension of its biology.  
 
Sarcomas are almost invariably characterized as a group of rare and heterogenous 
mesenchymal malignancies [2,3,4]. Sarcomas’ heterogeneity is, conceptually, mainly a 
product of the currently applied histopathological classification system. This system 
fragments sarcomas in 50 to 150 histological subtypes, with approximately 20% of 
them being defined as “ultra-rare”, with an incidence of less than 1 in 1.000.000 [5].  
 
Sarcomas histopathological classification system has important limitations. Firstly, this 
system is eminently morphological and based on the resemblance of neoplastic tissue 
to the type of normal tissue counterpart (i.e., line of differentiation) [6,7]. 
Methodologically, this approach hinged on seeking morphological similarities between 
the neoplastic tissue and different types of normal tissues is indirect and non-specific. 
Moreover, this system is intrinsically complex and prone to errors, as it is illustrated by 
reported sarcomas’ overall diagnostic discrepancy rates of 28.2-56% and major 
diagnostic discrepancy rates (mainly due to discordances in histological types and 
grades) of 16.4-37% between referring and tertiary reference centers in different series 
[8-13].  
 
This imperfect histopathological classification system shapes soft tissue sarcomas (STS) 

management by impacting both retroperitoneal (RPS) and extremity (eSTS) STS 

prognosis estimation and respective prognostication accuracy. The clinical nomograms 

that are most widely used for prognostication purposes, available at the SARCULATOR 

application, incorporate STS histopathological subtype along with other histopathological 

variables as critical and defining factors. Besides this, although sarcoma’s treatment 
approach is largely based on a “fit-for-all” principle, there are specific treatment 
strategies for certain subtypes, which means that the above-mentioned diagnostic 
inaccuracies may directly impact treatment decisions. In some series, the modification 
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of the histopathological diagnosis led to the modification of treatment strategy (surgical 
treatment, medical treatment and both) in up to 15% of cases [13]. Furthermore, adding 
outstanding fragmentation and heterogeneity to sarcomas’ rarity creates a particularly 
deleterious context for pre-clinical studies and for early and late-phase clinical trials 
development (specially in what recruitment and design is concerned), hampering drug 
discovery and development in sarcomas. The negative influence of the currently 
employed classification method on drug discovery and development also derives from 
this system’s static cytoarchitectural criteria, which do not fully capture the fluidity and 
dynamicity of the profusion of unique molecular landscapes of different sarcomas that 
are now being brought to light.  
 

Molecular-based approaches and tools may fill in some of the conceptual gaps of the 
histopathological classification system. In fact, the use of molecular analytical 
instruments, such as comprehensive genomic profiling, modifies clinical diagnoses in a 

significant percentage of neoplasms suspicious of sarcoma and impacts their 
management, as reported in a recent study [14]. In this study, whole-transcriptome 
sequencing led to the reclassification of 7% of the histopathological diagnoses and 
found treatment relevant variants in 15% of cases [14]. Other studies have reported 
even higher diagnostic revision rates - between 3 and 14% - with the use of prospective 
genome-wide profiling [15,16,17]. Some of these broad sequencing studies also 
revealed the presence of actionable molecular alterations in higher percentages of STS 
patients – 31.7% -, while some real-world series identified druggable molecular 

alterations in 37.2% of STS patients, leading to the prescription of personalized treatment 
according to the identified molecular alterations in 31.2% of patients [18].  

 
In the same way, a plethora of distinct molecular-based approaches (both single and 
multi-omics) are currently showing previously unknown angles of sarcomagenesis, 
permitting a more granular cartography of the pivotal molecular alterations that 
characterize different sarcomas, and are subsequently allowing an increment of 
prognosis estimation accuracy. Molecular prognostic and predictive biomarkers, such 
as genomic and transcriptomic signatures (of which the Complexity INdex in 
SARComas (CINSARC) and Genomic Grade Index (CGI) are good examples), together 
with proteomic and metabolomic fingerprints, are starting to pave the way for accurate 
prognosis definition and personalized treatment approaches identification in sarcomas 
[19-23].  
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The classification system should evolve from a crystalized and architectural archetype 
to a dynamic mesh that is capable to capture and comprise both common molecular 
drivers and specific molecular adaptations, allowing researchers to better estimate 
prognosis (overcoming clinical-based nomograms that integrate histopathological 
features such as SARCULATOR [24], gene expression-based signatures eminently 
related to mitosis and chromosome integrity, such as CINSARC [25], and even the 
combination of these prognostication instruments, embodied by CINSARCULATOR 
[26]), to more accurately find biological patterns and to better design studies and trials 
focused on tackling molecular alterations of specific sarcomas.  
 
In order to achieve this, we identified, from the analysis of different STS samples, 
specific molecular signatures and transcriptomic clusters that correlate with clinical 
outcomes, showing impressive prognostic value, and that may guide selective 
personalized treatment strategies, displaying a potential predictive utility.  
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Results 
 
Clinical characteristics of the study cohort 
 
The 102 samples that were used for this study were obtained from 101 patients. These 

101 patients displayed a median age of 67 (IQR 19.7) years-old, and a balanced gender 
distribution (50.5% male) (Supplementary Table 1). Twenty-five (25) patients had a 

diagnosis of dedifferentiated liposarcoma (DDLPS), 25 patients had a diagnosis of 

leiomyosarcoma (LMS), and 51 patients had a diagnosis of undifferentiated pleomorphic 
sarcoma (UPS). These patients STS’s were predominantly located in the lower limb 

(N=49, 48.5%), followed by the retroperitoneum (N=31, 30.5%). The primary malignant 
tumors (sarcomas) had a median size of 13 (IQR 10.0) cm. Two (6.5%) of the 31 

retroperitoneal sarcomas were multifocal. All of these 101 patients samples were high-
grade (Grade 3). The great majority of cases (N=96, 95%) presented with localized 

disease. Five (5%) patients were metastatic at diagnosis. Among these 5 patients, 4 
(80%) had lung metastases and 1 (20%) had ganglionic mediastinal metastases. Three 

of these five patients (60%) were submitted to surgery with a palliative intent and 2 (40%) 
were not surgically interventioned.  

Surgery was the most frequently employed treatment strategy (N=99, 98.0%). Among 

the 99 patients that were surgically interventioned, 2 (2%) had already been operated in 
another institution. From the 97 patients that were submitted to surgery by the IPOLFG 

surgical team, 94 (96.9%) were operated with a curative intent and 3 (3.1%) with a 
palliative intent. Among the 94 patients that were operated with curative intent, 2 (2.1%) 

had sarcomas that were deemed unresectable during surgery and 92 (97.9%) had 
resectable disease (Supplementary Table 2). The resection margin status was R0/R1 

in 96.7% (N=89) of cases. Among the 94 patients that were operated with a curative 
intent, 3 (3.2%) were submitted to neoadjuvant treatment - 2 were treated with 

neoadjuvant chemotherapy (a doxorubicin-ifosfamide-based regimen was used in both 
cases) and 1 with neoadjuvant external radiotherapy (50 Gy/25 fractions). Fifty-eight 

(63.0%) patients received adjuvant treatment, primarily external radiotherapy (N=55, 

94.8%).  
Three patients with a R2 resection were excluded from the pool of locally recurrent cases 

since they were considered to have persistent disease.  
Different oncological outcomes were evaluated for the patients who were submitted to a 

resection with curative intent (N=94), and whose resection margins were R0/R1 (N=89, 
94.7%), during a median follow-up period of 27 (IQR 51.3) months since their diagnose. 
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Of these 89 patients, 29 (32.6%) had already had a previous local treatment in other 

institution (surgery or radiotherapy). Among these 89 patients, the local recurrence rate 
was 46.1% (N=41), with a median time to local recurrence of 14 (IQR 29.0) months. 

Among the 96 patients without distant metastasis ab initio, the distant metastasis rate 
was 41.7 % (N=40). Metastases were mostly found in the lungs (N=34, 85%), with a 

median time to distant metastasis of 13 (IQR 17.2) months. The metastasis-free survival 
(MFS) rate during the follow-up period was 34.4% (N=33) and OS rate during the follow-

up period for these patients was 43.8% (N= 42) with a median follow-up of 27 (IQR 51.5) 

months. The 5-year MFS rate and the 5-year OS rate for these patients were 37% and 
46%, respectively. When all the patients are considered (N=101), the OS rate during the 

follow-up period was 42.6% (N=43), with a median follow-up of 25 (IQR 51.9) months. 
The 5-year OS rate for all the 101 patients was 44%. 

 
Analysis of RNAseq data using unsupervised machine learning methods, namely 

consensus clustering, identified 4 transcriptomic clusters with distinctive 
molecular signatures 

Data from 74 samples (16 DDLPS, 15 LMS and 43 UPS) of 74 patients was considered 

for the RNAseq analysis (see Methods).  
Transcriptomics consensus clustering identified 4 transcriptomic clusters (the optimal 

number of clusters was found using the Elbow method) (Supplementary Figures 1a 
and 1b). Each transcriptomic cluster is portrayed by differential expression, either over 

or under expression, of a certain plethora of genes and of associated pathways (Figure 
1a, Figure 1b, Supplementary Figure 2 and Table 1).  
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Figure 1 – The four identified transcriptomic clusters and their defining molecular 

features. 
  
a) Schematic of the genes and pathways whose expression pattern most distinctively portray 
each cluster and of the histopathological subtypes that differentially compose each cluster. 
Created in BioRender. Esperança-Martins, M. (2025) https://BioRender.com/c93w707 
 

b) Heatmap plot displaying clinical and molecular (normalized gene expression data) features of 
each transcriptomic cluster.  

 
For each cluster, the differential gene expression analysis and subsequential KEGG 

pathway enrichment analysis were used to portray the cluster individual molecular 
landscape. 

 
Cluster 1 (C1) is more distinctively portrayed by the over expression of genes that 

encode cyclin-dependent kinases and cyclins such as CDK4 and CCND2. This cluster 
is also characterized by the over expression of genes that encode chemokines and 

transcription factors and by the under expression of an impressive array of genes that 

are involved in DNA homologous recombination repair (HRR) mechanisms, such as 
BRCA1, BRCA2, FANCD2, PALB2, RAD51, CHEK1, and BRIP1. Globally, there is an 

under expression of cell cycle and proliferation pathways (probably associated with the 
under expression of a significant number of genes involved in HRR and of a number of 

genes encoding cyclins, other than CCND2, as it is shown in Table 1). This cluster is 
mainly composed by samples that were classified, according to the currently used 

histopathological classification, as DDLPS (52.4%), with UPS (28.6%) and LMS (19.0%) 
samples also being integrated in this cluster.  

 
Cluster 2 (C2) is predominantly defined by the over expression of different cancer testis 

antigens (CTA) genes, namely a plethora of MAGE genes (such as MAGEA2B, 

MAGEA3, MAGEA12, MAGEB1, MAGEB2 and MAGEC2), and different SSX genes 
(such as SSX1, SSX2, SSX2B and SSX3). The over expression of CTNNB1 is also 

verified in this cluster. It is important to emphasize that our study cohort included DDLPS, 
LMS and UPS samples, not comprising either synovial sarcoma or myxoid/round cell 

liposarcoma samples. There is an over expression of transcriptional regulation pathways 
in this cluster. This cluster is mostly composed by samples classified as UPS (58.3%), 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 2, 2025. ; https://doi.org/10.1101/2025.01.31.25321492doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.31.25321492
http://creativecommons.org/licenses/by-nc-nd/4.0/


with LMS (29.2%) and DDLPS (12.5%) samples also being represented in this specific 

cluster.  
 

Cluster 3 (C3) is specifically characterized by the over expression of genes that encode 
Major Histocompatibility Complex (MHC) class II/ Human Leukocyte Antigen (HLA) class 

II (HLA-DMA, HLA-DMB, HLA-DOA, HLA-DQA, HLA-DRA and HLA-DRB1) genes. 

Besides HLA class II genes, an over expression of TGFb1, ETV5, BTK and BATF genes 

is also verified. On the other hand, the under expression of CDKN (CDKN1C and 

CDKN2A) and FGFR (FGFR 2 and FGFR3) genes also characterize this cluster. In terms 
of pathways, this cluster is marked by an over expression of immune related pathways 

and an under expression of the b-catenin pathway. Samples labelled as UPS (85.0%) 

are predominant, while LMS (10.0%) and DDLPS (5.0%) samples are also integrated in 
this cluster.  

 
Cluster 4 (C4) is represented by the over expression of a plethora of genes that encode 

different structural protein elements, such as claudin (CLDN) 4 (this gene encodes a 
membrane protein that is a component of epithelial cell tight junctions), CLCA 2, and 

GAS 7. Besides this, there is also an over expression of other genes such as SMAD3 
and PDGFD. Interestingly, an under expression of ACTN1 is verified. There is an overall 

over expression of cell components pathways. This cluster is also principally composed 
by UPS (66.7%) samples, moreover, incorporating both LMS (22.2%) and DDLPS 

(11.1%) samples.  

 
The identified molecular signatures and respective transcriptomic clusters have a 

clear prognostic value, a finding that was externally validated 

The newly identified transcriptomic clusters were included, alongside other key 
demographical, clinical, and histopathological data in the pool of variables that were 
considered for analysis using a Cox Proportional Hazards Model to estimate and 
compare the differential impact of each of these variables on OS (using the study 
cohort). This analysis revealed that clusters C2, C3, and C4 are negative prognostic 
factors. Specifically, the hazard ratios (HR) that were found were: C2 (HR 5.10; 95% CI 
1.81-14.34; P=0.002), C3 (HR 4.47; 95% CI 1.39-14.45; P=0.01), and C4 (HR 7.66; 95% 

CI 2.06-28.53; P=0.002) (Figure 2a). An Analysis of Variance (ANOVA) test was applied 

to the Cox Proportional Hazards Model and demonstrated that transcriptomic clusters 

were the variable with the most significant correlation with OS (P<0.01) (Figure 2b). 
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To externally validate these findings, we used the TCGA-SARC dataset, namely the data 
of patients with the same STS histopathological subtypes than the patients included in 
our study cohort (DDLPS, LMS and UPS) (N=127). We employed normalized gene 
expression data to reclassify patients into our transcriptomic cluster-specific gene 

signatures using single-sample Gene Set Enrichment Analysis (ssGSEA) (see 

Methods). Patients were assigned to the transcriptomic cluster with the lowest 

significant FDR-adjusted p-value. This led to the classification of these TCGA-SARC 
patients either into C1 (N=65) or C3 (N=62). Accordingly, a significant enrichment of the 

TCGA-SARC patients´ samples to C1_under and C3_over was verified (Supplementary 

Figure 3). An analysis using a Cox Proportional Hazards Model was carried out, 

incorporating histopathological variables, such as the histopathological classification 
that was originally used in TCGA-SARC (that grouped LMS and UPS together), a 
recently proposed histopathological classification that distinguishes gynecological 
LMS, soft tissue LMS and UPS (and which is currently used for patient stratification), 
and the FNCLCC grade, and the transcriptomic clusters. This analysis confirmed that 
C3-enriched patients have a worse prognosis (HR 2.28; 95% CI 1.19-3.9; P=0.02) 

(Figure 2c). An ANOVA test of the Cox Proportional Hazards Model showed, once 

again, that the transcriptomic cluster-based classification was the most significant 

predictor of overall survival (P<0.01) (Figure 2d).  
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Figure 2 – Transcriptomic clusters and their respective molecular signatures exquisite 

prognostic value.  
 
a) Forest plot showing the results of the evaluation of the differential impact of distinct 
demographical, clinical, histopathological and molecular variables on OS in the study cohort 
using a Cox Proportional Hazards Model.  
 
b) Table displaying the results of the ANOVA test applied to the Cox Proportional Hazards 
Model to assess the predictive ability of different variables for OS estimation in the study cohort.  
 
c) Forest plot showing the results of the evaluation of the differential impact of distinct 
histopathological and molecular variables on OS considering the TCGA-SARC patients 
(classified in accordance with the transcriptomic clusters-based classification) using a Cox 
Proportional Hazards Model.  
 
d) Table displaying the results of the ANOVA test applied to the Cox Proportional Hazards 
Model to assess the predictive ability of different variables for OS estimation in the validation 
cohort (TCGA-SARC).  

 

The enrichment in C1 and C3 of the TCGA-SARC population and the statistical 

significance of the correlation between transcriptomic clusters and survival 

persist even when UPS patients are excluded 

As described in Methods, using the TCGA-SARC dataset, we evaluated if the removal 
of UPS patients from the patients pool would alter the previously verified molecular 

enrichment of these STS patients samples in C1 and C3 (C1_under; C3_over) and 
modify the previously verified statistically significant correlation between the 

transcriptomic clusters-based classification and OS. When UPS patients were removed 
from the considered TCGA-SARC patients population, the molecular enrichment of the 

population in C1 and C3 (C1_under; C3_over) (Supplementary Figure 4) and the 

correlation between the transcriptomic clusters-based classification and OS remained 
statistically significant (namely the correlation between C3 and OS)  (Supplementary 

Figure 5).  

 
However, we would like to underline that within our study population, UPS was the most 

frequently represented STS histopathological subtype (N=51 (of 101), 50.4%), while on 
the TCGA-SARC population (considering the distribution per STS histopathological 
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subtype displayed on the reviewed histopathological classification of TCGA-SARC), UPS 

was the less frequently represented STS histopathological subtype (N=7 (of 127), 5.5%).  
 

A molecular signature and transcriptomic cluster-based classification 
outperforms the SARCULATOR clinical nomograms in terms of prognostic value  

We conducted a comparative analysis between the prognostic values of a molecular 
signature/transcriptomic cluster-based classification and the clinical nomograms 
available at SARCULATOR (SARCULATOR). 67 patients within the study cohort had 
their 5-year OS probability estimated following the use of SARCULATOR nomograms 

(see Methods). The median 5-year predicted OS was 57% (IQR 26.5%).  

 

C-indexes of the different Cox Proportional Hazard models for OS were calculated and 

then compared (see Methods). The following models were considered: SARCULATOR 

5-year OS prediction (SARC); transcriptomic clusters (TC); SARCULATOR 5-year OS 
prediction combined with transcriptomic clusters (SARC+TC); and finally, 
transcriptomic clusters combined with age (TC+AGE).  
 
The TC+AGE model showed the strongest OS predictive ability and the best prognostic 

value (C-index 0.7, Figure 3a). Notably, the transcriptomic cluster-based classification 

outperformed the SARCULATOR nomograms in terms of prognostic value (C-index of 
0.63 vs. 0.62, respectively). This suggests that, even without the incorporation of age or 
without being particularly designed or trained to specifically predict OS, the 
transcriptomic cluster-based model offers superior prognostic accuracy than the 
SARCULATOR nomograms (which include age as a necessary variable for its 
calculation). Furthermore, the TC+AGE model showed a clearly superior prognostic 
value than the SARC model (C-index of 0.7 vs. 0.62, respectively), which is also 
noteworthy.  
 
Altogether, these results, in an analysis within our study cohort, point towards a superior 
prognostic value of the transcriptomic cluster-based classification over the currently 
employed gold-standard clinical nomograms approach.  
 

Independent validation of the superior prognostic value of the molecular signature 

and transcriptomic cluster-based classification 
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We sought to validate the superior prognostic value, when compared with clinical-
based prognostication tools, of the transcriptomic cluster-based classification using an 
independent/external cohort. We performed the same analysis for the TCGA-SARC 
cohort [27], calculating the C-Indexes of different Cox Proportional Hazard Models for 
OS and comparing them. Distinct model combinations were considered, including 
SARCULATOR, CINSARC (classification of the patients of the TCGA-SARC cohort 
using CINSARC was possible, oppositely from what was verified for the patients of the 

study cohort as reported in Results - A transcriptomic cluster-based classification 

outperforms the CINSARC expression-based signature in terms of prognostic 

value and Methods) and TC as features.  

 
In this cohort, the results of our analysis reinforced our findings, with TC outperforming, 

albeit marginally, SARCULATOR (C-Index of 0.61 vs. 0.6, respectively) (Figure 3b). 

Notably, the addition of age to the TC model did not affect its performance, with 
TC+AGE showing the same C-Index of 0.61 than TC.  
 
Additionally, TC (C-Index of 0.61) consistently outperformed CINSARC (C-Index of 0.49) 
and CINSARC + AGE (C-Index of 0.53), demonstrating that our molecular-based 
classification displays a superior prognostic value than the currently used molecular-
based classification.  

 
Importantly, the best-performing models were those incorporating TC. The combination 
of TC with SARCULATOR achieved a C-Index of 0.66, while the combination of TC with 
SARCULATOR and CINSARC further improved performance, achieving the highest C-
Index of 0.67. These findings validate the robustness of the transcriptomic cluster-
based classification and highlight its critical role in enhancing the accuracy of 
prognostic models when combined with clinical and molecular predictors.  
 
 
 
 
 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 2, 2025. ; https://doi.org/10.1101/2025.01.31.25321492doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.31.25321492
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3 – The transcriptomic cluster-based classification outperforms the SARCULATOR 

clinical nomograms in terms of prognostic value. 
 
a) Bar chart displaying the concordance indexes of different prognostic models employed using 
the population of the study cohort (including SARC, TC, TC + SARC and TC + Age) 
 
b) Bar chart showing the concordance indexes of different prognostic models employed using 
the population of the validation cohort (TCGA-SARC) (including CINSARC, CINSARC + Age, 
SARC, TC, TC + Age, SARC + CINSARC, SARC + TC, SARC + TC + CINSARC) 

 

A molecular signature and transcriptomic cluster-based classification may allow 
prognostic sub-stratification within specific SARCULATOR-defined prognostic 

groups 

Additionally, we attempted to understand if the application of our transcriptomic cluster-
based strategy could identify and sub-stratify patients with different prognostic horizons 

inside the same SARCULATOR-defined prognostic groups (predicted 5-year OS > 60% 

vs. predicted 5-year OS £ 60%).  

Sub-stratification inside the favorable prognostic group, defined by patients with a 

predicted 5-year OS > 60%, could spot patients with a distinct prognostic profile 
according to the transcriptomic cluster their STS belongs to and that, in case of a relative 

negative prognostic profile, might benefit from an early and tailored adjuvant systemic 
treatment approach and/or a more intensive surveillance approach. Sub-stratification 

inside the unfavorable prognostic group, defined by patients with a predicted 5-year OS 

£ 60%, could identify, among the pool of patients that collectively display an indication 

for adjuvant chemotherapy, patients with worse relative prognosis, whose adjuvant 

systemic treatment approach should potentially be intensified (either in terms of number 
or doses of systemic treatment agents, or also in terms of frequency of treatment cycles) 

and patients with a better prognosis, whose adjuvant treatment approach could be, 
relatively, less aggressive (also in the same terms that have been previously mentioned, 

but in the opposite direction).  
 

Among the 67 patients of the study cohort whose classification with SARCULATOR was 
amenable to be performed, 30 displayed a predicted 5-year OS > 60% and 37 showed 

a predicted 5-year OS £ 60%.  
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By performing a survival analysis using the Kaplan-Meier method, the transcriptomic 

clusters-based classification was able to significantly sub-stratify patients with different 

prognostic horizons within the unfavorable prognostic group (predicted 5-year OS £ 60%) 

(p-value 0.018), while it was not able to significantly sub-stratify patients with distinct 

prognostic profiles within the favorable prognostic group (predicted 5-year OS > 60%) 
(p-value 0.78) (Supplementary Figure 6). Considering the unfavorable prognostic 

group, there is a statistically significant difference in OS between patients whose STS 
belongs to C1 and patients whose STS belongs to non-C1 clusters (C2, C3 and C4). 

Patients whose STS belongs to C1 display a better relative prognosis.  
 

Next, we performed an identical survival analysis in the TCGA-SARC cohort. The 
transcriptomic clusters-based classification was not able to significantly sub-stratify 

patients with distinct prognostic profiles either within the favorable prognostic group 
(predicted 5-year OS > 60%) (p-value 0.14) and also within the unfavorable prognostic 

group (predicted 5-year OS £ 60%) (p-value 0.28) (Supplementary Figure 7a).  

 
If only patients from the TCGA-SARC cohort with a grade 3 DDLPS, LMS and UPS were 

considered, the transcriptomic clusters-based classification would still not be able to 
significantly sub-stratify patients with distinct prognostic profiles either within the 

favorable prognostic group (predicted 5-year OS > 60%) (p-value 0.32) and also within 

the unfavorable prognostic group (predicted 5-year OS £ 60%) (p-value 0.6) 

(Supplementary Figure 7b). However, it is important to note that, even lacking statistical 

significance, the survival curves indicates the tendency of a better prognosis for patients 
with a C1 STS, when compared with patients with a non-C1 STS. This apparently 

discordant finding (within the study cohort and within the validation cohort) may be 
explained by some statistical data regarding the study populations: among the 127 

patients included in the TCGA-SARC that have a formal diagnosis of DDLPS, LMS and 
UPS, only 33 have a grade 3 STS. Of these 33 patients with a grade 3 DDLPS, LMS or 

UPS, only 23 display a predicted 5-year OS £ 60% (estimated using SARCULATOR). 

Our study cohort includes a higher absolute number (N=37 vs. N=23) and a higher 
proportion (37/70; 52,9% vs. 23/127; 18,1%) of patients with a grade 3 STS that display 

a predicted 5-year OS £ 60%.  
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A transcriptomic cluster-based classification outperforms the CINSARC 

expression-based signature in terms of prognostic value 

We also compared the prognostic values of the transcriptomic cluster-based 
classification with the Complexity INdex in SARComas (CINSARC) (an expression-
based signature related to mitosis and chromosome integrity), using patients from the 

TCGA-SARC dataset with the same STS histopathological subtypes than the patients 

that were included in our study cohort (DDLPS, LMS and UPS) (N=127).  
 
CINSARC annotation of our study cohort was not possible since the 
FoundationOne®RNA gene set does not include 32 of the genes included in CINSARC 
(48% of the total number of genes considered in CINSARC)  (listed in detail in 

Supplementary Materials). Theoretically, it would still be possible to classify our study 

cohort patient samples using CINSARC, but, conceptually, this classification would not 
be robust and would have a significant degree of inaccuracy.  
 
We tested how does CINSARC overlap the lists of differentially expressed genes of each 
of the transcriptomic clusters. We observed an overlap of 38% between the CINSARC 
gene set and the C1 under expressed genes and found a significant correlation between 
the enrichment scores of C1_under and CINSARC (Spearman’s Rank correlation =  0.78 

between NES C1 under and CINSARC (Supplementary Figure 8)).  

 
Considering the TCGA-SARC patients (and after classifying them using CINSARC), an 
analysis using a Cox Proportional Hazards Model, including the histopathological 
classification (either the originally used in TCGA-SARC and the recently proposed and 
currently used one), CINSARC, transcriptomic clusters-based classification, and the 
FLNCC grade, was performed. The results revealed that the transcriptomic clusters-
based classification were the only variable that showed a statistically significant 
correlation with OS and that the transcriptomic clusters-based classification were, 
subsequently, the most significant variable for the prediction of patients OS (HR 2.15; 

95% CI 1.134-4.1 P=0.019) (Figure 4a). A subsequent ANOVA test of the Cox 

Proportional Hazards Model showed, once again, that the transcriptomic cluster-based 

classification was the most significant predictor of OS (Figure 4b).  

 
Additionally, an OS analysis by the Kaplan-Meier log rank test was performed for the 
CINSARC classified patients (C1 and C2) and showed no statistically significant 
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differences (log rank P=0.93) (Figure 4c). On the other hand, CINSARC has the ability, 

as previously reported, to distinguish between C1 and C2 in terms of metastasis free 

survival (MFS), displaying a log rank of P=0.018 (Figure 4d).  

 
In parallel, TCGA-SARC patients were also classified according to the transcriptomic 
clusters-based classification (as previously mentioned) and a survival analysis 
employing the Kaplan-Meier method showed, in this case, a significant difference in OS 

between C1 and C3 (Log Rank P=0.01) (Figure 4e). 

 
These findings confirm that, despite being able to accurately predict MFS, CINSARC 
does not have the capacity to differentiate distinct OS profiles within STS patients and 
displays a lower overall prognostic value than the transcriptomic clusters-based 
classification.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 4 - The transcriptomic cluster-based classification outperforms the CINSARC 
expression-based signature in terms of prognostic value. 

 

a) Forest plot showing the results of the evaluation of the impact of histopathological 

classification, CINSARC, transcriptomic clusters-based classification, and the FLNCC grade on 
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OS considering the patients of the TCGA-SARC cohort after their classification accordingly to 
CINSARC.  
 
b) Table displaying the results of the ANOVA test applied to the Cox Proportional Hazards Model 

to assess the predictive ability of different variables for OS estimation using data from the TCGA-

SARC (after the classification of TCGA-SARC patients accordingly to CINSARC).  
 

c) Survival analysis of the patients of the TCGA-SARC cohort after their classification accordingly 

to CINSARC: OS analysis by the Kaplan-Meier method and respective curves (time scale is 

shown in days). 
 

d) Survival analysis of the patients of the TCGA-SARC cohort after their classification accordingly 

to CINSARC: MFS analysis by the Kaplan-Meier method and respective curves (time scale is 

shown in days). 
 

e) Survival analysis of the patients of the TCGA-SARC cohort after their classification in 

accordance with the transcriptomic clusters-based classification: OS analysis by the Kaplan-

Meier method and respective curves (time scale is shown in days).  

 

The analysis of the DNA alterations (detected with FoundationOne®CDx) found in 

the patients included in each of the 4 transcriptomic clusters reveals unique 
actionable targets 

We analyzed the DNA alterations detected by FoundationOne®CDx in the patients 

included in each of the 4 transcriptomic clusters (see Methods). The frequency and 

types of the detected genomic alterations are represented in Figure 5a. An extensive 

description of these genomic alterations, and their respective distribution per 

transcriptomic cluster, is provided in Supplementary Material.  
 

Then, we used MTBP [28] to systematize and interpret the functional and predictive 
value of each of the genomic variants that were found for the patients included in each 

of the transcriptomic clusters (Supplementary Tables 3,4,5 and 6). The functional 

classification and the actionability tiering for gene variants performed by MTBP follow 
the ESMO Scale of Clinical Actionability for Molecular Targets (ESCAT). The distribution 
of the detected genomic alterations per tier of actionability and level of evidence for each 
of the transcriptomic clusters is shown in Figure 5b. 

Overall, 151 gene variants classified with ESCAT evidence tiers ranging from 2 to 4 have 
been identified among the patients included in the study cohort (29 clinically actionable 
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gene variants have been identified for patients included in C1, 51 for patients included 
in C2, 56 for patients included in C3, and 15 for patients included in C4). C2 displayed 
the highest number of gene variants classified with an ESCAT evidence tier 2 (15 
variants), followed by C3 (14 variants). C3 showed the most significant number of gene 
variants classified either with an ESCAT evidence tier 3 (24 variants) and with an ESCAT 
evidence tier 4 (18 variants). C4 presented the lowest number of gene variants classified 
with an ESCAT evidence tier 2 (4 variants), with an ESCAT evidence tier 3 (6 variants) 
and with an ESCAT evidence tier 4 (5 variants).  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 5 – The analysis of the DNA alterations detected with FoundationOne®CDx for 
patients included in each of the 4 transcriptomic clusters reveals unique actionable targets.  

 
a) Frequency and types of genomic alterations detected by FoundationOne®CDx for patients 
included in each of the transcriptomic clusters.  
 
b) Distribution of the detected genomic alterations classified with MTBP per tier of actionability 

(Tier 2 – Investigational, Tier 3 – Hypothetical Target: Alteration-drug match is associated with 

antitumor activity, but magnitude of benefit is unknown (potential cancer-repurposing 

opportunity, Tier 4 – Hypothetical Target: preclinical evidence of actionability) and per functional 
relevance evidence for the alteration (A – Curated; B – Assumed; C – Predicted) for each of the 
transcriptomic clusters.  
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Supplementary tables 3, 4, 5 and 6 display, extensively and in full detail, the particular 

features of each of the gene variants that were found and their distribution per 
transcriptomic cluster and per ESCAT evidence tier.  
 
Among the complete pool of gene variants classified with an ESCAT evidence tier 2, 
there is a ubiquitous presence (across all the 4 clusters) of MDM2 amplifications 

(conferring sensitivity to Brigimadlin and Milademetan) and a vast plethora of TP53 
alterations (mainly missense mutations conferring sensitivity to Pazopanib and 
Vorinostat). MTAP deletions (conferring sensitivity to MRTX1719 and AMG193) are also 
noteworthy, since they were found in 3 of the 4 clusters. TSC2 mutations (conferring 

sensitivity to ABI-009) were also identified in 2 of the 4 clusters. Interestingly, ERBB2 
amplifications (conferring sensitivity to Trastuzumab Deruxtecan) (found in C2) and 
PIK3CA missense mutations (conferring sensitivity to Capivasertib and Copanlisib) 
(found in C3) were found in 1 of the 4 clusters.  
 
C1 is marked, in terms of actionable alterations, by an enrichment in MDM2 

amplifications (Tier 2), TP53 mutations (Tier 2), NF1 mutations (Tier 3 – conferring 
sensitivity to Selumetinib and resistance to Vemurafenib; - and Tier 4 – conferring 
sensitivity to Trametinib and Cobimetinib) CDK4 amplifications (Tier 4), and alterations 

of different genes involved in HRR, namely frameshift mutations of RAD51B (Tier 3), and 
missense mutations of ATM (Tier 3) and BRIP1 (Tier 3), all of them conferring sensitivity 
to PARP inhibitors, namely Olaparib.  
 
C2 is characterized, besides MDM2 amplifications (Tier 2) and TP53 mutations (Tier 2), 

by MTAP deletions (Tier 2), TSC2 mutations (Tier 2), ERBB2 amplifications (Tier 2 – 
conferring sensitivity to Trastuzumab Deruxtecan – and Tier 3 – conferring sensitivity to 
a wide array of anti-HER2 agents, either in monotherapy or in combination with other 
drugs belonging either to the same anti-HER2 class or to other classes) and specific 
genetic alterations that are targets for tumor agnostic treatment approaches, such as 
RET missense mutations (Tier 3, which confer sensitivity to Selpercatinib and 

Pralsetinib). POLE missense mutations (Tier 3), that typically lead to an hypermutated 
and immunosensitive phenotype, conferring sensitivity to immune-checkpoint inhibitors 
such as Pembrolizumab, and FGFR1 mutations (Tier 3 – conferring sensitivity to 
Pemigatinib – and Tier 4 – conferring sensitivity to Erdafitinib and AZD4547) are also of 
note.   
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C3 is portrayed by MDM2 amplifications, TP53 mutations, MTAP deletions, TSC2 

mutations, and PIK3CA mutations in terms of Tier 2 alterations. This cluster is particular 
fertile in terms of actionable alterations. A mention should be made to POLE missense 
mutations (Tier 3, conferring sensitivity to Pembrolizumab), KRAS missense mutations 

(Tier 3 and Tier 4, conferring sensitivity and resistance to a plethora of different agents), 
NRAS missense mutations (Tier 3 and Tier 4, conferring sensitivity and resistance to a 
plethora of different agents), MET amplifications (Tier 3, conferring sensitivity to 
Capmatinib, Tepotinib, Telisotuzumab Vedotin and Crizotinib), PTEN frameshift 

mutations (Tier 3 – conferring sensitivity to Capivasertib and Fulvestrant – and Tier 4 – 
conferring sensitivity to Ipatasertib, GSK26364771, AZD8186), VHL missense mutations 
(Tier 3 – conferring sensitivity to Everolimus), CDK4 amplifications (Tier 4 – conferring 

sensitivity to cyclin-dependent kinases inhibitors), CDKN2A mutations (Tier 4 – 
conferring sensitivity to cyclin-dependent kinases inhibitors), and alterations of genes 
involved in the HRR mechanisms, namely ATM (Tier 3), and ATR (Tier 3), conferring 
sensitivity to PARP inhibitors.  
 
C4 is the cluster with the smallest number of actionable gene alterations among the 4 
clusters. MDM2 amplifications (Tiers 2, 3 and 4), TP53 mutations (Tiers 2, 3 and 4), 

MLH1 missense mutations (Tier 3, conferring sensitivity to PARP inhibitors), BARD1 
missense mutations (Tier 3, conferring sensitivity to PARP inhibitors) and CDK4 
amplifications (Tier 4, conferring sensitivity to cyclin-dependent kinases inhibitors) are 
found in this cluster.  
 
Overall, there is a profusion of targetable alterations scattered across the different 
transcriptomic clusters. Either alterations that are compelling targets for tumor-agnostic 

treatment approaches, such as the RET mutations and ERBB2 amplifications found in 
C2, or alterations that are linked with defective DNA repair mechanisms, such as the 
mutations of distinct genes involved in HRR verified in C1, C3 and C4 and the mutations 
of POLE documented in C2 and C3, and a vast array of other specific alterations (some 
of them never previously documented in DDLPS, LMS and UPS) that confer sensitivity 
to a broad spectrum of different agents.  
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RNAseq detected fusions that were not identified by DNAseq 

FoundationOne®RNA detected fusions that were not detected by FoundationOne®CDx 
in 9.1% of the cases (2/22) for which both DNAseq and RNAseq for rearrangement 

detection were clinically reportable. The inclusion of a high number of archival samples 
> 2 years old contributed to the high rate of absence of passage of the particularly 

rigorous post-sequencing QC metrics required for clinical RNA rearrangement detection. 
On the other hand, the great majority of samples (75/102; 73.5%) passed the QC metrics 

required for RNAseq expression analysis (see Methods). The disparity between these 

QC passage rates for the optimal detection of cancer-related gene fusions and 
rearrangements (318 gene panel) test and the gene expression profiling (1517 gene 

panel) test covered by FoundationOne®RNA lies on the different nature of each of these 
tests: the test designed for optimal detection of cancer-related gene fusions and 

rearrangements for 318 genes is a test developed for clinical use and, therefore, employs 
specially stringent QC criteria, while the gene expression profiling test for 1517 genes is 

a test designed for research use only and employs less strict QC criteria (see Methods).  
The STS histotypes that were provided for this study are not typically translocation-

associated types, so the limited number of detected fusions is relatively unsurprising.  

An HMGA2 (intron 3)::TPH2 (intron 8) fusion was found in a case of DDLPS. This fusion 
was not detected in DNA because the HMGA2 and TPH2 genes are not baited on the 

FoundationOne®CDx gene panel. A NOTCH3 (intron 24)::BRD4 (intron 11) fusion was 
found in a case of UPS. Similarly, this fusion was not detected by FoundationOne®CDx 

because, while the exonic regions of both genes are covered on FoundationOne®CDx, 
the breakpoints for both genes occurred in intronic regions which are not covered.  

Thus, RNAseq provided additional value to DNAseq by detecting reportable fusions. 

 

Discussion 
In this study, the analysis of RNAseq data from a cohort composed by 102 samples of 

the most common STS subtypes using unsupervised machine learning models allowed 

the unravel of previously unknown molecular patterns and permitted the identification of 
4 well-defined transcriptomic clusters. These transcriptomic clusters have a clear 

prognostic value, which was externally validated. The prognostic value of this 
transcriptomic cluster-based classification seems to be superior to currently used clinical-

based prognostication tools (such as SARCULATOR nomograms) and to modern gold-
standard molecular-based prognostication tools (such as CINSARC). The analysis of 

DNAseq data from the same cohort of STS samples revealed a plethora of unique and, 
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in some cases, never documented molecular targets for precision treatment across 

different transcriptomic clusters.  
 

Clustering, the concept of grouping samples/patients based on the co-occurrence of 
molecular alterations, has been previously used to systematically analyze the significant 

amounts of complex data generated by bone and soft tissue sarcoma molecular 
characterization approaches (either single or multi-omics), allowing the identification of 

specific sarcoma molecular clusters with particular clinical behaviors [27; 29-32]. 

Consensus clustering, the unsupervised machine learning model that we employed in 
this study, has also already been used in two studies to identify STS molecular clusters 

[20,33] (Supplementary Table 7). Besides differences in terms of representation of 
distinct STS histopathological subtypes in sample pools, molecular profiling approaches, 

methodological strategies for data analysis (combination with other types of 
unsupervised clustering or with different methods) and respective results, the distinctive 

feature of our approach is its clinical-driven nature. Our method has been primarily 
developed using analytical tools developed for research use, but subsequently powered 

with analytical tools with a proven clinical utility and has included an extensive gathering 

of a wide array of clinical variables, allowing a better portrayal of the clinical significance 
of the clusters and its defining molecular features. We used sequencing tests that have 

been developed for research and/or clinical use, are cost-effective and are, therefore, 
potentially useful in the clinical practice routine. These tests were used to analyze all the 

samples of the study cohort, solely for the purpose of this study, differing from an 
approach comprising the analysis of a previously constructed public database. 

Ultimately, we have identified gene expression signatures that display both a superlative 
prognostic and also a potential predictive value, supreme indicators of clinical 

significance and impact.  
 

The conceptual robustness of the identified transcriptomic clusters is supported by the 

methodological approach (use of the Elbow method and verification of clusters 
persistence with the removal of UPS samples from the samples pool), the presence of 

all of the included STS histopathological subtypes in each of the clusters and the distinct 
intrinsic nature of the molecular features that define each cluster.  

 
Various of these cluster defining molecular traits are, themselves, novel and constitute, 

in some cases, breakthrough findings in STS (Supplementary Table 8 [20; 34-48]). 
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Some of these particular molecular characteristics have never been previously reported 

in STS. The over expression of specific MAGE genes (-A12, -A2B, -A3, -B1, -B2,  and -
C2), other than MAGE-A4 [36,37], verified in C2, the over expression of HLA class II 

(HLA-DMA, HLA-DMB, HLA-DOA, HLA-DQA, HLA-DRA and HLA-DRB1) genes, other 
than HLA class I genes [41,42], verified in C3 and the over expression of claudin 4 

verified in C4 fall into this category.  
Other cluster defining molecular alterations have already been reported in STS as 

exceedingly rare findings. The under expression of several genes involved in HRR 

mechanisms, potentially leading to homologous recombination deficiency (HRD), in C1 
is an example [27,34]. The over expression of SSX genes (-1, -2, -2B and -3) 

documented in C2 is another illustrative case, especially considering that the sample 
pool did not include synovial sarcoma samples (even though the over expression of SSX 

genes may also be found in other STS subtypes, with a significant fraction of these STS’s 
co-over expressing more than one SSX family member [37-39]).  

From another angle, the coexistence of some of these cluster-specific molecular traits 
hasn’t also been previously described in STS. The coexistence of over expression of 

CDK4 and under expression of genes involved in HRR, as verified in C1, is exemplifying. 

Even though the concomitant over expression of MAGE and SSX genes has already 
been reported in colorectal cancer (being correlated with the development of metastasis 

to the liver [40]), the simultaneous over expression of the prementioned specific MAGE 
genes and the aforesaid SSX genes, as verified in C2, has never been reported in the 

STS histotypes that compose our cohort. Supplementary Table 8 lists distinctive 
molecular traits per cluster, and a conceptual framing of its rarity or novelty based on a 

literature review.  
 

Besides the originality of the molecular features that are the backbone of each cluster, 
the biological and clinical relevance of the transcriptomic clusters also lie in their 

superlative prognostic value. Three of the four identified clusters within our cohort have 

a clear prognostic value, and the associated molecular signatures show, when compared 
with the histopathological classification and other variables, a better ability to predict OS, 

a finding that was externally validated with the TCGA-SARC cohort. This embodies the 
notion that a molecular-based classification captures the biological behavior and 

estimates prognosis more accurately than the conventional histopathological 
classification.  
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Given the intrinsic prognostication power of the clusters, it is crucial to understand if the 

exactness of prognosis estimation that they offer is superior to the prognostication 
precision offered by clinical (SARCULATOR nomograms) and molecular-based 

(CINSARC) tools that are currently considered gold-standard and widely used in clinical 
practice.    

Our transcriptomic cluster-based classification, which was not originally designed or 
trained to specifically predict OS, exceeded the SARCULATOR nomograms prognostic 

value and, when combined with age, displayed the strongest OS predictive ability among 

different individual variables (including SARCULATOR) and variables combinations in 
an analysis within the study cohort. This was independently validated using the TCGA-

SARC cohort, even considering the marginal difference verified between the prognostic 
accuracy of the transcriptomic clusters-based classification and SARCULATOR.  

 
Additionally, the present study cohort includes, up to a certain point, STS populations 

that were underrepresented in the cohorts used for the development of the past 
mentioned nomograms, including eSTS, RPS and trunk STS concomitantly, a small 

number of patients treated in a neoadjuvant context (3/101) and a small number of 

patients with an unresectable RPS (2/101). Furthermore, our results show that the use 
of molecular data, that may be obtainable from the sequencing of a biopsy specimen, or 

the combination of a variable that is objective and independent from a histopathological 
examination, age, and molecular data, is superlative, making this prognosis-estimation 

strategy potentially employable in a preoperative setting, oppositely from the available 
nomograms as some of the variables included for their calculation are not available 

before surgery [49]. Finally, our molecular-based classification may refine 
SARCULATOR’s prognosis assessment, allowing prognostic sub-stratification within 

specific SARCULATOR-defined prognostic groups following the analysis of the study 
cohort. This was not verified when the TCGA-SARC cohort was used for validation 

potentially because of the different preponderance, in comparison with the study cohort, 

of patients with a grade 3 STS that display a predicted 5-year OS £ 60% in this cohort, 
as reported in Results.  

 
Our transcriptomic clusters-based classification is, as CINSARC, an expression-based 

signature established from the analysis of primary non-translocation-related STS [25,50]. 
A comparative analysis of the prognostic value of two STS molecular-based signatures 

whose prognostic value outperformed the histopathological-based grading system in 
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STS is therefore essential. The overlap between the CINSARC gene set and the C1 

under expressed genes and the significant correlation between the enrichment scores 
of C1_under and CINSARC is not surprising considering the molecular features that 
characterize CINSARC expression (the 67 genes contemplated in CINSARC are 
involved in the control of chromosome integrity and mitosis, and CINSARC expression 

is associated with genomic and chromosomal instability [25,50]) and the molecular 
features that characterize C1_under (under expression of genes involved in HRR, 

potentially leading to HRD and chromosomal instability).  
Methodologically, we employ ssGSEA to derive pathway enrichment scores from 

normalized gene expression data, encompassing both KEGG pathways and our custom 
gene sets. Following this, we extract p-values for each pathway and apply an adjustment 

as mentioned in Methods. This adjustment is performed both across patients and 

pathways, ensuring that the comparisons are robust and reducing the likelihood of false 
positives. After excluding KEGG pathways, samples are assigned to the pathway with 

the minimal adjusted p-value. In contrast, CINSARC classifies samples by calculating 
the distance between a sample's normalized gene expression data and the centroids of 

CINSARC gene set. Samples are then classified to the closest centroid with some 
samples remaining unclassified if the threshold is not met. While the CINSARC approach 

relies on the proximity of a sample's gene expression to the nearest centroid within 
predefined gene sets (CINSARC C1 and C2), our method is based on adjusted ssGSEA 

enrichment scores. By incorporating KEGG pathways and adjusting p-values both 
across patients and pathways, our method provides a robust strategy of representing the 

enrichment, which is adjusted for pathway and sample-wise false positives.  

Apart from the methodological dimension, the nature of the clinical endpoints that may 
accurately be estimated following the use of CINSARC or our transcriptomic cluster-

based method is also distinct. The OS estimation capacity of our transcriptomic cluster-
based clearly surpasses CINSARC in a head-to-head comparison using the TCGA-

SARC cohort, as shown in Results. Our analysis also show that, using the same cohort, 
while CINSARC accurately differentiates patients with different MFS profiles, it does not 

have the power to discriminate groups of patients with different OS profiles, something 
that our transcriptomic cluster-based approach is capable of. While CINSARC accurately 

predicts MFS, our approach more precisely predicts OS.  

 
Past series, either in a real-world context (analysis of the clinical impact of 

comprehensive genomic profiling and subsequent discussion of management in an 
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institution’s molecular tumor board (MTB)) [18] or in an investigational context (analysis 

of the effect of the enrollment in biomarker-matched early-phase clinical trials on clinical 
outcomes) [51] have demonstrated that a significant percentage of STS display 

druggable molecular alterations and that both STS patients treated using a molecular-
guided personalized treatment in a conventional context [18] and STS patients enrolled 

in biomarker-matched early-phase clinical trials [51] show a significant benefit from the 
employment of a molecular-guided strategy.  

The analysis of DNAseq data of patients included in each transcriptomic cluster 

highlighted 151 actionable gene variants, comprising either alterations that are putative 
targets for tumor-agnostic treatments and also alterations that are targets for tumor-

specific approaches, conferring sensitivity to a variety of molecularly targeted agents and 
new antineoplastic drug classes. While the most broadly represented genes for which 

alterations were found across different clusters overlap genes for which alterations have 
more commonly been reported in other series (i.e. TP53, MDM2 and PIK3CA) [18], we 

managed to identify alterations and targets whose existence in STS has been under 
reported or never documented (i.e. ERBB2 amplification, MET amplification, POLE 

mutations, RET mutations, KRAS and NRAS mutations). Notably, RNAseq identified two 

fusions not detected using DNAseq (HMGA2::TPH2 in a case of DDLPS and 
NOTCH3::BRD4 in a case of UPS) despite RNAseq QC metrics being sufficient for 

rearrangement detection in only a small percentage of samples (n=22).  
While the great majority of patients included in past STS molecular-profiling series were 

patients in an advanced setting (most of them heavily pretreated in a metastatic context), 
the great majority of the patients (95%) included in our series presented with localized 

disease. Nevertheless, real-world series also included patients without metastases at the 
time of their case discussion in an MTB (15%) [18], having recommended the addition of 

molecularly targeted agents to a conventional chemotherapy backbone in some of the 
patients with actionable alterations and an early-stage disease setting (2 out of 10 

patients) [18] and used, as we did in our series, primary tumor samples for molecular 

profiling (50% of included patients) [18] with similar conceptual results. Biologically, a 
recent groundbreaking study characterized the genomic differences between early-stage 

untreated primary tumors and late-stage treated metastatic tumors [52]. This study 
included primary and metastatic samples of LMS (15 vs 47) and liposarcoma (17 vs 25) 

[52]. No significant variations in clonality, karyotype, mutational burden, mutational 
signature profile, total number of driver gene alterations, frequency of therapeutically 

actionable gene variants and treatment-associated driver genes were found between 
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primary and metastatic samples of both LMS and liposarcoma, but one cannot ignore 

that exposure to treatment (either chemotherapy or radiotherapy) potentially further 
scars the tumor genome and introduces an evolutionary bottleneck that may select for 

therapy-resistant drivers [52], making molecular profiling of metastatic lesions in an 
advanced setting recommendable.  

 
Although the methodology and the findings of our work are, as shown previously, robust, 

there are some limitations that are important to underline. The retrospective nature of 

the study should be taken into account. This study cohort is single-centered (even though 
it includes patients with different ethnical ancestries and backgrounds – European and 

African-native patients). Besides this, this study population and samples pool is 
comprised by a limited number of 3 STS histopathological subtypes, and is composed 

by primary tumor samples of a great majority (95%) of STS patients with early 
stage/localized disease. Therefore, there is not a significant representation either of 

samples from STS metastases, and also of patients with advanced STS. Moreover, the 
samples included in each of the batches that were sent to Foundation Medicine for DNA 

and RNA sequencing were collected in different timepoints and, therefore, display 

heterogenous chronological ages (a fact that directly impacts the differential likeability of 
degradation of the biological material and the distinct quality of the samples for the 

planned sequencing analysis). In the same line, the degree of degradation of the 
samples that were analyzed and, subsequently, the amount of samples for which the 

quality control for DNA and RNA sequencing was not successful, namely in the in the 
context of fusion/splice site detection with RNA, is also a limitation. 

On the other hand, the sequencing tests that were used for molecular profiling are 
targeted sequencing tests, which offer results with a distinct conceptual coverage than 

the ones that could be offered by a whole genome or whole exome sequencing 
approach.  

Although the gene set of this targeted sequencing test (namely Foundation One® RNA) 

has not been primarily created specifically using a particular panel of genes whose 
differential expression profile portrays and is characteristic of STS, it covers 52% of the 

genes that comprise the gene set of the single molecular signature that is based on 
specific gene expression profiling in STS (CINSARC), shows an overlap of 38% between 

the pattern of expression of a specific array of covered genes and the pattern of 
expression of the genes that compose CINSARC's gene set (with a Spearman's rank 

correlation of 0.78), displays a provenly superior OS predictive capacity and prognostic 
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value when compared with CINSARC (a finding that has been externally validated using 

the TCGA-SARC dataset), and the subsequent newly found transcriptomic cluster-based 
classification is possibly the first molecular-based classification that has the capability of 

predicting OS in STS.  
 

Methods 
 
A detailed description of the specific contribution of each of the participating institutions 

- Instituto de Medicina Molecular João Lobo Antunes (iMM), Instituto Português de 
Oncologia de Lisboa Francisco Gentil (IPOLFG), Instituto Superior Técnico (IST), 

F.Hoffmann-LaRoche and Foundation Medicine - may be found in Author Information - 
Contributions (see Contributions).  

Ethical considerations are also provided in Ethics Declarations (see Ethics 
Declarations).  

 

Sample characterization 
This study has included 102 formalin-fixed paraffin-embedded (FFPE) neoplastic tissue 

samples from 101 STS patients diagnosed and treated at IPOLFG (a tertiary oncological 
center, one of the sarcoma European reference centers) between the 15th of April 2013 

and the 29th of September 2022.  

These samples were previously stored at the IPOLFG tumor biobank, and were part of 
this biobank sarcoma collection.  

The sample pool was comprised by 26 DDLPS samples, 25 high-grade LMS samples 
and 51 UPS samples.  

A sarcoma-dedicated pathologist reviewed each of the 102 STS samples. The 
pathologist scored the images for all the 102 samples that were shipped to Foundation 

Medicine, Inc. (Cambridge, Massachusetts, United States of America) for molecular 
profiling. The number of slides available for review from each case ranged from 1 to 6. 

Pathology reports were reviewed for sarcoma site, depth, FNCLCC grade, presence of 
multifocality, completeness of resection, reported immunohistochemical studies and/or 

molecular diagnostics and, subsequently, histopathological diagnoses.  

The research team analyzed clinical files, retrieving data not only from IPOLFG 
institutional records, but also from accessible national electronic clinical files. An 

anonymized database has been developed specifically for this study. This database 
includes detailed information on patient demographics, sarcomas’ characteristics, 
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treatment strategies (both neoadjuvant and adjuvant), surgical data, and oncological 

follow-up. The most recent follow-up has been conducted on October 10th, 2023. 
 

Samples circuit 
A formal histopathological review was firstly conducted at IPOLFG. The FFPE blocks 

were then transported to iMM where they were sectioned by the Comparative Pathology 
Unit team. The slides obtained were stored at the Translational Oncobiology Laboratory 

at iMM, while the blocks were shipped to Foundation Medicine, Inc. The samples were 

shipped in three different batches – the first one, including 26 samples of DDLPS, was 
shipped on 07/2022; the second one, including 25 samples of LMS, was shipped on 

10/2022; the third one, including 51 samples of UPS, was shipped on 01/2023.  

 
DNA and RNA sequencing  

102 FFPE STS samples from 101 patients were characterized using 
FoundationOne®CDx (F1CDx®) for DNA sequencing (DNAseq) and 

FoundationOne®RNA (F1RNA) for RNA sequencing (RNAseq). Testing was performed 

in a Clinical Laboratory Improvement Amendments (CLIA)-certified, College of American 

Pathologists (CAP)-accredited, New York State-approved laboratory (Foundation 

Medicine, Inc., Cambridge, MA, USA).  DNA and RNA were simultaneously co-extracted 
and isolated from FFPE samples. F1CDx is a next generation sequencing (NGS)-based 

assay for the detection of short variants (substitutions and short insertions/deletions 
[indels]), copy number alterations (CNAs), and large genomic rearrangements in 324 

cancer-associated genes, as well as reporting of complex biomarkers including 
microsatellite instability (MSI) and tumor mutational burden (TMB). The clinical and 

analytical validation for F1CDx has been published by Milbury et al. [53]. F1RNA is a 
laboratory developed test that uses hybrid-capture based targeted RNAseq designed for 

optimal detection of cancer-related gene fusions and rearrangements for 318 genes for 
clinical use and gene expression profiling (GEP) for 1517 genes for research use only 

(RUO). Analytical validation studies for fusion detection have been previously performed 

to assess fusion calling accuracy, reproducibility, and limit of detection in 189 clinical 
solid tumor specimens [54]. The results from both DNAseq and RNAseq were 

periodically sent back to iMM, IPOLFG, and IST via an encrypted and safe platform. 

 

DNAseq and RNAseq data analysis 
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Population considered for molecular analysis 

Out of 102 STS samples sent for molecular analysis, 79 samples passed F1CDx quality 
control and were sufficient for DNA analysis, and 75 samples passed F1RNA quality 

control and were sufficient for RNAseq expression analysis. One additional sample was 
excluded from the RNAseq expression analysis after being identified as an outlier using 

principal component analysis (PCA). A total of 74 samples (16 DDLPS, 15 LMS and 43 
UPS) were therefore considered for downstream expression analysis.  

Of note, 53 of the 75 samples were excluded for analysis of fusions in RNA due to not 

passing post-sequencing QC metrics required for clinical RNA rearrangement detection. 
As mentioned in Results, the disparity between these QC passage rates for the optimal 

detection of cancer-related gene fusions and rearrangements (318 gene panel) test and 
the gene expression profiling (1517 gene panel) test covered by FoundationOne®RNA 

lies on the different stringentness of each of these tests, considering that one has been 
developed for clinical use and other has been designed for research use only.  

 
RNAseq expression data analysis - Transcriptomic clusters discovery 

The computational analyses were performed using R (v4.4.0). RNAseq data from these 
74 samples was filtered for expression using the edgeR (v4.2.1) [55] filterByExpression 
method to remove lowly expressed genes, followed by Voom normalization to stabilize 
variance across samples. The genes were then filtered based on Mean Absolute 
Deviation, retaining the top 55% of the most variable genes. Consensus Clustering from 
the ConsensusClusterPlus package (v1.68.0) [56] was applied and evaluated using the 
Elbow Method, which identified an optimal number of 4 clusters. Differential gene 
expression analysis was then conducted through pairwise comparisons between 
clusters using the limma package (v3.60.4) [57] and p-values were adjusted for multiple 
hypothesis testing using Benjamini-Hochberg False Discovery Rate (BH-FDR). The 
unique genes defining each cluster were identified by intersecting the genes that were 
differentially expressed in the same direction within a specific cluster.  
 

DNAseq genomic alteration data analysis – Genomic alterations/variants (found in the 
patients included in each transcriptomic cluster) actionability evaluation 

We extracted the alterations detected by F1CDx in the patients included in each of the 

4 transcriptomic clusters. To systematically analyze the actionability of each of the 
alterations highlighted, the Karolinska Molecular Tumor Board Portal (MTBP) [28] was 
used. MTBP offers a general framework for the interpretation of the functional and 
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predictive value of a given list of cancer genomic variants by using several 
computational tools and databases that are referenced in the provided results.  
 

Transcriptomic clusters clinical significance assessment 

 

Evaluation of transcriptomic clusters intrinsic prognostic value (study cohort) 
An overall survival (OS) analysis was performed using survival package (v3.7-0) [58]. 
This analysis only contemplated patients whose samples were considered for the 
RNAseq expression analysis. 74 patients (corresponding to 74 samples) were 
integrated. Out of these 74 patients, 4 had not been submitted to a surgical approach 
and were, therefore, excluded. In total, 70 patients were considered for this analysis. 
Each sample was accordingly classified using Consensus Clustering as described in 
“RNAseq data analysis – Transcriptomic clusters discovery”. The distribution of these 
samples per transcriptomic cluster was considered for OS estimation. A Cox 
Proportional Hazards Model for OS was then applied, also incorporating other relevant 
clinical variables. The Schoenfeld residuals were used to validate each variable, 
ensuring time independence. As a result, distant metastasis was excluded from the 
model due to its violation of this assumption. An Analysis of Variance (ANOVA) test was 
subsequently performed on the Cox Proportional Hazards Model. 
The TCGA-SARC dataset was used as a validation dataset [27]. This dataset was first 
filtered for specific subtypes (DDLPS, LMS, UPS) (N=127). It was processed similarly to 
our dataset, i.e. normalized using the edgeR (v4.2.1) filterByExpression method followed 
by Voom quantile normalization from the Limma package. After normalization, single-
sample gene set enrichment analysis was performed using the corto package (v1.2.4) 

[59], with KEGG pathways (N=186) and the gene sets corresponding to under- and over-
expressed genes in each cluster (C1_under, C1_over, C2_under, C2_over, C3_under, 
C3_over, C4_under, C4_over) passed as inputs. P-values for each pathway were 
normalized using BH-FDR and KEGG pathways were subsequently filtered out after 
adjusting p-values across the entire set of pathways. By considering KEGG pathways 
in our enrichment analysis, we were able to assess the enrichment of each of the 
transcriptomic clusters in terms of specific pathways and compare it with other 
biological processes. Finally, each TCGA-SARC sample was classified based on the 
gene set with the most significant p-value (P < 0.05). Similar to previous OS analysis, 
the Kaplan-Meier log-rank test for OS was then applied to compare the survival 
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outcomes across clusters, and the Cox Proportional Hazards Model for OS was again 
employed, incorporating relevant clinical variables. 
 
Exclusion of a potential contamination effect by the preponderance of UPS samples in 
the global pool of samples used for this analysis and in the composition of the majority 
of the transcriptomic clusters: focus on the persistence of patterns of molecular 
enrichment and prognostic value of transcriptomic clusters  
Considering that the most commonly represented STS histopathological subtype in 3 
of the 4 identified transcriptomic clusters is UPS and the pronounced relative 
preponderance of UPS in transcriptomic clusters 3 and 4, a potential  “contamination” 
effect by UPS samples and the notion that these 4 clusters could be portraying solely 

the UPS molecular landscape and respective intrinsic subtypes had to be ruled out. 

Focusing our attention on the study cohort, the removal of the UPS samples would lead 
to a number of remaining samples (DDLPS and LMS) that would be too low to allow the 

performance of an unsupervised consensus clustering analysis. Therefore, using the 

TCGA-SARC dataset, we evaluated if the removal of UPS patients from the patients pool 
would alter the previously verified molecular enrichment of these STS patients samples 

in the transcriptomic clusters and would modify any statistically significant correlation 
that had been previously verified between the transcriptomic clusters-based 

classification and OS.  

 
Evaluation of transcriptomic clusters relative and comparative prognostic value 
(external cohorts) 
Patients of the study cohort were classified, using the specific clinical nomograms 
(either for RPS and eSTS) available at SARCULATOR (https://www.sarculator.com/), to 
estimate the 5-year survival probability for each patient. Then, they were stratified 
according to SARCULATOR’s predefined prognostic groups (5-year OS >60% vs. 5-

year OS £60%). Out of the 70 patients whose samples were considered for the RNAseq 

analysis and that were submitted to a surgical approach, 67 were successfully classified 
using the up mentioned nomograms. The patients for whom the nomograms could not 
be applied, were not classified either due to lack of crucial data necessary to use the 
nomograms or due to the presence of tumor fragmentation, which prevented accurate 
estimation of tumor size. Various C-index values were then compared, derived from the 
Cox Proportional Hazards Model for OS. The comparisons included the following 
models: SARCULATOR 5-year OS prediction; transcriptomic clusters; SARCULATOR 
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5-year OS prediction combined with transcriptomic clusters; and finally, transcriptomic 
clusters combined with age. Taking the SARCULATOR stratified patients (5-year OS 

>60% vs. 5-year OS £60%), Kaplan-Meier curves were generated for each of the 

transcriptomic clusters and a comparative analysis was then performed.  
We also performed the same analysis using an external cohort, namely the TCGA-SARC 

cohort. We classified the patients integrated in the TCGA-SARC cohort with 
SARCULATOR and consequently obtained a 5-year OS probability for each patient. 
Then, we calculated the C-Indexes (derived from different Cox Proportional Hazards 
Models for OS) and compared them. We considered different models and distinct model 
combinations, including SARCULATOR and TC.  
CINSARC classification was applied to the TCGA-SARC dataset, based on a previous 
study that had already classified TCGA-SARC data using CINSARC [50]. Using the 
available CINSARC code (https://codeocean.com/capsule/4933686/tree/v1), TCGA 
subtypes (DDLPS, UPS, and LMS) were reclassified according to the CINSARC C1 and 
C2 categories. Kaplan-Meier curves were then generated to evaluate OS predictions 
based on CINSARC classification and transcriptomic clusters. Additionally, a Cox 
Proportional Hazards Model was employed to assess OS, also incorporating other 
relevant clinical variables for a more comprehensive analysis. Finally, we incorporated 
CINSARC gene list in the ssGSEA cluster assignment and analyzed the normalized 
enrichment scores (NES), using Spearman's rank test to correlate the enrichment scores 
of each gene set.  
As previously described, we performed a comparative analysis, using the TCGA-SARC 
cohort, of the C-Indexes of different survival estimation models, including 
SARCULATOR, CINSARC and transcriptomic clusters.  
 

Data Availability  
Different data and generated datasets have been deposited in figshare under the 
following URL: https://figshare.com/s/6a70cbb12d2738a6e60b (to be made public 

upon publication).  
 

Code Availability  
All code is available at https://github.com/QuantitativeBiology/Sarcoma-TC-Clusters.  
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Tables 
 
Table 1 – Distribution of differentially expressed genes (over and under 

expressed) per transcriptomic cluster  

 

 Genes 

 Over Expressed Under Expressed 

Cluster 1 

BCAM, CBFA2T3, CCL19, 
CCND2, CD79B, CDK4, 
CX3CL1, DTX1, ECSCR, ERG, 
FMOD, GRM4, NKD1, OLFM1, 
PAX5, PLVAP, PNOC, SOX18, 
TTYH1, ZBTB46. 

ABL2, ANLN, AURKA, AURKB, 
BRCA1, BRCA2, BRIP1, BUB1, 
BUB1B,CCNA2, CCNB1, 
CCNB2, CDC20, CDC25C, 
CDCA5, CDCA8, CDKN3, 
CENPF, CENPM, CEP55, 
CHEK1, CRNDE, DEK, ECT2, 
EPS15, EXO1, FANCD2, 
FGFR1OP, GINS2, GMNN, 
HIST1H3B, KIF23, KIF2C, 
MALT1, MCM4, MELK, NDC80, 
NEK2, NUF2, PALB2, PBK, 
PTTG1, RAC1, RAD51, 
RAD51AP1, RAD54L, RRAGC, 
RRM2, SNW1, STIL, TOP2A, 
TPX2, TTK, TYMS, UBE2C, 
UBE2T, WHSC1, XPO.  

Cluster 2 

ACVR1C, BAP1, CTNNB1, 
FZD6, JAZF1, MAGEA12, 
MAGEA2B, MAGEA3, MAGEB1, 
MAGEB2,  MAGEC2, MMP11, 
MRAS, RGS16, SSX1, SSX2, 
SSX2B, SSX3. 

DHX58, IL12A, LILRB5, 
MAP3K8, SULT1A1, TNFRSF1B 
 

Cluster 3 

ATIC, BATF, BTK, CCL18, 
CCL2, CCR5, CD3G, CD74, 
CD84, CSF2, CXCL10, CYBB, 
CYLD, ETV5, FAM26F, 
FCGR3B, FGR, FN1, FPR3, 
GBP5, GMFG, HAVCR2, 
HLA.DMA, HLA.DMB, 
HLA.DOA, 
HLA.DQA1,HLA.DRA, 
HLA.DRB1, HMGA1, IL21R, 
IL7R, ITGB2, JAML, KCNMA1, 
LAIR1, LCP1, NFKB2, PHF11, 
PLEK2, PSMB10, RGS10, 
SEMA7A, SERPINE1, SYK, 
TGFB1.  

AXIN2, BCL9, BMP4, CDKN1C, 
CDKN2A, CITED4, DCLK1, 
DHH, DOT1L, FGFR2, FGFR3, 
FOXC1, FOXO1, FOXO4, 
FOXO6, FZD7, GAS1, GPC4, 
HAP1, HES1, KDM5C, 
LINC00598, NRTN, PBX1, 
PDGFD, PHLPP1, PRKACG, 
SCUBE2, SEMA6D, SESN3, 
SH3PXD2A, SMAD9, TCF7L1, 
TCF7L2, TET1, TMEM38A, 
TP53INP2, TRIM2, WNT11, 
ZNF521. 
 

Cluster 4 
ADRB2, CD34, CFD, CLCA2, 
CLDN4, DDR2, FAM64A, GAS7, 
IL6ST, LINC.ROR, PDGFD, 
PGR, PHLPP1, SMAD3, SYCP3, 
TEK, TP73. 

ACTN1, FZD2, HOPX, NBEAP1. 
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Term Loglik Chisq Df P(>|chi|)

Null -141.71

Sex -141.53 0.3519 1 0.553033

Sarcoma Histopathological 
Subtype

-140.02 3.0295 2 0.219867

Transcriptomic Clusters -134.01 12.0233 3 **0.007304

Neo Adjuvant / Adjuvant 
Treatment 

-132.77 2.4845 1 0.114969

Local Recurrence -131.59 2.3440 1 0.125769 

Term Loglik Chisq Df P(>|chi|)

Null -209.19

Sarcoma Histopathological Subtype: 
Original TCGA SARC Classification 

-208.95 0.4870 1 0.485276

Sarcoma Histopathological Subtype: 
Updated TCGA SARC Classification 

-205.54 6.8182 3 0.077924

FNCLCC Grade -203.34 4.9921 2 0.08408

Transcriptomic Clusters -199.55 6.9978 1 **0.008161 

a

b

c

d
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Term Loglik Chisq Df P(>|chi|)

Null -205.21

Sarcoma Histopathological Subtype: Original 
TCGA SARC Classification 

-205.02 0.3789 1 0.53818

Sarcoma Histopathological Subtype: 
Updated TCGA SARC Classification 

-201.66 6.7262 3 0.08116

CINSARC -201.54 0.2425 1 0.62242

Transcriptomic Clusters -199.69 5.6914 1 ** 0.01705  

FNCLCC Grade -196.25 4.8758 2 0.08735
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