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ABSTRACT 

 

Eating disorders (EDs)—including anorexia nervosa (AN), bulimia nervosa, and binge-eating 

disorder—are clinically distinct, but exhibit high symptom overlap and comorbidity. Genomic 

analyses to date have only examined AN. We conducted the first genome-wide association 

meta-analysis of binge-eating behaviour (BE; 39,279 cases, 1,227,436 controls, all from 

European genetic ancestries), alongside new analyses of AN (24,223 cases, 1,243,971 

controls, all from European genetic ancestries) and its subtypes. We implicated six genomic 

loci associated with BE, including known associations with higher body mass index (BMI) 

and impulse-control behaviours. BE and AN exhibit genetic similarity, including positive 

genetic correlation with psychiatric disorders, and genetic dissimilarity, including opposing 

genetic correlations with anthropometric traits. Genomic structural equation modelling 

analyses indicate that most genetic signal in EDs is independent of BMI. We have extended 

ED genomics beyond AN; work is underway to diversify further, incorporating multiple 

diagnoses and global genetic ancestries.   
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Eating disorders—including anorexia nervosa (AN), bulimia nervosa, and binge-

eating disorder, among others—represent a suite of clinical presentations that are distinct in 

their pure forms, yet show considerable overlap in symptoms, as reflected in diagnostic 

migration over time 1–3. AN—marked by low weight, fear of weight gain, and an inability to 

recognize the seriousness of the low weight—has two subtypes: the restricting subtype (AN-

R), in which low weight is achieved by caloric restriction and increased energy expenditure, 

and the binge-eating/purging subtype (AN-BP), in which restriction is coupled with binge 

eating (BE) and/or compensatory purging behaviours. Bulimia nervosa occurs in individuals 

at normal or high weight and is characterised by the combination of BE and compensatory 

behaviours (e.g., fasting, self-induced vomiting, laxative use, diuretic use). Binge-eating 

disorder mirrors the BE component of bulimia nervosa and also occurs at both normal and 

high weights, but in the absence of regular compensatory behaviours 1. 

To date, genome-wide association studies (GWASs) of eating disorders have 

focused primarily on AN 4–7 in part due to its elevated mortality 8.  The most recent AN 

GWAS 7 included 16,992 cases and identified eight genome-wide significant loci. Genetic 

correlation analyses showed high correlations with other psychiatric disorders, and 

suggested that metabolic and anthropometric factors might also underlie AN 

pathophysiology 5,7. The metabolic aspect of AN is reflected by a positive genetic correlation 

with high-density lipoprotein cholesterol and negative genetic correlations with insulin 

resistance, leptin, and type 2 diabetes. Importantly, these genetic correlations were 

independent of body mass index (BMI)—a significant finding given that a low BMI is a 

defining feature of AN. 

To fully understand the genetic landscape of eating disorders, it is essential to 

advance eating disorder genetics beyond the study of AN. Substantial genetic correlation 

between AN and bulimia nervosa has been shown in family and twin studies 9,10, suggesting 

that these phenotypes may share genetic risk. This may partially reflect the presence of BE 

as a transdiagnostic symptom, common both to bulimia nervosa and to AN-BP. Here, we 
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present the first GWAS meta-analysis of BE. We additionally conducted an AN GWAS meta-

analysis with augmented sample size and increased statistical power, which also afforded 

the first GWAS of explicitly defined AN subtypes (restricting and binge-eating/purging). We 

then assessed genetic commonalities and differences between the eating disorder 

phenotypes. 

 

RESULTS 

Summary of phenotypes 

We operationalized five phenotypes (Table 1) to advance progress for eating 

disorder GWASs: narrowly-defined (BE-NARROW) and broadly-defined BE (BE-BROAD), 

and AN and its two subtypes (AN-R and AN-BP). We primarily report results for AN and BE-

BROAD, which captures the common genetic component of BE with greater statistical power 

than BE-NARROW (Methods). Results for BE-NARROW, AN-R and AN-BP are reported in 

the Supplementary Results. 

  

Table 1 approximately here 

 

Association meta-analyses 

Our BE-BROAD GWAS included 17 European-ancestry datasets with 39,279 cases 

and 1,227,436 controls, assessing 6,244,919 common (minor allele frequency ≥ 1%), high-

confidence (imputation INFO score > 0.6), autosomal single nucleotide polymorphisms 

(SNPs; Supplementary Table 1). Conditional and joint analyses confirmed six independently-

associated loci (Figure 1; Table 2; Supplementary Figures 1-6; Supplementary Table 2). The 

liability-scale SNP-based heritability for BE-BROAD was 5% (SE 0.4%, assuming population 

prevalence of 4.5% 11), with an intercept of 1.03, significantly >1 (Supplementary Table 3). 

While this can indicate confounding, it is also typical to observe in large GWAS of highly 

polygenic phenotypes 12. 
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For AN, we identified eight independently-associated genomic loci in 26 European-

ancestry datasets with 24,223 cases and 1,243,971 controls, across 6,926,820 common, 

high-confidence, autosomal SNPs (Figure 1; Table 2; Supplementary Figures 7-14; 

Supplementary Tables 1 and 2). Six of these loci were detected in a previous AN GWAS20 

and two were newly identified. Three previously significant loci (on chromosome 2 and 3 

from Watson et al 7, and on chromosome 12 from Duncan et al 5) did not reach genome-wide 

significance (P = 2x10-7 - 6x10-7). The liability-scale SNP-based heritability was 13% (SE 

0.7%, assuming population prevalence of 1.5% 13), with an intercept of 1.02, significantly >1 

(Supplementary Table 3). 

We additionally conducted analyses on chromosome X for a subset of studies with 

available data (Supplementary Table 4). No genome-wide significant loci were identified for 

BE-BROAD nor for AN, although one genome-wide significant locus was identified for BE-

NARROW (Supplementary Results, Supplementary Figure 15, Supplementary Table 5). 

Given known sex differences in eating disorders, and mostly female cases in our 

data (94% in AN, 96% in BE-BROAD), we carried out female-only GWASs as sensitivity 

analyses. Results were similar to the main analyses, with differences attributable to the 

reduction in sample size (Supplementary Results, Supplementary Table 6). 

 

Figure 1 approximately here 

Table 2 approximately here 

 

Genetic relationship between BE, AN, and other traits 

We assessed the genetic similarity of BE-BROAD and AN through examining their 

SNP-rg, as well as their SNP-rg with other traits, and via case-case GWAS 14. The SNP-rg 

between BE-BROAD and AN was 0.46 (SE 0.04, P = 3.44 x 10-30), indicating moderate 

genetic overlap (Supplementary Table 7). Case-case GWAS leverages a genetic distance 

measure representing “the average squared difference in allele frequency at causal SNPs” 
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14. The genetic distance between individuals with AN and controls was highest (0.46) and 

similar to that between both case groups (0.40), whereas the genetic distance between 

individuals with BE-BROAD and controls was smaller (0.25, Figure 2). We identified case-

divergent loci on chromosomes 1, 3, and 5—all overlapping with independent loci identified 

in the AN GWAS (Figure 1), suggesting that some loci differentiating AN from controls also 

differentiate AN from BE-BROAD. 

 

Figure 2 approximately here 

 

We subsequently used LDSC to calculate pairwise SNP-rg for both BE-BROAD and 

AN with 225 traits including psychiatric, personality, metabolic, and anthropometric traits 

(Table 3, Supplementary Table 8). We generally observed positive SNP-rg of BE-BROAD 

with psychiatric traits and disorders, and with anthropometric traits, except for negative SNP-

rg with persistent thinness and pubertal growth. In contrast, significant SNP-rg
 with metabolic 

traits were absent for BE-BROAD except for BMI-adjusted fasting insulin. We validate 

previously observed SNP-rg patterns with AN 7, with some updates (Table 3, Supplementary 

Table 8). We found positive SNP-rg across psychiatric disorders, as well as with neuroticism, 

educational attainment, and physical activity. We observed negative SNP-rg across 

anthropometric traits, and notably, a non-significant SNP-rg with persistent thinness. 

Metabolic SNP-rg mirror Watson et al., with predominantly negative SNP-rg, except for total 

cholesterol in high-density lipoprotein 7. 

Next, we determined if there were significant differences between the SNP-rg of BE-

BROAD and SNP-rg of AN with other traits using LDSC jackknife (Figure 3, Supplementary 

Figure 16, Supplementary Table 9). Whilst the majority of psychiatric and behavioural traits 

and disorders showed similar SNP-rg with BE-BROAD and AN, ADHD showed significantly 

greater SNP-rg (P = 1.06 x 10-7) with BE-BROAD than with AN, and obsessive-compulsive 

disorder showed significantly greater SNP-rg (P = 4.79 x 10-5) with AN than with BE-BROAD. 
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We found further significant differences for the alcohol use disorder identification test 

problem items, four smoking-related phenotypes, and general risk tolerance, with which BE-

BROAD was significantly positively correlated but AN was not. Automobile speeding 

propensity also showed significantly different SNP-rg (P = 1.21 x 10-4) with AN being 

significantly negatively correlated whilst BE-BROAD was not. 

BE-BROAD and AN also diverged in their associations with anthropometric and 

metabolic traits. Waist-to-hip ratio showed significantly different SNP-rg (P = 2.05 x 10-31), 

with BE-BROAD being significantly positively correlated whilst AN was significantly 

negatively correlated. BE-BROAD showed a significantly stronger pattern of SNP-rg with 

certain socio-demographic traits than AN (jackknife P < 2x10-4), displaying negative genetic 

correlations with age at menarche and age at first birth in females, and positive genetic 

correlations with social deprivation and loneliness. In contrast, AN showed no significant 

SNP-rg with these traits but was more strongly associated with educational traits such as 

college/university completion than BE-BROAD. 

 

Figure 3 approximately here 

Table 3 approximately here 

 

Genetic signal in our BE-BROAD GWAS may partly be influenced by AN, given that 

18% of our BE-BROAD cases have (known) AN (Supplementary Table 10). As a sensitivity 

analysis, we conducted an additional BE-BROAD GWAS, excluding cohorts that specifically 

focused on AN recruitment (Supplementary Results). The genetic correlation between BE-

BROAD and the reduced GWAS did not differ from unity (0.96, SE 0.07), but genetic 

correlations with anthropometric traits were stronger in the reduced GWAS, suggesting that 

AN cases in the excluded cohorts may be masking this genetic signal (Supplementary 

Figure 17, Supplementary Table 11). 
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Role of BMI genetics  

The role of BMI in eating disorders is complex, with low BMI being pathognomonic of 

AN and individuals with binge-eating disorder often being overweight 1. If BMI is genetically 

causal of AN and BE (in opposite directions), then our GWASs would just be proxy GWASs 

for BMI. To assess this, we applied GWAS-by-subtraction to remove the genetic variance of 

BMI from BE-BROAD and from AN separately 15. We modelled a factor shared between 

each eating disorder and BMI, and a NonBMI factor only loaded on by the eating disorder. 

The shared factor explained 12% (SE 2.7%) of genetic variance in BE-BROAD, leaving 88% 

(SE 7.9%) accounted for by the NonBMI factor. In AN, the shared factor accounted for 10% 

(SE 1.4%) of genetic variance, leaving 90% (SE 5.5%) accounted for by the NonBMI factor. 

GWASs of the NonBMI factor for BE-BROAD and for AN generally resulted in attenuated p-

values for lead SNPs, but larger effect sizes in the same direction as the original GWAS 

(Figure 1, Supplementary Table 12). 

We also conducted exploratory two-sample Mendelian randomisation analyses of 

BE-BROAD with BMI and AN with BMI, testing causal effects in both directions. We used 

SNPs in linkage equilibrium as genetic instruments, with P < 5x10-6 for BE-BROAD and AN, 

and P < 5x10-9 for BMI 16. For each analysis, we used the full eating disorder GWAS, and the 

GWAS of the respective NonBMI component (Supplementary Results, Supplementary Table 

13). Significant results were found in both directions between increased BE-BROAD risk and 

increased BMI risk. Increased BE-BROAD risk was still associated with increased BMI risk 

when using just the NonBMI component, but results were inconsistent across different MR 

methods when examining the effect of BMI risk on the NonBMI component of BE-BROAD. 

Significant results were found in both directions between increased AN risk and decreased 

BMI risk. However, the NonBMI component of AN risk was not associated with BMI risk, and 

results were inconsistent across MR methods when examining the effect of BMI risk on the 

NonBMI component of AN. 
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GWAS-by-subtraction also allowed us to explore the genetic architecture of the 

NonBMI component of BE-BROAD and AN through pairwise SNP-rg with external traits 

(Supplementary Figure 18, Supplementary Table 14). Genetic correlations with psychiatric 

disorders typically remained stable or slightly increased relative to the respective full GWAS, 

while genetic correlations with anthropometric and metabolic traits were typically attenuated. 

 

Genetically-regulated gene expression 

We used S-PrediXcan 17 to identify predicted genetically-regulated gene expression 

associated with our phenotypes (Supplementary Figure 19; Supplementary Table 15). For 

BE-BROAD, two gene-tissue associations were significant at the experiment-wide threshold 

(PRKAR2A-Sigmoid colon and KLHDC8B-Heart, atrial appendage; P < 8.32 x 10-8). In AN, 

we observed 300 experiment-wide significant gene-tissue associations (P < 8.32 x 10-8) with 

29 unique genes, predominantly from the gene-dense locus on chromosome 3 at 47-52Mb. 

Among the experiment-wide significant associations, 94 were in central nervous system 

tissues, and 41 in gastrointestinal tissues. Within-tissue significant results for both 

phenotypes are described in the Supplementary Results. 

As a sensitivity analysis, we calculated cross-tissue predicted genetically-regulated 

gene expression using S-MultiXcan 17 to identify apparent tissue-specific associations that 

are better interpreted as tissue-general (Supplementary Results, Supplementary Figure 20, 

Supplementary Table 16). This showed ten genes with significant (P < 2.25 x 10-6) cross-

tissue expression in BE-BROAD, four of which were also identified as tissue-level 

associations (including KLHDC8B but not PRKAR2A). Similarly, 43 genes showed significant 

cross-tissue expression in AN, of which 23 were identified as tissue-level associations. 

 

Gene-level associations 

We used MAGMA v1.10 18 to conduct gene-wise analyses of the aggregate effect of 

SNPs mapped to protein-coding genes (Supplementary Table 17); gene-set analyses of 
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groups of genes with shared functional, biological, or other characteristics (Supplementary 

Table 18); and gene-set analyses restricted to genes targeted by medications 

(Supplementary Table 19; Supplementary Results). We also examined enrichment of signal 

within drug-sets belonging to the same class of drugs (Supplementary Table 20; 

Supplementary Results). In the gene analysis for BE-BROAD, MAGMA identified 22 genes 

significant after Bonferroni correction (P < 2.59 x 10-6). The FTO gene had the strongest 

association (P = 2.8 x 10-22) and 9/22 (43%) of the Bonferroni-significant genes were linked 

to the gene-dense locus on chromosome 3 at 47-52Mb. The MAGMA gene set, drug set, 

and drug-class analysis identified no Bonferroni-corrected significant gene sets for BE-

BROAD. For AN, MAGMA identified 76 Bonferroni-corrected significant (P < 2.58 x 10-6) 

genes. The majority (54/76, 71%) of these genes were again mapped to chromosome 3 at 

47-52Mb. The gene-set analysis identified enrichment of signal for AN in three biological 

pathways, related to the binding targets of RBFOX1-3 (RNA binding proteins that regulate 

neuronal alternative splicing 19), and to mutation-constrained genes with pLI > 0.9. The drug-

set analysis revealed no drug sets associated with AN, but antimigraine preparations as a 

class were significantly associated with AN. 

Genes implicated both through proximity (MAGMA) and through effects on gene 

expression (S-PrediXcan) are more likely to be functionally relevant than those implicated 

through proximity alone 20. We therefore further restricted our MAGMA gene-wise results to 

genes that were at least tissue-level significant in S-PrediXcan. This resulted in seven 

prioritised genes across four loci in BE-BROAD, and 38 prioritised genes across eight loci in 

AN (Supplementary Table 21; Supplementary Results). 

 

Tissue and cell-type analyses 

We used stratified LDSC 21 to estimate the enrichment of SNP-based heritability for 

BE-BROAD and AN among genes specifically expressed in GTEx human tissues 

(Supplementary Figure 21, Supplementary Table 22; Supplementary Results) and in human 
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brain cell types from the Human Brain Atlas (Supplementary Figure 22, Supplementary 

Table 23) 22,23. After accounting for multiple testing, none of the associations was significant. 

 

Polygenic prediction 

We tested whether higher BE-BROAD and AN polygenic risk scores (PRS) were 

associated with a higher risk of BE-BROAD and AN, using a leave-one-cohort-out design 

targeted at well-powered cohorts representative of the ascertainment methods employed in 

the study (Methods; Supplementary Table 24). Individuals with 1 SD higher BE-BROAD PRS 

had an average odds ratio (OR) of 1.11 for BE-BROAD (average 95% confidence interval 

[CI] across cohorts: 1.08 – 1.14; P range: 2.38 x 10-15 - 0.022; Supplementary Figure 23). 

The average liability-scale variance explained was 0.32%. Individuals with 1 SD higher AN 

PRS had an average OR of 1.50 for AN (average 95% CI 1.42 – 1.59, all P� x 10-16; 

Supplementary Figure 24) and AN PRS explained 2.32% liability-scale variance on average. 

We additionally tested the cross-ancestry prediction of AN in two cohorts of East 

Asian ancestry from Korea and Japan. We found that the European AN PRS was positively 

associated with AN in the combined Korean and Japanese cohort, with an OR of 1.36 (95% 

CI 1.09 – 1.70, P = 0.0066), explaining 1.3% of the variance (assuming population 

prevalence of AN at 1.5%). 

Next, we tested whether genetic risk of BE-BROAD and AN are shared across males 

and females, using a similar leave-one-cohort-out design. BE-BROAD PRS based on 

female-only GWAS were positively associated with BE-BROAD risk in males (OR ranges 

from 1.06 to 1.20), but not all results were significant, possibly due to low case numbers in 

some cohorts. Similarly, AN PRS calculated based on female-only GWAS were positively 

associated with AN risk in males (OR ranges from 1.07 to 1.41), but the results were not 

consistently significant (Supplementary Figure 25, Supplementary Table 25; Supplementary 

Results). 
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We further assessed if BE-BROAD and AN PRS differed across multiple cohorts 

comparing control individuals to (a) those with BE-BROAD only; (b) with both BE-BROAD 

and AN; and (c) with AN only. Overall, we found both BE-BROAD and AN PRS to be 

elevated in all subgroups compared to controls (P ≤ 0.024). Among the subgroups, the 

comorbid and BE-BROAD-only groups did not significantly differ on BE-BROAD PRS, and 

typically had a significantly higher BE-BROAD PRS than the AN-only group (Supplementary 

Figure 26). The comorbid and AN-only groups did not significantly differ from each other on 

AN PRS, while the BE-BROAD-only group had a significantly lower AN PRS than both other 

groups in one cohort, but not in another (Supplementary Figure 26). Overall, our results 

suggest that AN patients with BE had elevated genetic risks of both BE-BROAD PRS and 

AN PRS (Supplementary Table 26; Supplementary Results). 

 

DISCUSSION 

Our results include the first six genomic loci to be implicated in BE, which have been 

previously associated with traits such as smoking 24, risk-taking behaviour 25, and age at 

menarche 26. Overlap between BE and impulse-control behaviours was further observed in 

positive SNP-rg with smoking, general risk tolerance, and problematic alcohol use. Loss of 

control is a key component of BE, and impulse-control behaviours have been associated 

with binge-type eating disorders clinically 27,28. Alongside significant polygenic overlap with a 

range of psychiatric disorders, our findings imply that BE shares genetic underpinnings with 

psychiatric disorders and impulse-control behaviours. 

Loci associated with BE-BROAD have also been implicated in anthropometric traits, 

including a BMI-related signal near FTO 16,29 that was not associated with AN or its subtypes. 

The FTO locus was first identified as being related to an elevated BMI in 2007 30 and has 

thereafter been studied extensively (summarised in Loos et al. 31). Six genes have been 

identified within the locus, but it has been challenging to determine the causal mechanism 

that contributes to a high BMI 31. One study that investigated the complex relationship 
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between FTO, BMI, and BE found that FTO was related to BE independent of BMI 32, and 

suggested that BE could mediate the pathway between FTO and a high BMI. Together with 

our results, this implies that at least some of the relationship between FTO and high BMI 

stems from binge-eating behaviours. 

 

For AN, we validated six previous loci, identified two new loci, and identified one 

locus for AN-R. The four single-gene loci that were identified in Watson et al. 7 remained 

genome-wide significant, suggesting that genes located in these regions—CADM1, MGMT, 

FOXP1, PTBP2—may warrant further investigation in the aetiology of AN. The AN-R-

identified locus narrowly missed genome-wide significance in AN (P = 5.89 x 10-8) and has 

previously been implicated in schizophrenia 33. The locus contains several genes, of which 

distal-less homeobox 1 (DLX1) was indicated by both proximity-based and expression-based 

gene mapping. DLX1 is differentially expressed in the brain and may be involved in several 

processes of neural development 34. Further studies are needed to confirm that DLX1 is 

implicated in AN-R aetiology, given the multigenic nature of the locus. Our gene-level results 

should generally be viewed cautiously, as greater power is needed to effectively fine-map 

associated loci and link causal variants to genes. 

Despite increasing our effective sample size for AN by 64% since our previous freeze 

7, we identified only two new loci, and two previously implicated loci were no longer genome-

wide significant. We speculate that this is because our new cohorts were primarily population 

based and used more lenient case criteria compared to the clinical diagnoses and targeted 

AN-specific recruitment previously used 35. Genetic signal also tends to become more 

heterogeneous as GWAS sample sizes increase 36,37. 

 

While AN and BE have substantial symptomatological overlap and are both 

significantly heritable, key questions remain about their genetic relationships with other 

psychiatric, metabolic, and anthropometric traits. We have previously hypothesised that AN 
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is a metabo-psychiatric disorder 7—this study yields for the first time the ability to investigate 

shared and distinct metabolic and psychiatric components across multiple eating disorders. 

BE-BROAD has typical genetic features of a psychiatric disorder, including significant shared 

SNP-rg with psychiatric traits akin to previous findings 5,7,38,39. The SNP-rg pattern for BE is 

like that of AN, with notable exceptions. AN had a positive SNP-rg with obsessive-compulsive 

disorder, whereas BE showed no significant association. Conversely, BE-BROAD was 

positively genetically correlated with ADHD, whilst AN showed no significant association. 

However, subtracting the shared genetic component between AN and BMI from AN resulted 

in a significant association between ADHD and AN, suggesting that opposing genetic 

correlations between AN and ADHD with BMI were previously masking this association. 

When considering genetic correlations with non-psychiatric traits, we observed some 

key differences between AN and BE. BE-BROAD displayed a significantly stronger, negative 

genetic correlation with age at menarche whilst AN showed no genetic overlap, consistent 

with previous research 40. This discrepancy may reflect findings that earlier age of menarche 

has been associated with more impulse-associated traits such as substance use and risk 

behaviour 41, which could arguably extend to binge eating, as well the finding in some 

observational studies find that later age of menarche is associated with AN 41,42. 

Significant genetic correlations between BE-BROAD and anthropometric traits were 

positive compared with the negative genetic correlations observed in AN 38,39. We observed 

patterns of significant SNP-rg with BE concentrated in body composition and anthropometric 

features, while we validated our previous finding that significant SNP-rgs with AN are 

concentrated in metabolic-related traits. 

 

Eating disorders and their component features share genetic factors with 

anthropometric traits, but these effects act in opposite directions depending on the eating 

disorder presentation. To investigate this further, we assessed BE-BROAD and AN after 

subtracting the genetic component each shares with BMI. The BMI component only 
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accounted for 12% of the genetic variance of BE-BROAD and 10% of AN, despite low BMI 

being a diagnostic requirement for AN. A common concern with AN GWAS is that it is a BMI 

GWAS by proxy, as cases necessarily have lower BMI than controls; a similar argument 

could be made for BE cases having a higher BMI than controls. The low variance explained 

by the BMI component argues that neither of our eating disorder GWAS are BMI GWAS by 

proxy. This is further supported by the FTO locus association with BE-BROAD, which is 

observed in AN-ascertained cohorts where affected individuals are likely to have lower BMI 

than unaffected individuals. Consistent with previous literature 43, we also found no evidence 

for a genetic overlap between persistent thinness and AN, indicating that the cognitive-

behavioural component of AN distinguishes these low-BMI phenotypes on a genomic level.  

However, BMI is a blunt measure of body composition 44, and its relationship with 

eating disorders is complicated, with evidence that the negative genetic correlation between 

AN and BMI is driven by genetic enrichment for AN risk in individuals with very low BMIs, 

rather than a uniform linear relationship across BMIs 45. Our GWASs likely reflect that both 

AN and BE are heterogeneous conditions, and subtypes may have differing relationships 

with BMI. Subtracting the BMI component from our eating disorder GWAS allows us 

tentative insights into the physiological aspects of these illnesses beyond their psychiatric 

aspects. However, more sophisticated analyses with a more diverse range of eating disorder 

presentations (including atypical AN in the normal BMI range) and of body composition 

measurements are needed to provide deeper understanding. 

 

We present the first GWAS on BE, accompanied by the largest investigation of AN 

and AN subtypes to date, with chromosome X analysis included for all phenotypes. In so 

doing, we have extended genetic research into eating disorders beyond AN alone, and 

demonstrated that BE is a psychiatric phenotype with distinctive genetic relationships with 

external traits. Nonetheless, we warrant caution in interpreting our findings in light of the 

following limitations. First, our analyses are currently restricted to individuals of European 
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ancestry, limiting the generalizability of our results. We were able to extend PRS analyses to 

two small East Asian cohorts, but relied on European prevalence estimates for converting 

estimates of risk to the liability scale, which may introduce bias. Differences in population 

structure, genetic architecture, and environmental factors, such as lower average BMI in 

Korean and Japanese populations, could influence the cross-ancestry prediction of AN. 

More GWAS and PRS studies in East Asian populations are required to improve the 

accuracy of genetic risk predictions and better understanding of the genetic factors 

influencing AN in these populations.  

This limitation extends to global ancestries and should be considered from both 

phenotypic and genotypic perspectives 46. A historic focus of eating disorder studies in 

European populations may have skewed understanding and definitions of disease 

presentation, overemphasising certain diagnostic criteria over others, and perpetuating 

exclusion from studies due to stereotyping of eating disorder presentations as they occur in 

young, white women. From a genotypic perspective, exclusion in our studies precludes 

elucidation of the full genetic architecture of the trait, with a narrow focus on variants of 

common frequency in European populations. Ongoing collection efforts for newer studies will 

broaden our focus substantially, with an emphasis on community co-production, global 

collection, and involvement of other historically excluded groups in eating disorder research, 

including people of colour, men, the LGBTQIA+ community, and people living in larger 

bodies. We are actively working towards a fuller recognition of the diversity of humanity in 

eating disorders genetic research. 

Second, given the known diagnostic migration across the eating disorders, cohorts 

that contributed cross-sectional diagnoses or symptoms only are unable to account for later 

development of a disorder or symptom; for example, an individual with AN-R might go on to 

develop AN-BP 3. It is not possible to fully mitigate this limitation. However: (1) many of our 

cohorts include individuals well beyond the typical initial age of diagnosis, making new 

diagnoses or diagnostic migration less likely; (2) hidden diagnostic migration likely 
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contributes to false negatives and under-estimation of differences between GWAS, rather 

than introducing false positives 47; and (3) our previous work has shown that rates of 

diagnostic contamination (a similar effect to hidden diagnostic migration) would need to 

occur at extremely high levels to affect locus discovery 48.  

A third, related limitation is that heterogeneity might exist within the phenotypes due 

to factors such as distinct methods of ascertainment, despite our best effort to harmonise the 

phenotypes. The optimal approach to harmonisation would be to include individuals from a 

single ascertainment source (e.g., structured diagnostic interviews), but the gain in sample 

size through including multiple ascertainment approaches can increase power despite the 

resulting heterogeneity. Thus, one must balance the advantages of data availability with the 

uniformity of a phenotype. Fourth, our sample consists of predominantly females, and results 

may not necessarily generalise to males or intersex individuals. Finally, although strongly 

associated with BE-BROAD and AN risk, polygenic risk scores remain very weak predictors 

of BE-BROAD and AN status. Combining PRS with other risk factors is needed to further 

improve prediction accuracy of AN and BE-BROAD. 

Historically, binge-type eating disorders have been overshadowed by research on AN 

despite their higher prevalence. This paper seeks to redress that imbalance. We identified 

six genetic loci relating to broadly defined BE, validated six loci related to AN, reported two 

novel loci, and found one locus related to the restricting subtype of AN. We demonstrate that 

BE is genetically related to several other psychiatric phenotypes, with both shared and 

distinct patterns as seen with AN, providing genetic substantiation of comorbidity patterns 

seen in AN compared with binge-type eating disorders. Additionally, we conducted 

comprehensive analyses to explore phenotypic diversity within these disorders. Our focus on 

the transdiagnostic symptom of BE recognises the fluidity of diagnoses and the potentially 

arbitrary boundaries we draw between them, enabling the elucidation of both shared and 

unique genetic features that distinguish eating disorder presentations 49.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2025. ; https://doi.org/10.1101/2025.01.31.25321397doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.31.25321397
http://creativecommons.org/licenses/by/4.0/


 

 

18 

References 

1. Association, A. P. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). 

(American Psychiatric Pub, 2013). 

2. Schaumberg, K. et al. Patterns of diagnostic transition in eating disorders: a longitudinal 

population study in Sweden. Psychol. Med. 49, 819–827 (2019). 

3. Abdulkadir, M. et al. Descriptives and genetic correlates of eating disorder diagnostic 

transitions and presumed remission in the Danish registry. medRxiv (2024) 

doi:10.1101/2024.09.05.24313142. 

4. Wang, K. et al. A genome-wide association study on common SNPs and rare CNVs in 

anorexia nervosa. Mol. Psychiatry 16, 949–959 (2011). 

5. Duncan, L. et al. Genome-Wide Association Study Reveals First Locus for Anorexia 

Nervosa and Metabolic Correlations. BioRxiv (2016) doi:10.1101/088815. 

6. Boraska, V. et al. A genome-wide association study of anorexia nervosa. Mol. 

Psychiatry 19, 1085–1094 (2014). 

7. Watson, H. J. et al. Genome-wide association study identifies eight risk loci and 

implicates metabo-psychiatric origins for anorexia nervosa. Nat. Genet. 51, 1207–1214 

(2019). 

8. Arcelus, J., Mitchell, A. J., Wales, J. & Nielsen, S. Mortality rates in patients with 

anorexia nervosa and other eating disorders. A meta-analysis of 36 studies. Arch. Gen. 

Psychiatry 68, 724–731 (2011). 

9. Bulik, C. M. et al. Understanding the relation between anorexia nervosa and bulimia 

nervosa in a Swedish national twin sample. Biol. Psychiatry 67, 71–77 (2010). 

10. Lilenfeld, L. R. et al. A controlled family study of anorexia nervosa and bulimia nervosa: 

psychiatric disorders in first-degree relatives and effects of proband comorbidity. Arch. 

Gen. Psychiatry 55, 603–610 (1998). 

11. Hudson, J. I., Hiripi, E., Pope, H. G. & Kessler, R. C. The prevalence and correlates of 

eating disorders in the National Comorbidity Survey Replication. Biol. Psychiatry 61, 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2025. ; https://doi.org/10.1101/2025.01.31.25321397doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.31.25321397
http://creativecommons.org/licenses/by/4.0/


 

 

19 

348–358 (2007). 

12. Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model 

association for biobank-scale datasets. Nat. Genet. 50, 906–908 (2018). 

13. Galmiche, M., Déchelotte, P., Lambert, G. & Tavolacci, M. P. Prevalence of eating 

disorders over the 2000-2018 period: a systematic literature review. Am. J. Clin. Nutr. 

109, 1402–1413 (2019). 

14. Peyrot, W. J. & Price, A. L. Identifying loci with different allele frequencies among cases 

of eight psychiatric disorders using CC-GWAS. Nat. Genet. 53, 445–454 (2021). 

15. Demange, P. et al. Investigating the genetic architecture of noncognitive skills using 

GWAS-by-subtraction. Nat. Genet. 53, 35–44 (2021). 

16. Pulit, S. L. et al. Meta-analysis of genome-wide association studies for body fat 

distribution in 694 649 individuals of European ancestry. Hum. Mol. Genet. 28, 166–174 

(2019). 

17. Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene 

expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 

(2018). 

18. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-

set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015). 

19. Fisher, E. & Feng, J. RNA splicing regulators play critical roles in neurogenesis. Wiley 

Interdiscip. Rev. RNA 13, e1728 (2022). 

20. Forgetta, V. et al. An effector index to predict target genes at GWAS loci. Hum. Genet. 

141, 1431–1447 (2022). 

21. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-

wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015). 

22. Siletti, K. et al. Transcriptomic diversity of cell types across the adult human brain. 

Science 382, eadd7046 (2023). 

23. Yao, S. et al. Connecting genomic results for psychiatric disorders to human brain cell 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2025. ; https://doi.org/10.1101/2025.01.31.25321397doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.31.25321397
http://creativecommons.org/licenses/by/4.0/


 

 

20 

types and regions reveals convergence with functional connectivity. Nat. Commun. 16, 

395 (2025). 

24. Pasman, J. A. et al. Genetic risk for smoking: disentangling interplay between genes 

and socioeconomic status. Behav. Genet. 52, 92–107 (2022). 

25. Baselmans, B. et al. The Genetic and Neural Substrates of Externalizing Behavior. Biol 

Psychiatry Glob Open Sci 2, 389–399 (2022). 

26. Pickrell, J. K. et al. Detection and interpretation of shared genetic influences on 42 

human traits. Nat. Genet. 48, 709–717 (2016). 

27. Farstad, S. M. et al. The influence of impulsiveness on binge eating and problem 

gambling: A prospective study of gender differences in Canadian adults. Psychol. 

Addict. Behav. 29, 805–812 (2015). 

28. Meule, A. & Platte, P. Facets of impulsivity interactively predict body fat and binge 

eating in young women. Appetite 87, 352–357 (2015). 

29. Bradfield, J. P. et al. A trans-ancestral meta-analysis of genome-wide association 

studies reveals loci associated with childhood obesity. Hum. Mol. Genet. 28, 3327–3338 

(2019). 

30. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass 

index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007). 

31. Loos, R. J. F. & Yeo, G. S. H. The genetics of obesity: from discovery to biology. Nat. 

Rev. Genet. 23, 120–133 (2022). 

32. Micali, N., Field, A. E., Treasure, J. L. & Evans, D. M. Are obesity risk genes associated 

with binge eating in adolescence? Obesity (Silver Spring) 23, 1729–1736 (2015). 

33. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in 

schizophrenia. Nature 604, 502–508 (2022). 

34. Letinic, K., Zoncu, R. & Rakic, P. Origin of GABAergic neurons in the human neocortex. 

Nature 417, 645–649 (2002). 

35. Thornton, L. M. et al. The Anorexia Nervosa Genetics Initiative (ANGI): Overview and 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2025. ; https://doi.org/10.1101/2025.01.31.25321397doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.31.25321397
http://creativecommons.org/licenses/by/4.0/


 

 

21 

methods. Contemp. Clin. Trials 74, 61–69 (2018). 

36. de Vlaming, R. et al. Meta-GWAS Accuracy and Power (MetaGAP) Calculator Shows 

that Hiding Heritability Is Partially Due to Imperfect Genetic Correlations across Studies. 

PLoS Genet. 13, e1006495 (2017). 

37. Wang, X. et al. Polygenic risk prediction: why and when out-of-sample prediction R2 can 

exceed SNP-based heritability. Am. J. Hum. Genet. 110, 1207–1215 (2023). 

38. Hübel, C. et al. One size does not fit all. Genomics differentiates among anorexia 

nervosa, bulimia nervosa, and binge-eating disorder. Int. J. Eat. Disord. 54, 785–793 

(2021). 

39. Abdulkadir, M. et al. Eating disorder symptoms and their associations with 

anthropometric and psychiatric polygenic scores. Eur. Eat. Disord. Rev. 30, 221–236 

(2022). 

40. Watson, H. J. et al. Common genetic variation and age of onset of anorexia nervosa. 

Biological Psychiatry Global Open Science 2, 368–378 (2022). 

41. Padrutt, E. R. et al. Pubertal timing and adolescent outcomes: investigating 

explanations for associations with a genetically informed design. J. Child Psychol. 

Psychiatry 64, 1232–1241 (2023). 

42. Klump, K. L. Puberty as a critical risk period for eating disorders: a review of human and 

animal studies. Horm. Behav. 64, 399–410 (2013). 

43. Hübel, C. et al. Persistent thinness and anorexia nervosa differ on a genomic level. Eur. 

J. Hum. Genet. 32, 117–124 (2024). 

44. Müller, M. J. From BMI to functional body composition. Eur. J. Clin. Nutr. 67, 1119–1121 

(2013). 

45. Akingbuwa, W. & Nivard, M. W27. modelling non-linearity in bivariate genetic 

relationships. Eur. Neuropsychopharmacol. 87, 115 (2024). 

46. Huckins, L. M. et al. What next for eating disorder genetics? Replacing myths with facts 

to sharpen our understanding. Mol. Psychiatry 27, 3929–3938 (2022). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2025. ; https://doi.org/10.1101/2025.01.31.25321397doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.31.25321397
http://creativecommons.org/licenses/by/4.0/


 

 

22 

47. Dueñas, H. R., Seah, C., Johnson, J. S. & Huckins, L. M. Implicit bias of encoded 

variables: frameworks for addressing structured bias in EHR-GWAS data. Hum. Mol. 

Genet. 29, R33–R41 (2020). 

48. Johnson, J. S. et al. Mapping anorexia nervosa genes to clinical phenotypes. Psychol. 

Med. 53, 2619–2633 (2023). 

49. Tiego, J. et al. Precision behavioral phenotyping as a strategy for uncovering the 

biological correlates of psychopathology. Nat. Ment. Health 1, 304–315 (2023). 

50. Lam, M. et al. RICOPILI: rapid imputation for consortias pipeline. Bioinformatics 36, 

930–933 (2020). 

51. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed 

Program. Nature 590, 290–299 (2021). 

52. Loh, P.-R. et al. Reference-based phasing using the Haplotype Reference Consortium 

panel. Nat. Genet. 48, 1443–1448 (2016). 

53. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 

48, 1284–1287 (2016). 

54. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. 

Nat. Genet. 48, 1279–1283 (2016). 

55. Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness 

in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018). 

56. Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative 

and binary traits. Nat. Genet. 53, 1097–1103 (2021). 

57. Chen, W. et al. Improved analyses of GWAS summary statistics by reducing data 

heterogeneity and errors. Nat. Commun. 12, 7117 (2021). 

58. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of 

genomewide association scans. Bioinformatics 26, 2190–2191 (2010). 

59. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics 

identifies additional variants influencing complex traits. Nat. Genet. 44, 369–75, S1 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2025. ; https://doi.org/10.1101/2025.01.31.25321397doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.31.25321397
http://creativecommons.org/licenses/by/4.0/


 

 

23 

(2012). 

60. Purcell, S., Cherny, S. S. & Sham, P. C. Genetic Power Calculator: design of linkage 

and association genetic mapping studies of complex traits. Bioinformatics 19, 149–150 

(2003). 

61. Ekeroth, K., Clinton, D., Norring, C. & Birgegård, A. Clinical characteristics and 

distinctiveness of DSM-5 eating disorder diagnoses: findings from a large naturalistic 

clinical database. J. Eat. Disord. 1, 31 (2013). 

62. Bulik-Sullivan, B. et al. LD Score regression distinguishes confounding from polygenicity 

in genome-wide association studies. Nat. Genet. 47, 291–295 (2015). 

63. International HapMap 3 Consortium et al. Integrating common and rare genetic variation 

in diverse human populations. Nature 467, 52–58 (2010). 

64. Grotzinger, A. D., Fuente, J. de la, Privé, F., Nivard, M. G. & Tucker-Drob, E. M. 

Pervasive Downward Bias in Estimates of Liability-Scale Heritability in Genome-wide 

Association Study Meta-analysis: A Simple Solution. Biol. Psychiatry 93, 29–36 (2023). 

65. Barbeira, A. N. et al. Exploiting the GTEx resources to decipher the mechanisms at 

GWAS loci. Genome Biol. 22, 49 (2021). 

66. Gamazon, E. R. et al. A gene-based association method for mapping traits using 

reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015). 

67. Huckins, L. M. et al. Gene expression imputation across multiple brain regions provides 

insights into schizophrenia risk. Nat. Genet. 51, 659–674 (2019). 

68. Team, P. CommonMind consortium - Brain Dorsolateral Prefrontal Cortex. (2019). 

69. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across 

human tissues. Science 369, 1318–1330 (2020). 

70. Barbeira, A. N. et al. Integrating predicted transcriptome from multiple tissues improves 

association detection. PLoS Genet. 15, e1007889 (2019). 

71. Gaspar, H. A. & Breen, G. Drug enrichment and discovery from schizophrenia genome-

wide association results: an analysis and visualisation approach. Sci. Rep. 7, 12460 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2025. ; https://doi.org/10.1101/2025.01.31.25321397doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.31.25321397
http://creativecommons.org/licenses/by/4.0/


 

 

24 

(2017). 

72. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the 

integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 

4, 1184–1191 (2009). 

73. Freshour, S. L. et al. Integration of the Drug-Gene Interaction Database (DGIdb 4.0) 

with open crowdsource efforts. Nucleic Acids Res. 49, D1144–D1151 (2021). 

74. Roth, B. L., Lopez, E., Patel, S. & Kroeze, W. K. The multiplicity of serotonin receptors: 

uselessly diverse molecules or an embarrassment of riches? Neuroscientist 6, 252–262 

(2000). 

75. Mendez, D. et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids 

Res. 47, D930–D940 (2019). 

76. Sheils, T. K. et al. TCRD and Pharos 2021: mining the human proteome for disease 

biology. Nucleic Acids Res. 49, D1334–D1346 (2021). 

77. Yoo, M. et al. DSigDB: drug signatures database for gene set analysis. Bioinformatics 

31, 3069–3071 (2015). 

78. WHO Collaborating Centre for Drug Statistics Methodology. ATC/DDD Index 2023. 

(2023). 

79. GTEx Consortium et al. Genetic effects on gene expression across human tissues. 

Nature 550, 204–213 (2017). 

80. Bryois, J. et al. Genetic identification of cell types underlying brain complex traits yields 

insights into the etiology of Parkinson’s disease. Nat. Genet. 52, 482–493 (2020). 

81. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies 

disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018). 

82. Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score 

regression that maximizes the potential of summary level GWAS data for SNP 

heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017). 

83. Hübel, C. et al. Genomics of body fat percentage may contribute to sex bias in anorexia 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2025. ; https://doi.org/10.1101/2025.01.31.25321397doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.31.25321397
http://creativecommons.org/licenses/by/4.0/


 

 

25 

nervosa. Am. J. Med. Genet. B Neuropsychiatr. Genet. 180, 428–438 (2019). 

84. Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the 

multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019). 

85. Core Team, R. & Others. R: A language and environment for statistical computing. 

Vienna, Austria: R Foundation for Statistical Computing. Available (2013). 

86. Aschard, H., Vilhjálmsson, B. J., Joshi, A. D., Price, A. L. & Kraft, P. Adjusting for 

heritable covariates can bias effect estimates in genome-wide association studies. Am. 

J. Hum. Genet. 96, 329–339 (2015). 

87. Hemani, G. et al. The MR-Base platform supports systematic causal inference across 

the human phenome. eLife 7, (2018). 

88. Verbanck, M., Chen, C.-Y., Neale, B. & Do, R. Detection of widespread horizontal 

pleiotropy in causal relationships inferred from Mendelian randomization between 

complex traits and diseases. Nat. Genet. 50, 693–698 (2018). 

89. Haycock, P. C. et al. Best (but oft-forgotten) practices: the design, analysis, and 

interpretation of Mendelian randomization studies. Am. J. Clin. Nutr. 103, 965–978 

(2016). 

90. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid 

instruments: effect estimation and bias detection through Egger regression. Int. J. 

Epidemiol. 44, 512–525 (2015). 

91. Rees, J. M. B., Wood, A. M., Dudbridge, F. & Burgess, S. Robust methods in Mendelian 

randomization via penalization of heterogeneous causal estimates. PLoS ONE 14, 

e0222362 (2019). 

92. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via 

Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019). 

93. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based 

linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). 

94. Choi, S. W., Mak, T. S.-H. & O’Reilly, P. F. Tutorial: a guide to performing polygenic risk 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2025. ; https://doi.org/10.1101/2025.01.31.25321397doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.31.25321397
http://creativecommons.org/licenses/by/4.0/


 

 

26 

score analyses. Nat. Protoc. 15, 2759–2772 (2020). 

95. Lee, S. H., Goddard, M. E., Wray, N. R. & Visscher, P. M. A better coefficient of 

determination for genetic profile analysis. Genet. Epidemiol. 36, 214–224 (2012). 

96. Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare 

ROC curves. BMC Bioinformatics 12, 77 (2011). 

97. CRAN: Package pracma. https://doi.org/10.32614/CRAN.package.pracma. 

98. Nakai, Y., Nin, K. & Goel, N. J. The changing profile of eating disorders and related 

sociocultural factors in Japan between 1700 and 2020: A systematic scoping review. Int. 

J. Eat. Disord. 54, 40–53 (2021). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2025. ; https://doi.org/10.1101/2025.01.31.25321397doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.31.25321397
http://creativecommons.org/licenses/by/4.0/


 

 

27 

Table 1 

Phenotype Inclusion criteria Diagnostic codes 

AN-R 
 
AN -  
restricting subtype 

1. A clinical diagnosis of AN restricting subtype via 
hospital/register records, structured clinical interviews, or 
online questionnaires based on standardised criteria, or;  
2. A self-reported diagnosis of AN restricting subtype, 
confirmation by healthcare professional not required 

ICD-10 
DSM 5 

F50.01  
(ICD-10); 
307.1 [F50.01]  
(DSM-5) 

AN-BP 
 
AN - binge-eating/ 
purging subtype 

1. A clinical diagnosis of AN binge-eating/purging subtype via 
hospital/register records, structured clinical interviews, or 
online questionnaires based on standardised criteria, or;  
2. A self-reported diagnosis of AN binge-eating/purging 
subtype, confirmation by healthcare professional not required 

ICD-10 
DSM 5 

F50.02  
(ICD-10); 
307.1 [F50.02]  
(DSM-5) 

AN 
 
AN - no subtype 
specified 
 
(incl. AN-R and 
AN-BP) 

1. A clinical diagnosis of AN / AN binge-eating/purging 
subtype / AN restricting subtype via hospital/register records, 
structured clinical interviews, or online questionnaires based 
on standardised criteria, or;  
2. A self-reported diagnosis of AN / AN binge-eating/purging 
subtype / AN restricting subtype, confirmation by healthcare 
professional not required. 
 
Note: atypical AN (without significantly low body weight) was 
not specifically excluded from our analyses, but has been 
historically ill-defined and was not ascertained for in most 
cohorts. As such, our AN data primarily reflect typical AN. 

ICD-8 
ICD-9 
ICD-10 
DSM-III-
R 
DSM-IV 
DSM 5 

306.50  
(ICD-8); 
307.1  
(ICD-9,  
DSM-III-R, DSM-
IV); 
F50.0  
(ICD-10); 
F50.1  
(ICD-10); 
307.1 [F50.1]  
(DSM-5) 
 
 

BE-NARROW 
 
Binge-eating - 
narrowly defined 

1. Eating an unusually large amount of food in a short period 
of time with loss of control, and these episodes occurred on 
average at least once a week for at least three months, or;  
2. A clinical diagnosis of bulimia nervosa or binge-eating 
disorder via hospital/register records or a structured clinical 
interview, or;  
3. A self-reported diagnosis of bulimia nervosa or binge-
eating disorder with confirmation by a healthcare 
professional. 

ICD-9 
ICD-10 
DSM-III-
R 
DSM-IV 
DSM 5 

307.51  
(ICD-9,  
DSM-III-R, DSM-
IV); 
F50.2  
(ICD-10); 
F50.81  
(ICD-10-CM); 
307.51 [F50.2]  
(DSM-5) 

BE-BROAD 
 
Binge-eating - 
broadly defined  
 
(incl. BE-
NARROW) 

1. Eating an unusually large amount of food in a short period 
of time with loss of control. Frequency and duration criteria 
not required, or;   
2. If assessed by a single item like “Have you ever 
experienced binge-eating?”*;  
3. A self-reported diagnosis of bulimia nervosa or binge-
eating disorder, confirmation by healthcare professional not 
required**.  

ICD-9 
ICD-10 
DSM-III-
R 
DSM-IV 
DSM 5 

307.51 (ICD-9,  
DSM-III-R, DSM-
IV); 
F50.2 (ICD-10); 
F50.3 (ICD-10); 
307.51 [F50.2]  
(DSM-5); 
307.51 [F50.3]  
(DSM-5); 
F50.81  
(ICD-10-CM) 

Controls 1. No history of any eating disorder and no history of binge-
eating (broadly or narrowly defined), or;  
2. No history of any eating disorder, or;  
3. Unscreened (i.e., these individuals may have had an 
eating disorder or binge-eating).  

  

 
Table 1: Phenotype definitions. Diagnostic codes are shown with coding system in round brackets, and 

equivalent codes in square brackets. Control definitions are shown in order of preference.  
Footnotes: *If assessed with terms such as “psychological overeating”, “compulsive eating”, etc., these 

individuals will not be included as BE-BROAD cases. **If Other Specified Feeding or Eating Disorder or Eating 
Disorder Not Otherwise Specified is diagnosed, these are included only if clearly stated ‘subthreshold bulimia 

nervosa’ or ‘subthreshold binge-eating disorder’. 
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Table 2. 

Phenotype Locus CHR Locus Start Locus End Lead SNP P REF/ALT OR SE ALT Freq 
Cases 

ALT Freq 
Controls INFO Previously  

associated Genes 

BE- 
BROAD 

1 1 74,977,295 75,014,362 rs7541513 3.02 x 10-9 G/A 1.05 0.009 0.427 0.425 0.952 - LRRC53 / TNNI3K 

2 3 117,420,697 117,953,697 rs1456193 3.42 x 10-8 T/C 1.06 0.011 0.808 0.802 0.996 - Intergenic 

3 11 93,171,140 93,231,940 rs2925354 4.91 x 10-8 G/A 0.93 0.013 0.107 0.112 0.995 - DEUP1 / SMCO4 

4 12 50,169,080 50,285,780 rs7953534 1.42 x 10-8 G/A 1.05 0.009 0.351 0.333 0.985 - Multigenic 

5 16 53,797,904 53,845,494 rs11642015 4.13 x 10-17 C/T 1.07 0.009 0.429 0.417 1.000 - FTO 

6 18 57,730,978 57,914,978 rs66723169 5.24 x 10-9 C/A 1.06 0.010 0.254 0.209 0.995 - Intergenic 

AN 

1 1 96,700,455 97,285,455 rs10747478 1.43 x 10-8 T/G 0.94 0.011 0.570 0.587 0.998 Yes20 PTBP2 

2 3 47,501,450 51,741,450 rs113519699 2.86 x 10-18 A/C 1.18 0.019 0.102 0.087 0.997 Yes20 Multigenic 

3 3 70,602,234 71,074,242 rs9310201 3.12 x 10-12 A/T 1.08 0.011 0.427 0.408 0.982 Yes20 FOXP1 

4 5 24,868,440 25,300,440 rs6872919 1.07 x 10-9 A/C 1.07 0.011 0.570 0.532 0.997 Yes20 Intergenic 

5 10 75,850,972 76,524,972 rs10740439 1.91 x 10-9 C/T 0.93 0.012 0.711 0.716 0.994 No Multigenic 

6 10 131,274,055 131,459,255 rs12762024 3.28 x 10-9 G/C 1.07 0.011 0.447 0.455 0.995 Yes20 MGMT 

7 11 114,997,256 115,284,956 rs6589488 9.80 x 10-9 A/T 0.91 0.016 0.846 0.875 0.990 Yes20 CADM1 

8 12 17,635,314 17,965,314 rs12817084 8.93 x 10-9 T/C 1.10 0.011 0.115 0.117 0.991 No Intergenic 

 
Table 2: Association statistics for genome-wide significant loci for BE-BROAD and AN. Loci are numbered sequentially within-analysis from chromosome 1 to chromosome X. 

Base pair start and end positions correspond to hg19. Odds ratios (OR) are given relevant to the ALT allele. 
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Table 3 
 

Trait Category PMID rg 
(AN) 

SE 
(AN) 

P  
(AN) 

rg  
(BE) 

SE  
(BE) 

P  
(BE) 

BMI Anthropometric 30239722 -0.31 0.020 2.37x10-56 0.36 0.032 1.94x10-28 

Body fat % Anthropometric 30593698 -0.35 0.028 2.71x10-36 0.20 0.042 2.65x10-6 

Fat free mass Anthropometric 30593698 -0.15 0.022 2.93x10-11 0.30 0.034 6.92x10-19 

Fat mass Anthropometric 31852892 -0.32 0.023 3.63x10-43 0.31 0.035 1.36x10-18 

Persistent thinness Anthropometric 30677029 0.11 0.074 0.123 -0.46 0.110 2.37x10-5 

Pubertal growth (height 
diff, 8 years-adult) Anthropometric 23449627 -0.03 0.053 0.606 -0.37 0.079 3.08x10-6 

Severe early-onset 
obesity Anthropometric 30677029 -0.11 0.059 0.0587 0.48 0.080 1.40x10-9 

Waist-hip ratio Anthropometric 30239722 -0.25 0.021 1.72x10-34 0.19 0.034 1.37x10-8 

Waist-hip ratio (BMI-adj) Anthropometric 30239722 -0.09 0.020 9.33x10-6 -0.05 0.033 0.119 

Fasting insulin (age- & 
sex-adj) Metabolism 33402679 -0.30 0.048 2.79x10-10 0.15 0.069 0.0292 

Fasting insulin (BMI-adj) Metabolism 34059833 -0.17 0.035 9.62x10-7 -0.29 0.047 6.29x10-10 

HbA1c Metabolism 28898252 -0.14 0.042 6.00x10-4 -0.03 0.053 0.5242 

HbA1c (BMI-adj) Metabolism 34059833 -0.16 0.034 5.22x10-6 0.01 0.044 0.765 

Type 2 diabetes Metabolism 30297969 -0.18 0.024 1.76x10-14 0.11 0.040 6.10x10-3 

ADHD Psychiatric  36702997 0.07 0.029 0.0126 0.31 0.042 2.20x10-13 

Autism Psychiatric  32747698 0.17 0.044 1.00x10-4 0.29 0.057 3.96x10-7 

Bipolar disorder Psychiatric  34002096 0.25 0.027 3.80x10-21 0.23 0.035 4.22x10-11 

Insomnia Psychiatric  30804565 0.10 0.033 2.90x10-3 0.21 0.044 2.02x10-6 

MDD Psychiatric  29700475 0.29 0.059 6.43x10-7 0.25 0.074 7.00x10-4 

OCD Psychiatric  28761083 0.48 0.069 2.85x10-12 0.08 0.081 0.322 

Probable anxiety 
diagnosis 

Psychiatric  31748690 0.28 0.039 1.42x10-12 0.32 0.060 1.03x10-7 

PTSD Psychiatric  33510476 0.11 0.049 0.0274 0.24 0.062 1.00x10-4 

Schizophrenia Psychiatric  35396580 0.24 0.021 4.85x10-30 0.23 0.033 7.04x10-12 

General risk tolerance Behavioural 30643258 0.00 0.028 0.991 0.21 0.040 6.76x10-8 

Loneliness Behavioural 31518406 0.13 0.032 4.96x10-5 0.37 0.044 4.14x10-17 

Physical activity Behavioural 36071172 0.19 0.034 5.87x10-8 0.09 0.046 0.0633 

Educational attainment 
(years) 

Socio- 
demographic 30038396 0.25 0.022 1.25x10-29 0.04 0.030 0.1417 

AUDIT-P Substance use 30336701 0.01 0.040 0.870 0.37 0.057 7.00x10-11 

Cannabis use disorder Substance use 33096046 0.02 0.046 0.610 0.30 0.063 2.78x10-6 

Heavy smoker Substance use 28166213 -0.04 0.039 0.255 0.30 0.048 3.82x10-10 

Lifetime cannabis use Substance use 30150663 0.22 0.038 8.48x10-9 0.32 0.051 6.36x10-10 

 

Table 3: Selected genetic correlations of BE-BROAD and AN with external traits.  
PMID = PubMed ID of GWAS for external trait.  
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Figure 1: Miami plots showing results from the AN (top) and BE-BROAD (bottom) meta-analyses. The dotted red 
line is the genome-wide significance threshold (P≤5 x 10-8).  

a. Main GWAS analyses, with variants reaching genome-wide significance coloured in blue if significant in the 
anorexia nervosa GWAS and in purple if significant in the binge eating broad GWAS. Variants reaching genome-

wide significance in CC-GWAS analyses of AN vs BE-BROAD are coloured in red. 
b. GWAS-by-subtraction analyses, showing results from the non-BMI genetic component. Variants reaching 

genome-wide significance coloured in blue for anorexia nervosa non-BMI component and purple in binge eating 
non-BMI component.  
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Figure 2: Genetic distance between cases and controls of anorexia nervosa (AN) and binge eating broad (BEB) 

estimated by CC-GWAS analysis. The genetic distance,  is calculated by taking the square root of 

the product of m, the number of independent causal variants estimated here as 10,000 based on the polygenic 

nature of AN and BEB,  and  derived based on the SNP-based heritabilities, genetic correlations, and 

population prevalences of the two traits

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2025. ; https://doi.org/10.1101/2025.01.31.25321397doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.31.25321397
http://creativecommons.org/licenses/by/4.0/


 

 

 

 

Figure 3: Genetic correlations (rg) of external traits with AN and BE-BROAD, split by those that are non-significantly different from each other (left panel) and tho
significantly different from each other (right panel). The left panel is further broken down into traits that have a significant rg with both AN and BE-BROAD (top), tra
a significant rg only with AN (middle), and traits that have a significant rg only with BE-BROAD (bottom). The right panel is further broken down into traits in which

AN is greater than the rg with BE-BROAD (top), and traits in which the rg with BE-BROAD is greater than the rg with AN (bottom). The rgs were computed by 
Disequilibrium Score Regression (LDSC). The rg estimation is indicated by the dot and standard errors are indicated by the lines on either side of each dot. rg est

been corrected for multiple testing via the Bonferroni method. Information about the summary statistics used in our analysis can be found in Supplementary T
AN = anorexia nervosa; BE BROAD = binge-eating broad definition; MDD = major depressive disorder; PGC = Psychiatric Genomics Consortium; BMI = Body ma

female; M = male; FFM = fat-free mass; AUDIT-P = Alcohol Use Disorder Identification Test problem items.
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METHODS 

Ethics  

The individual studies that comprise this investigation were conducted with advance 

approval by the appropriate Institutional Review Boards or equivalents at the individual study 

sites. We provide ethical statements for each study site in the Supplementary Note. This 

work represents a secondary analysis with data from these individual studies. 

 

Summary of cohorts 

Detailed descriptions of the ascertainment and definition of cases and controls for 

each cohort is provided in Supplementary Table 1. Broadly, we identified cases and controls 

based on clinical diagnoses, diagnostic algorithms, and/or self-report questionnaires 35. We 

defined controls as individuals without a history of BE and without a history of an eating 

disorder, if possible. If this information was unavailable, unscreened controls were included 

assuming that the large control numbers would outweigh the impact of misclassified 

individuals in the control groups, given the collective lifetime prevalence of eating disorders 

is ~5% 13. 

We included data from the Psychiatric Genomics Consortium Eating Disorder 

Working Group (PGC-ED; Supplementary Table 1). These data were restricted to individuals 

of European ancestry due to the limited availability of non-European ancestry samples at the 

time of analysis—we included two cohorts with individuals of East Asian ancestry for follow-

up cross-ancestry polygenic risk score analyses. In total, we combined 27 European 

ancestry datasets totalling 14 previously analysed 7 and 13 new cohorts. Data from cohorts 

providing individual-level data (n=11) were combined with cohorts that contributed summary 

statistics (n=16; Supplementary Table 1). Detailed descriptions of each of the cohorts are 

provided in the Supplementary Note. We included data if the total number of cases for any 

phenotype prior to quality control was >100. If cases for an individual phenotype were <50, 

we excluded that phenotype from analyses. 
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We include five different phenotypes: BE broadly defined (BE-BROAD, 39,279 

cases), BE narrowly defined (BE-NARROW, 15,175 cases), AN (n = 24,145 cases), AN 

restricting subtype (AN-R, 2,524 cases), and AN binge-eating/purging subtype (AN-BP, 

5,245 cases). Detailed phenotypic definitions are provided in Table 1.  

 

Pre-imputation genotype quality control  

 Information about genotyping platforms for each cohort is documented in 

Supplementary Tables 4. Individual-level genotyping data were available from our previous 

GWAS meta-analysis and quality control is detailed therein and in the Supplementary 

Methods 7. In brief, quality control of single-nucleotide polymorphisms (SNPs) and 

individuals in each cohort was conducted following established protocols 50. This resulted in 

data on unrelated individuals with high call rates (≥ 98%), with concordant phenotypic and 

genotypic sex information, which were homogenous on principal components derived from 

genome-wide genotypes (consistent with similar genetic ancestry). Genotypic data consisted 

of polymorphic SNPs with high call rates (≥ 98%) consistent between cases and controls, 

and not deviating from Hardy-Weinberg equilibrium. Chromosome X data were available for 

a subset of cohorts (Supplementary Table 4). We restricted chromosome X analyses to 

individuals included in the autosomal analysis and conducted quality control as for 

autosomal SNPs. 

Summary-level data were available from contributing cohorts (Supplementary Table 

1). Quality control of these datasets followed a basic shared protocol, with deviations as 

necessary for each cohort (Supplementary Methods). In general, quality control was 

consistent with that described above for individual-level data cohorts. An exception to this 

was that some cohorts conducted analyses using mixed linear models, and so did not 

exclude related participants from their data.   
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Imputation  

For all individual-level data cohorts where patient consent and national data privacy 

laws allowed, autosomal and chromosome X genotypes were imputed to TOPMed freeze 8 

51 using Minimac4, and phasing was performed with Eagle 2.4 52 via the TOPMed Imputation 

Server 53. For individual-level data cohorts that could not be imputed to TOPMed, we 

imputed to the Haplotype Reference Consortium (HRC) 54 using Minimac3, with phasing 

conducted via Eagle v2.3.5, implemented in the Ricopili pipeline 50. Cohorts supplying 

summary statistics used TOPMed, HRC, or in some cases used bespoke imputation 

reference panels (Supplementary Table 4). We plotted imputation INFO scores against 

various MAF bins to check imputation quality, and we assessed missingness for each MAF 

bin. 

 

Association analyses 

The statistical model used to conduct the GWAS for each cohort (described in 

Supplementary Table 4) depended on the design of the specific cohort. For unrelated 

case/control cohorts, we used PLINK2 to conduct logistic regression using an appropriate 

number of PCs to account for ancestry as necessary within each cohort (Supplementary 

Table 4). For related or imbalanced case/control cohorts we used SAIGE 55 or REGENIE 56. 

Note that for whole genome regression in REGENIE step 1, we used a set of pruned SNPs 

with MAF > 0.01, excluding high LD regions and only including autosomal chromosomes 

(PLINK command: --indep-pairwise 1500 150 0.2). Further details on cohort-specific aspects 

of association analysis are provided in the Supplementary Methods. 

 

Post-GWAS processing and quality control 

We aligned the summary statistics of each GWAS to the TOPMed reference panel in 

Genome Reference Consortium Build 37 (GRCh37/hg19), using variant positions from 

ENSEMBL (see URLs). For cohorts that were in GRCh38, we first linked the datasets with 
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the GRCh38 TOPMed reference panel (see URLs) by chromosome/base pair, then selected 

the SNP rsID labels and linked these labels to the GRCh37 TOPMed reference panel, and 

finally extracted the GRCh37 chromosome/base pair information for each SNP. Variants 

without a rsID label in the GRCh38 TOPMed reference panel were lifted over to GRCh37 

using the liftOver tool (see URLs). After alignment, we applied an INFO and MAF filter to 

include SNPs with an INFO score of > 0.3 and MAF > 0.01 in cases and controls. We then 

used DENTIST 57 to remove variants with effects inconsistent with their linkage 

disequilibrium pattern with other assessed variants, estimating linkage disequilibrium from 

European ancestry individuals in Phase 3 of the 1000 Genomes project.  

 

Meta-analysis and quality control 

We used the post-imputation module of RICOPILI version 2019, Oct. 50, to perform 

meta-analyses in METAL 58 using an inverse-variance weighted fixed-effect model. We 

define independent significant SNPs as SNPs with a genome-wide significant P-value (P < 5 

x 10-8) that are independent (r2 > 0.6) from each other. We then define significant genomic 

loci by merging LD blocks of these independent significant SNPs if they are close to each 

other (< 250 kb). Furthermore, we define independent lead SNPs if independent significant 

SNPs are independent of each other at r2 < 0.1.  

We ran a stepwise conditional analysis on our GWAS results to select independently-

associated SNPs at each loci using GCTA-COJO 59. For these analyses we used one of our 

largest cohorts (usa2) as our reference for linkage disequilibrium. 

 

Power analysis 

We estimated what magnitude of relative risk we were powered to detect using 

Genetic Power Calculator 60. Assuming perfect linkage disequilibrium between the marker 

and the risk SNP (D' = 1), we set the number of cases to ½ Neff (Supplementary Table 1) and 

the control:case ratio to 1. We specified lifetime risk as follows: BE-BROAD 4.5% 11, BE-
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NARROW 3.5% 11, AN 1.5% 13, AN-R 0.8% 13,61, AN-BP 0.7% 13,61. We assume an additive 

model, set the p-value significance threshold to 5x10-8, and assessed MAF ranging from 

0.01 to 0.5. 

 

Female-only analyses / sex differences 

We conducted a supplementary female-only GWAS for BE-BROAD and AN and 

generated female-only PRS using PRS-CS which we applied on male-only datasets with 

sufficient data (i.e., n case and n control >100) available. For the BE-BROAD female-only 

meta-analysis, all cohorts except usa1 and biov were included, and alsp, moba, and ukd2 

were included as male-only target cohorts. For the AN female-only meta-analysis, all cohorts 

except itgr, spa1, ukd1, and net2 were included, and ipsy, fngn, and ukb2 were included as 

male-only target cohorts.  

 

SNP-based heritability and distinguishing polygenicity from other sources of inflation 

We used linkage disequilibrium score regression (LDSC 62) to estimate SNP-based 

heritability (h2
SNP). These estimates were transformed to the liability scale, assuming 

population prevalences as above ("Power Analysis"). For all analyses using LDSC, we 

applied an LD reference panel based on the European subset of the 1000 Genomes Project 

(1kGP), restricted to SNPs present in the HapMap3 panel 63. For N, we calculated the sum 

of effective N across all cohorts and specified 0.5 for sample prevalence 64. 

Test statistics from GWAS of a polygenic trait are expected to be inflated, but 

inflation may also be due to spurious SNP associations caused by population stratification 

and cryptic relatedness of study participants. We used statistics from LDSC 62 to determine 

the source of inflation. Although the LDSC intercept is commonly used to distinguish 

polygenicity from spuriously inflated statistics, we calculated the attenuation ratio statistic, 

defined as (LDSC intercept – 1) / (mean of association chi-square statistics – 1), which may 

be a useful additional metric 12. We included variants with MAF ≥ 0.01 and INFO ≥ 0.6.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2025. ; https://doi.org/10.1101/2025.01.31.25321397doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.31.25321397
http://creativecommons.org/licenses/by/4.0/


 

 

38 

Comparison of the two binge-eating behaviour phenotypes 

The two BE phenotype definitions balanced phenotypic certainty with sample size—

BE-BROAD had a larger sample size and was potentially a better-powered GWAS than BE-

NARROW, but was likely to be more heterogeneous and could lack specificity to BE. To 

determine which phenotype to carry forward to follow-up analyses, we considered the LDSC 

intercept and attenuation ratio statistics and calculated the genetic correlation (SNP-rg) 

between the two BE phenotypes. Inflation was a more sizable component of the signal in 

BE-NARROW (attenuation ratio 0.21 ± 0.06) than in BE-BROAD (0.14 ± 0.04). Furthermore, 

the SNP-rg between BE-NARROW and BE-BROAD did not differ from unity (1.00 ± 0.03). 

We therefore concluded that BE-BROAD appropriately captures the common genetic 

component of BE with greater statistical power than BE-NARROW.  

 

Genetic relationship between traits 

We used LDSC to calculate SNP-rg with several aims. First, we estimated genetic 

correlations between AN, AN subtypes, and both BE phenotypes to assess the genetic 

relationships among these eating disorder traits. Second, we calculated SNP-rg between 

AN/BE-BROAD and 225 traits covering eight categories: 1) psychiatric trait or disorder, 2) 

substance use, 3) psychological/personality/behavioural, 4) anthropometric, 5) metabolism, 

6) blood, 7) sociodemographic, and 8) somatic trait or disease. We selected these traits from 

an internal catalogue based on their power (h2
SNP Z-score > 4) 82. To assess statistical 

significance, we applied a Bonferroni-corrected P-value threshold of 2.20 x 10-4 based on 

225 traits. If, according to this threshold, AN and/or BE-BROAD was significantly genetically 

correlated with another trait, we used the LDSC block-jackknife procedure (described in 

more detail in Appendix S1 of Hübel et al 83) to statistically compare the SNP-rg between AN 

and BE-BROAD (Bonferroni-corrected P-value threshold of 2.20 x 10-4). 

 To further investigate the genetic difference  between BE-BROAD and AN we used 

CC-GWAS 14. CC-GWAS uses GWAS summary statistics to test for differences between 
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cases of two phenotypes, as opposed to a traditional GWAS that tests for differences 

between cases and controls. We used BE-BROAD and AN summary statistics including non-

ambiguous SNPs from HapMap 3 with INFO � 0.6 and MAF >= 0.01. We used the liability-

scale h2
SNP, the SNP-rg and associated covariate intercept between both traits as input. We 

furthermore set the AN population prevalence to 1.5% (range 0.1 - 4.3%) and 7% for BE-

BROAD (range 0.1 - 10%), and approximated the number of effective loci to be 10,000–

consistent with psychiatric disorder polygenicity 14. We additionally defined the number of 

independent CC-GWAS loci with PLINK 1.9 (—clump-p1 5e-8 —clump-p2 5e-8 —clump-r2 

0.1 —clump-kb 3000) and defined a genome-wide significant SNP if its P-value is < 5 x 10-8 

in the CC-GWAS OLS test and P-value < 10-4 in the CC-GWAS exact test. Further, CC-

GWAS calculates genetic distances between cases and controls of the two traits using 

�� � ���,������  based on liability-scale h2
SNP, SNP-rg, population prevalence and the number 

of independent causal variants of the two traits. 

 

Influence of BMI 

 We used GWAS-by-subtraction 15, an application of genomicSEM 84, in R v4.3.1 85 to 

estimate the proportion of variance in BE-BROAD and AN independent of BMI 

(Supplementary Methods). Shared genomic covariance across traits is expected due to 

pleiotropy. Latent genomic structural equation modelling (Genomic SEM) factors explicitly 

model this covariance, making results less influenced by spurious biases than would 

conditioning on phenotypic traits in a GWAS 86. We used GWAS summary statistics from BE-

BROAD, AN and BMI 16.  

We specified a structural equation model that regressed both sets of summary 

statistics on a shared variable ("BMI") and a non-BMI variable ("non-BMI") for each eating 

disorder trait, respectively (Supplementary Figure 27). Specifically, we specified the two 

latent variables as a function of BMI and (e.g.) BE-BROAD: “BMI =~ NA * BEBROAD + 

start(0.4) * BMI” and “NonBMI =~ NA * BE-BROAD”. In line with the GWAS-by-subtraction 
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specification as it has previously been applied 15, we additionally set the variance of the 

latent variables to 1 and a covariance of 0, and constrained the model so all (co)variance in 

BMI and BE-BROAD was captured by BMI and NonBMI. We used the diagonally-weighted 

least squares estimator, which is the default setting in Genomic SEM 84, and a tolerance of 1 

x 10-40. Additional computational settings are shown in Supplementary Table 27. We then 

regressed the two latent factors on individual SNPs yielding a GWAS of the latent variables 

BMI and NonBMI. We subsequently used LDSC 62 to calculate SNP-rg of the NonBMI factor 

with all traits identified in initial genetic correlations. As a sensitivity analysis, we restricted 

our BE-BROAD sample in our GWAS to cohorts that were not ascertained for AN, reasoning 

that this might better capture binge-eating behaviour outside of AN. We applied the same 

GWAS-by-subtraction model on that selection of cohorts (listed in Supplementary Table 10).  

We also conducted exploratory two-sample Mendelian randomisation analyses of 

BE-BROAD with BMI and AN with BMI, testing causal effects in both directions. We used 

SNPs in linkage equilibrium as genetic instruments, with P < 5x10-6 for BE-BROAD and AN, 

and P < 5x10-9 for BMI 16. We repeated analyses using the NonBMI factor GWAS of BE-

BROAD and of AN. To ensure our analyses were robust to potential violations of the 

assumptions of Mendelian randomisation, we conducted analyses using multiple methods in 

R 4.3.2, including the packages TwoSampleMR, MendelianRandomisation, and MR-

PRESSO (Supplementary Methods) 85,87,88. These were inverse-variance weighted analysis, 

MR-Egger, mode-based estimation and median-based estimation. We determined the 

strength of association of our genetic instruments using the F-statistics 89. We used 

Cochran's Q-statistic to test for instrument heterogeneity, with p < 0.05 indicating 

heterogeneity 90. To investigate potential confounding via horizontal pleiotropy, we assessed 

the deviation of the MR-Egger intercept from 0, and performed a global bias test in MR-

PRESSO. We excluded from the analysis SNPs identified by MR PRESSO as pleiotropic. 

We ran further methods robust to heterogeneity, including the penalised weighted median 
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estimator, the contamination mixture method, and MR-Lasso 91. We assessed results 

visually (Supplementary Methods).   

 

Identification of gene-tissue associations with ED phenotypes 

We used S-PrediXcan 17 to identify genetically regulated gene expression associated 

with our phenotypes. We tested the association of gene expression with our ED traits using 

available GTEx v8 MASHR 17,65,66 and CommonMind DLPFC 67,68 tissue models. MASHR-

based PredictDB models use fine-mapping methods for selection of eQTLs included in the 

predictor models, improving prediction 17,65,66. We included 45 GTEx v8 MASHR models, 

removing non-natural tissues (cell lines), tissues with N<100 individuals (kidney cortex), and 

testis 69. We performed liftover of our GWAS summary statistics to hg38, harmonisation, and 

imputation based on recommended preprocessing by Barbeira et. al 65 using GWAS tools 

(see URLs). We established two different Bonferroni significance thresholds: an experiment-

wide threshold, where we corrected for 600,382–602,744 tests performed across all tissues 

(P < 0.05/TestsTotal = P < 8.32 x 10-8), and a tissue-specific threshold, where we corrected for 

varying numbers of tests performed within each tissue (P < 0.05/TestsTissue X, Supplementary 

Table 15). We performed two-tailed exact binomial tests for tissue enrichment using 

binom.test() in R for associations at three different significance thresholds: experiment-wide 

significant (P < 0.05/TestsTotal), tissue-specific significant (P < 0.05/TestsTissueX), and 

nominally significant (P < 0.05). We reported results with a focus on central nervous system 

tissues (brain and cervical spinal cord) and gastrointestinal tissues (oesophagus, colon, 

stomach, and small intestine). 

 S-MultiXcan is a summary-level method for measuring the joint association of 

genetically regulated gene expression across tissues with a phenotype of interest, 

leveraging shared eQTLs across tissues 70. Using our GTEx v8 MASHR S-PrediXcan results 

as input, along with MASHR models, and harmonized, imputed GWAS summary statistics, 

we ran S-MultiXcan on each of our ED traits for all genes (N=22,241). S-MultiXcan gives as 
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output the p-value for association of multi-tissue gene expression with the trait of interest (S-

MultiXcan P), along with best single-tissue p-value. In order to account for potential false 

positive associations, we removed any significant S-MultiXcan associations where the single 

best tissue p-value was greater than 1x10-4 70. We set a Bonferroni significance threshold for 

our results, correcting for the number of genes tested in our S-MultiXcan analysis (P < 

0.05/22,241 = 2.25 x 10-6). 

 

Gene-wise and gene set analysis, including drug target and drug class analyses 

Following a previously published approach 71, we used MAGMA v1.10 18 to test the 

association between each phenotype and 1) the aggregate effect of SNPs mapped to 

protein-coding genes (gene analysis); 2) groups of genes with shared functional, biological, 

or other characteristics (gene-set analysis); 3) a gene-set analysis restricted to genes 

targeted by drugs (drug-set analysis) and 4) the enrichment of signal within classes of drug. 

We restricted SNPs to those with MAF >= 0.01, INFO >= 0.6, and which are present in 80% 

of the total sample and 50% of the cohorts. We mapped SNPs to protein-coding genes, 

applying a 35 kb upstream and 10 kb downstream window around hg19 gene positions from 

Ensembl release 75 72. We obtained P-values with the multi = snp-wise model, which 

combines the lowest and mean P-values of all SNPs mapped to the gene. We tested 

19,332-19,418 ENSEMBL genes across the five phenotypes and applied a Bonferroni 

correction of P < 2.60 x 10-6. We used the 1kGP reference panel for estimating between-

SNP LD.  

For gene-set analyses, we applied a competitive analysis, which regresses the 

phenotype on the mean effect of genes within the gene set, with the mean effect of genes 

outside the gene set as a covariate. We defined biological pathways based on gene ontology 

and canonical pathways from MSigDB v6.1 and psychiatric pathways identified from the 

literature. We tested 7324-7325 pathways across the five phenotypes and applied a 

Bonferroni correction of P < 6.83 x 10-6.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2025. ; https://doi.org/10.1101/2025.01.31.25321397doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.31.25321397
http://creativecommons.org/licenses/by/4.0/


 

 

43 

For drug-set analyses, we defined drug sets based on drug targets from the Drug-

Gene Interaction database DGIdb v4.2.0 73; the Psychoactive Drug Screening Database Ki 

DB 74; CheMBL v27 75; the Target Central Resource Database v6.7.0 76; and DSigDB v1.0 77, 

all downloaded in October 2020. We applied a competitive analysis and subsequently 

grouped the results based on the Anatomical Therapeutic Chemical class of the respective 

drugs 78. For drug-class analysis, we first ranked all drug-gene sets according to their 

association in the drug-set analysis. We then generated enrichment curves for specific drug 

classes, assigning a ‘hit’ if the drug-gene set belonged to the class or a “miss” if it was 

outside the class. We calculated the area under the curve and determined statistical 

significance with the Wilcoxon Mann-Whitney test, comparing drug-gene sets within the 

class to those outside the class. We applied a Bonferroni correction of P < 3.23 x 10-5 (based 

on 1546-1547 drug sets) for the drug-set analysis and P < 3.08 x 10-4 (based on 162 drug 

classes) for the drug-class analysis to account for multiple testing.  

 

Tissue and cell-type specific analyses 

To identify relevant tissues and cell-types related to the common genetic risk of BE-

BROAD and AN, we performed tissue and cell-type heritability (h2
SNP) enrichment analyses. 

First, we analysed the enrichment of h2
SNP in 27 tissues from the GTEx gene expression data 

(v8) after excluding tissues with less than 100 donors, non-natural tissues (such as cell 

lines), and testis tissues (since it was an expression outlier) 79. Second, we analysed 

enrichment of h2
SNP in 31 superclusters and 461 cell clusters based on the single-nucleus 

RNA sequencing data including over three million nuclei from around 100 dissections across 

the adult human brain 22. Within each expression dataset, we calculated the specificity of 

gene expression per tissue or cell type (superclusters and clusters separately), defined as 

the expression of each gene (counts per million, CPM) in a tissue or cell type (i.e., the 

superclusters and clusters respectively) divided by the total expression of this gene across 

all tissues or cell types in the dataset 80. We then used the genes with the top 10% specificity 
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in each tissue or cell type to perform the heritability enrichment analysis using stratified 

LDSC 80,81. Specifically, we compared the per-SNP heritability of SNPs within 100kb 

flankings of the top 10% specific genes and the per-SNP heritability of other SNPs, using the 

baseline model that adjusted for 53 baseline annotations 81. We then used the coefficient z-

scores to calculate the one-sided p-values. Finally, we accounted for multiple comparisons 

by calculating FDR per trait for the GTEx dataset (27 tests), the human brain superclusters 

(31 tests) and clusters (461 tests) respectively.  

 

Polygenic prediction 

We used PRS-CS 92 to generate polygenic risk scores (PRS) for BE-BROAD and AN. 

First, we performed leave-one-cohort-out (LOO) analyses to generate LOO GWAS summary 

statistics from all cohorts except the target cohort and used this as the base data to calculate 

individual-level PRS in each target cohort. We included non-ambiguous SNPs with INFO ≥ 

0.6 and MAF ≥ 0.01 in the PRS calculation. We used the 1000 Genomes Project Phase 3 

EUR reference as the LD reference panel and provided median sample size per LOO meta-

analysis as input for PRS-CS. Posterior SNP effect size estimates from PRS-CS were then 

combined across chromosomes to calculate individual PRS via PLINK (--score 2 4 6 sum) 93. 

We standardised the individual PRS by applying the scale function in R (version  4.3.2) 85. 

Using the standardised PRS scores, we first assessed the proportion of variance explained 

by PRS for each phenotype through calculating the nested Nagelkerke’s pseudo-R2 (that is, 

the pseudo-R2 of the full model minus that of the model excluding the PRS) 94. The inclusion 

of target cohorts for each phenotype was based on the effective sample size (Neff half > 

1000), study characteristics, and availability of individual-level data (more detailed 

information in the Supplementary Methods). Logistic regression was performed for BE-

BROAD and AN PRS on BE-BROAD and AN, adjusting for cohort-specific PCs. We then 

converted the variance explained by each PRS (R2) to the liability scale using population 

prevalences of BE-BROAD and AN as used for LDSC 95. In addition, we divided individuals 
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into ten PRS decile groups and assessed their relative risk of BE-BROAD and AN compared 

to the group of individuals in the lowest PRS decile. We also examined predictive 

performance of each PRS regarding their sensitivity, specificity, and precision to predict BE-

BROAD and AN status using the pROC 96 and pracma 97 packages in R by comparing the 

area under the curve (AUC) of the receiver operating characteristic (ROC) curve and the 

precision recall (PR) curve of the full model including PRS and PCs as predictors against the 

null model including PCs only as predictors.  

We used female-only GWAS summary statistics as base data in PRS-CS 92 to assess 

whether female BE-BROAD PRS could be applied to male individuals to assess their BE-

BROAD risk in three cohorts (alsp, moba, ukd2, Ncase_male_total=1,055, Ncontrol_male_total=38,046). 

The same analysis was performed to examine the association of female AN PRS with male 

AN risk in three cohorts (ukb2, fngn, ipsy, Ncase_male_total=1,524, Ncontrol_male_total=388,891). 

We assessed whether the levels of BE-BROAD and AN PRS differed across 

subgroups, including a) those with BE-BROAD only, b) those with both BE-BROAD and AN, 

and c) those with AN only. Target cohorts for this analysis included cohorts with sufficient 

data available on some/all subgroups (Supplementary Methods, Supplementary Table 1). 

Specifically, we selected aunz and sedk to assess individuals with both BE-BROAD and AN 

and to assess the AN only group. We selected ukb2 and ukd2 for assessing BE-BROAD and 

AN PRS levels in all subgroups. We assessed differences between subgroups and controls 

by performing linear regression on each PRS for each subgroup compared to controls, 

adjusting for cohort-specific genetic PCs. In addition to setting controls as the reference 

group, we also set different subgroups as the reference group to compare differences in BE-

BROAD PRS and AN PRS across different subgroups.  

Last, we generated AN PRS from the main meta-analysis – including solely 

individuals of European genetic ancestry – and applied this to two East Asian cohorts  

(Ncase=77, Ncontrol=117 in a Japanese cohort, Ncase=75, Ncontrol=109 in a Korean cohort). 

Korean data were merged with Japanese data from GCAN cohorts. The same pre-
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imputation quality control and imputation method used for the European cohorts was 

conducted. High quality data for imputation were available for 75 AN cases and 109 controls 

from the Korean cohort and 77 AN cases and 117 controls from the Japanese cohort. We 

used the 1000 Genomes Project Phase 3 EUR reference as the LD reference panel for PRS, 

as the reference panel should align with the ancestry in the base GWAS 92. We used the 

European AN prevalence estimate for liability scale conversion, as estimates of AN 

prevalence in East Asia are sparse and what estimates exist are approximately consistent 

with estimates in countries with primarily European genetic ancestries 98. 

 

Sensitivity analyses using down-sampled BE-BROAD data 

A considerable portion (13%) of the cases for the BE-BROAD GWAS includes 

individuals who were recruited through studies that focussed on AN ascertainment. Even 

though the BE-BROAD phenotype is expected to be heterogeneous given its transdiagnostic 

nature, we sought to understand the influence of AN on this BE-BROAD phenotype. We 

therefore conducted an additional BE-BROAD meta-analysis where we excluded individuals 

with BE-BROAD who were identified in cohorts that were specifically ascertained for AN 

(e.g., the ANGI cohorts). This resulted in an additional analysis including 87% of the BE-

BROAD GWAS, consisting of the following cohorts: sebe, agds, alsp, biov, esbb, fngn, jans, 

moba, ukb2, ukd2). We then calculated SNP-rg to compare the genetic relationship of the 

“non-AN-ascertained” BE-BROAD GWAS and the original BE-BROAD GWAS with selected 

traits significantly correlated with the original BE-BROAD GWAS or with the AN GWAS 

(hypothesising that AN-related effects may mask or drive genetic correlations between such 

traits and the original BE-BROAD GWAS). 
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URLS 

TopMED Hg37 VCF: https://ftp.ensembl.org/pub/grch37/release-

113/data_files/homo_sapiens/GRCh37/variation_genotype/TOPMED_GRCh37.vcf.gz  

TopMED Hg38 VCF: https://ftp.ensembl.org/pub/grch37/release-

113/data_files/homo_sapiens/GRCh38/variation_genotype/TOPMED_GRCh38.vcf.gz  

LiftOver: https://ftp.ensembl.org/pub/grch37/release-

113/data_files/homo_sapiens/GRCh38/variation_genotype/TOPMED_GRCh38.vcf.gz 

SPrediXcan best practice:  https://github.com/hakyimlab/MetaXcan/wiki/Best-practices-for-

integrating-GWAS-and-GTEX-v8-transcriptome-prediction-models 

GWAS tools:  

https://github.com/hakyimlab/summary-gwas-imputation/wiki/GWAS-Harmonization-And-

Imputation  
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