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ABSTRACT 

Objective: Accurate and timely epilepsy diagnosis is crucial to reduce delayed or 

unnecessary treatment. While language serves as an indispensable source of information for 

diagnosing epilepsy, its computational analysis remains relatively unexplored. This study 

assessed – and compared – the diagnostic value of different language model applications in 

extracting information and identifying overlooked language patterns from first-visit 

documentation to improve the early diagnosis of childhood epilepsy. 

Methods: We analyzed 1,561 patient letters from two independent first seizure clinics. The 

dataset was divided into training and test sets to evaluate performance and generalizability. 

We employed two approaches: an established Naïve Bayes model as a natural language 

processing technique, and a sentence-embedding model based on the Bidirectional Encoder 

Representations from Transformers (BERT)-architecture. Both models analyzed anamnesis 

data only. Within the training sets we identified predictive features, consisting of keywords 

indicative of ‘epilepsy’ or ‘no epilepsy’. Model outputs were compared to the clinician’s final 

diagnosis (gold standard) after follow-up. We computed accuracy, sensitivity, and specificity 

for both models. 

Results: The Naïve Bayes model achieved an accuracy of 0.73 (95% CI: 0.68-0.78), with a 

sensitivity of 0.79 (95% CI: 0.74-0.85) and a specificity of 0.62 (95% CI: 0.52-0.72). The 

sentence-embedding model demonstrated comparable performance with an accuracy of 0.74 

(95% CI: 0.68-0.79), sensitivity of 0.74 (95% CI: 0.68-0.80), and specificity of 0.73 (95% CI: 

0.61-0.84). 

Conclusion: Both models demonstrated relatively good performance in diagnosing childhood 

epilepsy solely based on first-visit patient anamnesis text. Notably, the more advanced 

sentence-embedding model showed no significant improvement over the computationally 

simpler Naïve Bayes model. This suggests that modeling of anamnesis data does depend on 
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word order for this particular classification task. Further refinement and exploration of 

language models and computational linguistic approaches are necessary to enhance 

diagnostic accuracy in clinical practice. 
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1. INTRODUCTION 

Epilepsy significantly impacts psychosocial well-being and can adversely affect health-

related quality of life.1,2 This impact is particularly concerning in children, where recurrent 

seizures can interfere with normal brain development, potentially leading to cognitive and 

behavioral impairments.3–5 These serious consequences underscore the critical importance of 

obtaining an early and accurate diagnosis of epilepsy. 

Diagnosing epilepsy presents significant challenges due to its polymorphic nature.6–8 

Research has shown that nearly half of the patients assessed for initial seizures were already 

experiencing recurrent, undiagnosed seizures at the time of evaluation. While diagnostic time 

is typically brief for clearly identifiable cases of epilepsy, it can extend beyond a year for 

complex or ambiguous presentations.9,10 This diagnostic uncertainty can have serious 

consequences: diagnostic delays expose children to ongoing seizures that may impair 

cognitive development, while false-positive diagnoses can lead to unnecessary administration 

of antiseizure medications with potential adverse effects.11–13 

Language plays a fundamental role in epilepsy diagnosis, treatment evaluation, and 

patient care management. Clinicians rely heavily on patient history and narrative to distill 

relevant clinical information.14 This makes collected text a rich and versatile medium for 

gaining deep insight into the patient’s condition—an essential component for a 

comprehensive approach to epilepsy care. Despite advances in ancillary investigations, 

clinical information from patient records remains indispensable for diagnosing and 

monitoring epilepsy.15–17 However, this wealth of information is often stored in electronic 

health records in an unstructured manner, limiting its optimal utilization in clinical decision-

making.18  

The emergence of natural language processing (NLP) offers a promising solution for 

systematically processing this unstructured textual data. NLP, a form of artificial intelligence, 
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specializes in the computational analysis of spoken and written language to identify general 

patterns and trends and extract relevant information.19–21 This involves converting 

unstructured text into a structured format and applying computational algorithms to analyze 

these structured features, enabling the retrieval of desired information. 

In epilepsy research, there is a growing trend toward NLP applications, including 

patient identification, risk stratification, and outcome prediction. In clinical settings, NLP can 

contribute significantly to the early detection and classification of medical conditions, thereby 

reducing time to diagnosis and treatment.18 Recent advances have led to improved NLP 

models with new generative properties, known as large language models (LLMs).22–24 The 

essence of these models is a transformer architecture with an attention-layer, allowing both an 

efficient representation and retrieval of relevant information in (textual) data.24 Despite the 

potential of these more advanced language models, their applicability for early diagnosis of 

epilepsy based on medical documentation remains limitedly explored.25–27 This study aims to 

assess—and compare—the diagnostic value of different NLP approaches using medical 

letters from first consultations to facilitate the early diagnosis of childhood epilepsy. 

 

 

2. METHODS 

2.1. Dataset 

Our analysis encompassed 1,561 medical patient letters, with 1,250 originating from 

University Medical Center Utrecht (UMCU) and 311 from Martini Hospital Groningen 

(MZG). We retrospectively collected data from children (age < 18 years) referred to the First 

Seizure Clinic (FSC) between 2008 and May 2022. These data were originally collected for 

previously published studies focusing on prediction model development for childhood 

epilepsy and the clinical characteristics and diagnoses of children referred to an FSC.28,29 The 
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institutional ethics committee of both University Medical Center Utrecht and Martini 

Hospital approved the use of anonymized retrospective data for research purposes with- out 

informed consent. 

All patient letters were either written and/or supervised by experienced pediatric 

neurologists. For each patient, we included both the initial diagnosis (established after FSC 

consultation) and the final diagnosis (reached through consensus among doctors and/or 

ancillary investigations at the latest follow-up, recorded within a two-year period). Follow-up 

occurred for children with inconclusive diagnoses at the first consultation and for those 

initially diagnosed with epilepsy. Children whose epilepsy diagnosis was ruled out were 

referred back to their referral specialist or general practitioner for follow-up. 

Both initial and final diagnoses were categorized into three groups: ‘epilepsy’, ‘no 

epilepsy’, and ‘unclear’ (Figure 1) and served as the model’s outcome. All epilepsy 

diagnoses were established according to the International League Against Epilepsy definition 

of epilepsy.30 A diagnosis was classified as ‘unclear’ at the initial stage if ancillary 

investigations were deemed necessary to confirm or reject the epilepsy diagnosis. The final 

diagnosis was classified as ‘unclear’ if, despite further investigations, uncertainty remained 

about whether the events were indeed epilepsy-related.7 

 

2.2. Study Design 

We conducted a retrospective analysis of the letters to assess the clinical value of language 

models for early diagnosis of childhood epilepsy. This was achieved through binary text 

classification, specifically by training classification models based on textual features and 

predicting the class of new texts within the ‘epilepsy’ and ‘no epilepsy’ patients. To reduce 

interpretative bias, we exclusively used textual information from patient anamnesis, 
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excluding subjective information from ancillary investigations, conclusions, treatment plans, 

and clinical considerations. 

Our study involved two distinct analyses. Analysis A: we combined data from both 

hospitals and randomly divided it into a training set (80%; 1,173 subjects) and a test set 

(20%; 293 subjects). To ensure representative distribution of final diagnoses in both sets, we 

applied stratification based on the final diagnosis groups. Analysis B: we created a separate 

test set comprising all 316 subjects that remained unclear after initial FSC evaluation. This 

second analysis aimed to determine whether the model could accurately classify initially 

unclear cases as either having epilepsy or not (Figure 1). 

The letter corpus exhibited considerable variation in textual length, ranging from 63 

to 1,070 words, with a median of 400 words and a mean of 414 words. Four cases (three from 

the UMC Utrecht; two male subjects) were excluded from the training set due to their 

succinct nature, consisting of only single sentences in their amnestic report. 

 

2.3 Naïve Bayes Model  

We used a Naïve Bayes classifier as NLP approach, giving its simplicity and effectiveness in 

text classification. The essence of the model is the application of Bayes’ theorem, assuming a 

strong independence between features.31,32 Model development contained three phases: data 

preprocessing, data analysis with feature selection, and classification (Figure 2). 

Data preprocessing – Preprocessing encompasses several key steps including corpus 

creation, tokenization, data cleaning, lowercasing, n-gram generation, and stop word removal. 

Creating a corpus involves collecting and organizing a substantial amount of textual data in a 

structured manner to facilitate systematic analysis and processing. Text was then divided into 

tokens (i.e., words) through tokenization. Undesired characters, such as punctuation marks, 

symbols, URLs, and separators, were omitted (data cleaning). Lowercasing converted all 
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characters in the text to lowercase letters, ensuring consistency across the tokens. Afterwards, 

n-grams were generated, with a maximum n-value of 2. N-grams are sequences of 

consecutive words and will be used as features for the text classification model. It was 

decided to generate unigrams (single words such as “trekkingen” (“jerks”)) and bigrams 

(pairs of consecutive words such as “geen_trekkingen” (“no_jerks”)). The final step involved 

removing stop words from the generated n-grams. Removing stop words after generating n-

grams ensures that some meaningful bigrams are retained, even if they contain stop words 

(e.g., “geen_koorts” (“no_fever”) may be retained while “geen” (“no”) and “koorts” 

(“fever”) may individually be stop words). Stop words contain common words including 

prepositions, personal pronouns, units, and auxiliary verbs that lack informativeness and may 

interfere with model development. After the preprocessing step, the dataset was split into 

training and test sets.  

Data analysis – We created a document-feature matrix (DFM) for the training set to enable 

structured analysis of text data, representing documents (letters) as rows and features (i.e., all 

n-grams) as columns. The matrix values represented the frequency of a features in each letter, 

creating a Bag-of-Words (BoW) model.33 In this model the input text is represented as a 

collection of words, disregarding the order in which they appear. We applied Term 

Frequency-Inverse Document Frequency (TF-IDF) to weigh features based on their 

frequency in individual letters. TF-IDF reduces the influence of frequently occurring features 

while emphasizing more informative ones.  

Feature selection – Feature selection was achieved through Recursive Feature Elimination 

(RFE) with 5-fold cross-validation. RFE identified the top 300 features that were most 

informative for the model’s performance. A selection of 300 features was based on 

theoretical and practical reasons. Firstly, we wanted to follow the rule of thumb that 

recommends one feature per ten cases to minimize overfitting and optimize model 
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performance. As the dataset is of medium size, we adjusted this rule to one feature per five 

cases, resulting in the selection of 300 features. Secondly, the literature supports this 

selection, as studies frequently use between 200 and 300 features to capture significant 

patterns while minimizing noise, thereby enhancing the robustness and generalizability of the 

model. Thirdly, fewer features improve computational efficiency, making the model more 

practical for implementation. Moreover, fewer features improve the model’s interpretability 

and transparency, facilitating a better understanding of which variables contribute to its 

predictions. As a hyperparameter for the Naive Bayes model, the smoothing parameter (α) 

was added to prevent zero probabilities.  

 

2.4. Sentence-embedding Model and Subsequent Classification 

This study also employed a classification model to predict epilepsy diagnoses based on 

patient text records that takes—in contrast to the BoW approach—word sequence into 

account. First, textual data underwent systematic preprocessing. Initial preprocessing steps 

included case normalization to lowercase, standardization of special characters to their lexical 

equivalents, removal of extraneous punctuation marks, and normalization of whitespaces. 

Next, the processed texts were then embedded using a freely-available multilingual 

embedding (i.e., the paraphrase-multilingual-mpnet-base-v2 transformer model).* The 

embedding model implements the Sentence-BERT architecture to generate a contextualized 

768-dimensional semantic vector representations for each text, irrespective of its length.34 

This embedding model was selected for its capacity to preserve both sequential word order 

information and cross-lingual semantic relationships. Third, the resulting high-dimensional 

embeddings served as input features for a gradient boosting classifier implemented through 

the XGBoost framework in R.35 The binary classification model employed a linear booster 

                                                       
*

 https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2 
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with default hyperparameters, leveraging sequential tree building to iteratively optimize the 

prediction objective while maintaining computational efficiency. 

 

 

 

2.5. Performance Evaluation 

Performance evaluation utilized confusion matrices to compare actual and predicted 

classifications through decision statistics from contingency tables. We compared each 

model’s output to the clinician’s final diagnosis (gold standard). Key performance metrics 

included: accuracy (i.e., the proportion of correct classifications), sensitivity (true positive 

rate), and specificity (true negative rate). All evaluation analyses were performed using R 

software, version 4.4.0. 

 

3. RESULTS 

3.1 Data Characteristics 

The median age at the first seizure was 4.5 years (95% CI: 4.0-4.9). The maximum age 

recorded was 17.8 years, while the minimum age was 1 month. The majority of patients were 

male, comprising 853 individuals (54.6%). After the first consultation, 366 diagnoses were 

classified as ‘epilepsy’, 795 as ‘no epilepsy’, and 400 as ‘unclear’. According to the final 

diagnoses, 514 diagnoses were classified as ‘epilepsy’ (413 from UMCU and 101 from 

MZG), 958 as ‘no epilepsy’ (767 from UMCU and 191 from MZG), and 89 as ‘unclear’ (70 

from UMCU and 19 from MZG). The data characteristics are presented (Table 1A, 

Supplementary Materials). 

 

3.2. Most Important Features 
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The Term Frequency-Inverse Document Frequency identified several key features most 

characteristic for the epilepsy classification texts. Notable predictive n-gram feat1ures 

included: “spray” (“spray”), “kwijlde” (“drooled”), “haar_mond” (“her_mouth”), 

“insult_doorgemaakt” (“experienced_insult”), “dubbele tong)” (“slurred_speech”) and 

“afgelopen_dagen” (“last_days”). Some features directly reflected clinical observations or 

descriptions that frequently appear in letters of epilepsy patients, while others, such as 

“afgelopen_dagen” (“last_days”) showed less obvious connection to epilepsy. Lists of the 

most important features, for the epilepsy as well as the control group, are provided in Figure 

3. 

 

3.3. Classification Model Performance 

Analysis A - The performance of the language models was evaluated on a test set of 293 

letters. The Naïve Bayes model correctly identified 62 letters as positive and 153 as negative, 

resulting in 40 false positives and 30 false negatives, with an overall accuracy of 0.73 (95% 

CI: 0.68-0.78). The Sentence-embedding model correctly identified 40 letters as positive and 

176 as negative, classifying 62 false positives and 15 false negatives, with an overall 

accuracy of 0.74 (95% CI: 0.68-0.79). An overview including sensitivity, specificity, PPV 

and NPV is provided (Table 1).  

Analysis B - The performance of the language models was evaluated on a test set of 319 

letters with an ‘unclear’ diagnosis. The Naïve Bayes model correctly identified 60 letters as 

positive and 173 as negative, resulting in 37 false positives and 46 false negatives, with an 

overall accuracy of 0.74 (95% CI: 0.69–0.79). The Sentence-embedding model correctly 

identified 31 letters as positive and 196 as negative, classifying 66 false positives and 23 false 

negatives, with an overall accuracy of 0.72 (95% CI: 0.67–0.77). An overview including 

sensitivity, specificity, PPV and NPV is provided (Table 1).  
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4. DISCUSSION 

This study evaluated and compared different language model applications for improving 

early diagnosis of childhood epilepsy through automated analysis of first-visit 

documentation. Our findings revealed comparable performance between the simpler Naïve 

Bayes model and the more advanced Sentence-embedding model, with both achieving 

moderate to good diagnostic accuracy. Notably, both models demonstrated higher specificity 

than sensitivity across all analyses, suggesting particular utility in helping clinicians rule out 

epilepsy diagnoses and identify cases requiring additional investigation. Previous research 

has established the value of NLP in various aspects of epilepsy care, including patient 

identification,36–38 information retrieval,39–41 and coping strategies.42,43 Recent studies have 

begun exploring language applications in early clinical phenotyping and genetic 

epilepsies.44,45 However, our study uniquely addresses the specific challenges of early 

childhood epilepsy diagnosis, where textual analysis holds particular promise given the 

heterogeneous presentation of symptoms. 

The performance metrics should be considered in context of the model performance: 

our models relied solely on patient narratives, deliberately excluding information from EEG 

reports, clinical evaluations, and medical conclusions. From this perspective, the application 

of language models could even be used in the early phase of clinical evaluation of child 

suspected of epilepsy. Interestingly, the transformer-based Sentence-embedding model – 

which takes word order into account – demonstrates no significant improvement over the 

Naïve Bayes model. The Naïve Bayes model is regarded as a robust classification model, 

even when working with limited data and feature sets.31 Transformer-based language models 

perhaps require longer text sequences to effectively recognize desired patterns, particularly in 
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cases with less variation in language utilization. With limited text input, simpler models can 

offer greater practical value in practice, where speed, simplicity and apprehensibility often 

take precedence in the implementation within clinical workflows. The achieved accuracy 

levels suggest potential value for early-stage screening and decision support. 

Interestingly, our study revealed that both obvious as less obvious words (or 

combinations) are of additional value for correct classification. The use of epilepsy-related 

terminology could reflect the physician’s (implicit) evaluation of the clinical case during 

consultation. Unrelated word (combinations) with no obvious relation to epilepsy that were 

classified as relevant features for model develop may represent either underlying linguistic 

patterns common in epilepsy-related letters, or potential limitations in the model’s feature 

selection process. Previous efforts in the field have revealed similar insights into the non-

semantic evaluation of patient history, and showed that hesitations and formulation efforts 

might be of additional value when diagnosing epilepsy.46,47 Future research efforts should 

therefor a comparison of different language model approaches to further elucidate the true 

value of these implicit language information for diagnosing epilepsy. 

This study benefits from a substantial and diverse dataset collected from two 

hospitals, enhancing the robustness and generalizability of the model’s results. The 

retrospective nature and moderate size of our dataset are, however, potential contributors to 

the limited sensitivity and PPV of both models, thereby increasing the chance of missed 

epilepsy cases and false positives. Furthermore, performance was significantly higher on the 

training sets (not reported) compared to the test sets, indicating potential overfitting. 

Overfitting occurs when the model learns the textual details and noise in the training data, 

which impairs its generalizability to new data. This can result from excessive noise, an 

excessive number of features, irrelevant features, or insufficient training data. Equally 

important to consider is the imbalanced dataset we used (uneven class distribution), 
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predominantly consisting of letters from children with a 'no epilepsy' diagnosis. Imbalanced 

data can hinder a model's ability to learn the minority class, as (language) models often 

exhibit a preference for the majority class.48  

 From a model perspective, few limitations should be mentioned. A Naïve Bayes 

model is a relatively limited in its capacity to learn complex (textual) relations.31 The model 

does not adequately account for word order or combinations of words, potentially resulting in 

misinterpretations of negations and the overall meaning within clinical text. Confounding 

factors like typographical errors, abbreviations, double negations, and letters written by 

multiple authors can adversely affect the classification process. Additionally, RFE was 

applied to a subset of the top 8000 features (i.e., 300) due to computational constraints, 

possibly excluding relevant features. A general limitation of feature selection is the possible 

omission of rare but significant features, particularly in the context of rare diseases or 

syndromes. Technically, more word-order-oriented models could (partially) overcome the 

aforementioned model limitations due to their transformer-architecture in which meaningful 

textual relations are represented internally. Mechanism that drives these models to achieve 

such model properties remain difficult to grasp, prohibiting a better of understanding of these 

models.49,50 

Future research should incorporate a prospective design to explore the clinical 

applicability. Prospective studies enhance variable control, minimize data noise, and allow 

real-time language capture, thereby reducing biases and missing data. This would also allow 

to capture a recorded – instead of a written – patient history that would inevitably lead to new 

potential hidden language domain sources (e.g., phonology, prosody, syntax use) to improve 

epilepsy diagnosis.46,47 This could be particularly beneficial for LLMs as these models excel 

in retrieving ‘hidden’ textual association that might be use for classification. Enhancing 

algorithms, refining feature selection, and utilizing larger, more diverse datasets are essential 
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to improve diagnostic accuracy. Apart from methodological improvements, integration of 

language-based classification models with existing clinical diagnostic tools in epilepsy care 

would be a next step to explore its actual clinical value.28,51,52  

 

5. CONCLUSIONS 

Our study demonstrates that both simple and complex language models can achieve 

meaningful performance in supporting early childhood epilepsy diagnosis, even when limited 

to first-visit documentation. The comparable performance between Naïve Bayes and more 

sophisticated transformer-based language model suggests that simpler, more interpretable 

models may be preferable for initial clinical applications as long as the input data is limited in 

size and complexity. While further refinement is needed, these findings support the potential 

value of computational linguistic approaches in improving early epilepsy diagnosis and 

patient care. The higher sensitivity demonstrated by both models suggests particular utility in 

helping clinicians identify cases that do not require additional investigation, potentially 

streamlining the diagnostic process and reducing unnecessary testing. As these methods 

continue to evolve, their integration into clinical practice could provide valuable decision 

support for clinicians while maintaining the essential role of clinical expertise in final 

diagnostic decisions. 
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FIGURES AND TABLES 

 

 

 

Figure 1. Flowchart illustrating the diagnostic pathway for children referred to the FSC. The 

flowchart outlines the process from the first FSC consultation to the final diagnosis, 

including follow-up procedures. The diagnoses are categorized as ‘epilepsy’, ‘no epilepsy’, 

or ‘unclear’. 
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Figure 2. NLP workflow for classifying ‘epilepsy’ or ‘no epilepsy’ diagnosis based on 

unstructured letters from the first consultations. The process consists of three main stages: 

preprocessing, analysis, and application. 
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Figure 3. A graphical representation of the most prevalent features for each condition. TF-

IDF = Term Frequency-Inverse Document Frequency; to weigh features based on their 

frequency in individual letters. A complete translation list in English of features is provided 

(Table 2A, Supplementary Materials). 
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Analysis Model Accuracy Sensitivity Specificity PPV NPV 

A 
NB 

0.73 
(0.68–0.78) 

0.79 
(0.74–0.85) 

0.62 
(0.52–0.72) 

0.80 
(0.74–0.86) 

0.61 
(0.51–0.70) 

Sentence-
embedding 

0.74 
(0.68–0.79) 

0.74 
(0.68–0.80) 

0.73 
(0.61–0.84) 

0.92 
(0.88–0.96) 

0.39 
(0.30–0.49) 

B 
NB 

0.74 
(0.69–0.79) 

0.82 
(0.77–0.88) 

0.57 
(0.47–0.66) 

0.79 
(0.74–0.84) 

0.62 
(0.52–0.72) 

Sentence-
embedding 

0.72 
(0.67–0.77) 

0.75 
(0.70–0.80) 

0.57 
(0.44–0.71) 

0.89 
(0.85–0.94) 

0.32 
(0.23–0.41) 

 

 

Table 1. Model performance metrics for epilepsy diagnosis: test sets. NB = Naïve Bayes. 

Between parentheses = 95% Confidence Interval.  
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Appendix 

Table A1. Baseline characteristics of the data. 
 
Characteristics  Total, N (%) 

Medical letters after the first consultation  

UMCU 1250 (80.1) 

MZG 311 (19.9) 

Sex  

Female 708 (45.4) 

Male 853 (54.6) 

Age  

Median 4,5 

Mean 5,9 

Highest age 17.8 

Lowest age 0 

Epilepsy diagnosis after first consultation  

Epilepsy 366 (23.5) 

No epilepsy 795 (50.9) 

Unclear 400 (25.6) 

Epilepsy diagnosis after two years of follow-up  

Epilepsy 514 (32.9) 

No epilepsy 958 (61.4) 

Unclear 89 (5.7) 

Epilepsy diagnosis after two years of follow-up from UMCU  

Epilepsy 413 (33.0) 

No epilepsy 767 (61.4) 

Unclear 70 (5.6) 

Epilepsy diagnosis after two years of follow-up from MZG  

Epilepsy 101 (32.5) 

No epilepsy 191 (61.4) 

Unclear 19 (6.1) 

 
Abbreviations: N = total number, UMCU = University Medical Center Utrecht, MZG = Martini Hospital 
Groningen. 
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Table A2. A complete translation list of most prevalent features (Dutch-English) 
 

Features epilepsy group Features no epilepsy group 

Dutch English Dutch English 

Spray Spray Tevreden Satisfied 

Kwijlde Drooled Ontstaan Arise 

1_spray 1_spray Koortsstuip Febrile seizure 

Haar_mond Her_mouth Normaal_armen Normal_arms 

Insult_doorgemaakt Experienced_seizure Migraine Migraine 

Dubbele Double RR_na Bloodpressure_after 

Dubbele_tong Slurred_speech Moeder_en Mother_and 

Afgelopen_dagen Last_days Periode Period 

Smakt Smack Klachten Complaints 

Na_paar After_few Los Loose 

Insult_voorgeschiedenis Seizure_history Pakken Take 

Slijm Slime 2-3 2-3 

Komst_eerst Visit_first En_moeder And_mother 

Was_bleek Was_pale Leeftijd_van Age_of 

Niet_kon Not_abled Uren Hours 

Kon_hij Abled_he Hierover Hereof 

Draaien_naar Turning_after Een_andere Another 

Hij_lag He_laid Vanaf From 

Trof Found Anamnese_moeder Anamnesis_mother 

Moeder_hoorde Mother_heard Nek Neck 

Goed_geslapen Slept_good Met_wat With_wath 

Hemiparese Hemiparesis Geheel Complete 

Bij_familieleden With_family members Hard Hard 

Epileptisch_insult Epileptic_seizure Waarbij_ze Where_they 

Ouders_gescheiden Parents_divorced Peristaltiek Peristalsis 

Speeksel Saliva Verwijzer Refferer 

27 27 Geen_schokken No_shocks 

Eerste_epileptische  First_epileptic Mediaan_motoriek Median_motoric 

Deze_aanval This_attack Symmetrisch Symmetrical 

Kwijlen Drooling Uitsteken Protrude 
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