Breath Acetone Correlates with Capillary β -hydroxybutyrate in Type 1 Diabetes				
 Kai E. Jones, M.D.¹, Max C. Petersen, M.D., Ph.D.¹, Alexander M. Marko Maamoun Salam, M.D.¹, Petra Krutilova, M.D.¹, Alexis M. McKee, M.D.¹, Bohnert, M.S.¹, Samantha E. Adamson, M.D., Ph.D.¹, Janet B. McGill, 				
Author Affiliations: ¹ Di Washington University S	vision of Endocrinology, Meta School of Medicine, St. Louis,	abolism, & Lipid Research, MO, USA.		
Kai E. Jones Assistant Professor of Medicine 660 S. Euclid Campus Box 8127 St. Louis, MO 63110 314-561-2899 kaijones@wustl.edu	Max C. Petersen Assistant Professor of Medicine 660 S. Euclid Campus Box 8127 St. Louis, MO 63110 314-362-8450 max.p@wustl.edu	Alexander Markov 201 BJC St. Peters Dr St. Peters, MO 63376 636-916-9476 alexander.markov@bjc.org		
Maamoun Salam Associate Professor of Medicine 660 S. Euclid Campus Box 8127 St. Louis, MO 63110 314-747-3979 salamm@wustl.edu	Petra Krutilova Assistant Professor of Medicine 1725 W Harrison St Prof. Building Ste. 250 Chicago, IL 60612 312-942-6163 Petra_krutilova@rush.edu	Alexis M. McKee Adjunct Faculty 660 S. Euclid Campus Box 8127 St. Louis, MO 63110 314-273-4510 ammckee@wustl.edu		
Kathryn L. Bohnert 660 S. Euclid Campus Box 8127 St. Louis, MO 63110 314-273-3929 bohnertk@wustl.edu	Samantha Adamson Instructor in Medicine 4921 Parkview Place, 13th Floor Suite B St. Louis, MO 63110 314-561-2903 sadamson@wustl.edu	Janet B. McGill Professor of Medicine 660 S. Euclid Campus Box 8127 St. Louis, MO 63110 314-362-8681 jmcgill@wustl.edu		
	Breath Acetone Corr Kai E. Jones, M.D. ¹ , Maamoun Salam, M.D Bohnert, M.S. ¹ , Sa Author Affiliations: ¹ Di Washington University S Kai E. Jones Assistant Professor of Medicine 660 S. Euclid Campus Box 8127 St. Louis, MO 63110 314-561-2899 kaijones@wustl.edu Maamoun Salam Associate Professor of Medicine 660 S. Euclid Campus Box 8127 St. Louis, MO 63110 314-747-3979 salamm@wustl.edu Kathryn L. Bohnert 660 S. Euclid Campus Box 8127 St. Louis, MO 63110 314-747-3929 bohnertk@wustl.edu	Breath Acetone Correlates with Capillary β-hydrKai E. Jones, M.D. ¹ , Max C. Petersen, M.D., Ph.D.Maamoun Salam, M.D. ¹ , Petra Krutilova, M.D. ¹ , Ale Bohnert, M.S. ¹ , Samantha E. Adamson, M.D., PlAuthor Affiliations: ¹ Division of Endocrinology, Metz Washington University School of Medicine, St. Louis, Kai E. Jones Assistant Professor of MedicineKai E. Jones Assistant Professor of MedicineMax C. Petersen Assistant Professor of Medicine660 S. Euclid Campus Box 8127 St. Louis, MO 63110 314-561-2899 kaijones@wustl.eduMax C. Petersen Assistant Professor of MedicineMaamoun Salam Associate Professor of MedicinePetra Krutilova Assistant Professor of Medicine60 S. Euclid Campus Box 8127 St. Louis, MO 63110 314-747-3979 salamm@wustl.eduPetra_krutilova@rush.eduKathryn L. Bohnert 660 S. Euclid Campus Box 8127 St. Louis, MO 63110 St. Louis, MO 63110 <b< td=""></b<>		

10 **Abbreviations:** (BrACE) Breath Acetone, (BOHB) β-hydroxybutyrate, (T1D) Type 1

- 11 Diabetes, (SGLT2i) Sodium Glucose Cotransporter-2 inhibitor, (DKA) Diabetic
- 12 Ketoacidosis, (VOC) volatile organic compound, (MDI) Multiple Daily Injections,
- 13 (CSII), Continuous Subcutaneous Insulin Infusion, (HbA1c) Hemoglobin A1c, (eGFR)
- 14 Estimated Glomerular Filtration Rate, (MOS) Metal Oxide Sensor, (CGM) Continuous
- 15 Glucose Monitor, (BKA) Biosense Ketone Analyzer, (CTRU) Clinical Translational
- 16 Research Unit.
- 17

Keywords: Type 1 Diabetes, Ketone Monitoring, Diabetic Ketoacidosis, Sodium glucose
 co-transporter 2 inhibitors

- 20
- 21 Corresponding author: Janet B. McGill, 660 S. Euclid Ave., Campus Box 8127, Saint
- 22 Louis, MO 63110; (314)-362-8681; jmcgill@wustl.edu
- 23

Funding sources: JDRF (2-SRA-2022 1190-M-B/P22-03211), National Institutes of Health grants UL1TR002345 (Washington University Institute of Clinical and Translational Sciences), including sub-award KL2TR002346 (ICTS Institutional Career Development Program), T32DK007120, P30DK020579 (Washington University Diabetes Research Center), and DK133995. Conflict of Interest Disclosure: A.M.Mc. is a current employee of Novo Nordisk Inc. At the time of the research A.M.Mc. was full-time faculty at Washington University in St. Louis. Contributions to this publication by A.M.Mc. were not on behalf of Novo Nordisk Inc. M.S. has received consulting fees from Eli Lilly and Neurocrine Biosciences, and receives grant funding to his institution from MBX Biosciences, Inc., Bayer HealthCare Pharmaceuticals Inc., Crinetics Pharmaceuticals, Inc., Neurocrine Biosciences, Inc., and Mylan. J.B.M. has been a consultant for Bayer, Lilly, Mannkind, and Novo Nordisk; and has received grant funding from NIH, Novo Nordisk, Diamyd and Breakthrough T1D. Acknowledgments: We would like to thank the patients with T1D who participated in the study. We thank the staff of the Washington University Clinical Translational Research Unit and Core Lab for Clinical Studies for conducting the study visits and completing the sample analyses. We would also like to thank Readout Health for planning and technical assistance. Tables: 2 Figures: 5

60 Abstract

61 Background

62	Breath acetone (BrACE) is an end product of ketone metabolism that is measurable by
63	noninvasive breath ketone analyzers. We assessed the correlation between capillary blood
64	β -hydroxybutyrate (BOHB) and BrACE in people with type 1 diabetes (T1D) during 14
65	days of outpatient care with and without dapagliflozin treatment and during supervised
66	insulin withdrawal studies with and without dapagliflozin.
67	
68	Methods
69	In this randomized crossover study, participants completed 14-day two outpatient periods
70	with or without dapagliflozin 10 mg daily. Each 14-day unsupervised outpatient period
71	was followed by a one-day supervised insulin withdrawal study. Paired BOHB and
72	BrACE measurements were obtained three times daily during outpatient periods, then
73	hourly during supervised insulin withdrawal. The correlation between BrACE and
74	BOHB was assessed by Spearman's p.
75	
76	Results
77	Twenty people with T1D completed the study. During outpatient periods, BrACE and
78	BOHB were moderately correlated (n=1425 paired readings; $\rho = 0.41$; 95% CI: 0.36 to
79	0.45; $P < 0.0001$). However, BrACE and BOHB were strongly correlated during insulin
80	with drawal (n=246 paired values, ρ = 0.81; 95% CI: 0.77 to 0.85). In ROC analysis,
81	BrACE > 5 ppm demonstrated optimal sensitivity (93%) and specificity (87%) for
82	detecting capillary BOHB \geq 1.5 mmol/L. No serious adverse events occurred.
83	

84 <u>Conclusions</u>

- 85 In adults with T1D, measurement of breath acetone provides a noninvasive estimate of
- 86 blood BOHB concentration. The correlation between BrACE and BOHB was suboptimal
- 87 during unsupervised outpatient care, but was strong during supervised insulin withdrawal.
- 89 Trial registration: clinicaltrials.gov (NCT05541484)

- 10.

108 Introduction

109	Despite progress in developing insulin analogs and insulin delivery devices, the
110	frequency of hospitalizations due to diabetic ketoacidosis (DKA), the most critical acute
111	complication of type 1 diabetes (T1D), has risen. ¹ Furthermore, the mortality risk
112	associated with DKA has not improved over the past decade. ^{1–3} Risk factors for DKA
113	include poor adherence to insulin regimens, errors in insulin administration, chronic poor
114	glucose control, acute illness and use of sodium glucose co-transporter 2 inhibitors
115	(SGLT2i). ^{4,5} Individuals with T1D are instructed to measure ketones in the setting of
116	symptoms of ketosis, during other illnesses, and when severe hyperglycemia occurs. ^{4,6,7}
117	Although routine ketone monitoring during usual care is generally not recommended, this
118	has been shown to identify individuals at higher risk of DKA. ⁸ In practice, ketone
119	monitoring remains suboptimal; over 50% of adults do not test for ketones during periods
120	of illness. ^{9–11}
121	Sodium-glucose cotransporter 2 inhibitors (SGLT2i) improve glycemic control,
122	decrease insulin requirements, and reduce glycated hemoglobin levels in T1D. ¹²⁻¹⁸
123	However, multiple randomized trials and meta-analyses have revealed a greater incidence
124	of DKA and higher ketone levels in individuals using SGLT2i. ^{13,14,19,20} Ketone
125	monitoring has been proposed as a strategy for DKA mitigation in the setting of SGLT2i
126	use. ^{12,21–24}
127	Ketone monitoring refers to the routine surveillance of one of the three major
128	circulating ketone bodies: acetoacetate, β -hydroxybutyrate (BOHB), or acetone. ²⁵
129	Acetoacetate is measured in the urine using semi-quantitative test strips, whereas BOHB
130	can be measured quantitatively by point-of-care capillary blood ketone meters. Urine
131	acetoacetate testing has major limitations: it measures the average ketone concentration
132	in urine stored in the bladder since the previous void, and urinary ketone levels can
133	misleadingly increase when treatment for ketosis is initiated as BOHB is oxidized to

134 acetoacetate.²⁶ Capillary blood ketone meters that measure BOHB are commercially

135 available but the technology is not widely used due to expense, inconvenience, and

136 possibly inexperience with ketone meters.²⁴

137

138 product of ketone metabolism excreted through the lung, has not been thoroughly

139 evaluated in persons in T1D. Breath ketone analyzers (BKA) have been employed in non-

Measurement of breath acetone (BrACE), the highly volatile metabolic end

140 diabetic individuals to monitor adherence to ketogenic diets. Previous studies have

141 demonstrated linear relationships between BrACE and plasma acetone during episodes of

142 DKA²⁷, and between BrACE and blood BOHB in various settings, suggesting potential

143 utility of BrACE in risk prediction for ketosis and DKA.^{28–30} Breath acetone meters are

144 subject to potential interference from volatile organic compounds (VOCs) including

145 alcohols, acetic acid, propionic acid, and butyric acid. Commonly used household items

146 like cleaning products, nail polish removers, hand sanitizer, lip balm and fermented foods

147 contain VOCs which can lead to falsely elevated readings of breath acetone. Recent food

```
148 or alcohol ingestion or smoking can also falsely elevate BrACE readings.
```

149 The Biosense breath ketone analyzer (Readout Health) has previously been

150 studied in people without diabetes who were instructed to follow either a standard diet or

a ketogenic diet and collected paired capillary BOHB and BrACE measurements five

152 times daily. A moderate correlation (r = 0.75) between BrACE and BOHB was observed

153 in this setting.³¹ In a study investigating the use of a breath acetone analyzer in adults and

154 children with T1D, a significant correlation between BrACE and capillary blood ketones

155 was observed in adults but not in children.³² BrACE >3.9 ppm yielded optimal

156 performance for detecting BOHB >0.6 mmol/L, with sensitivity of 94.7% but specificity

157 of just 54.2%.³² In this context, breath ketone analyzers are not currently recommended

158 by professional society guidelines for ketone monitoring in those with T1D.

159	The goal of this study was to assess the utility of BKA to detect mild to moderate
160	ketosis in persons with T1D and to compare BrACE levels with capillary BOHB. The
161	correlation between capillary BOHB and BrACE was assessed in unsupervised outpatient
162	settings with and without an SGLT2i and during insulin withdrawal to induce mild to
163	moderate ketosis. To further evaluate the utility of BrACE in identifying a threshold level
164	of ketosis that would require intervention, we interrogated the data using receiver-
165	operating characteristic (ROC) analysis to identify the BrACE level that best predicted
166	capillary blood BOHB concentration \geq 1.5 mmol/L. This point-of-care capillary blood
167	BOHB threshold has been validated to identify impending DKA, demonstrating a
168	sensitivity and specificity ranging from 93-100% and 85-98%, respectively. $^{\rm 33-35}$
169	
170	Methods
171	Study Design
172	This was an open-label, single-center (Washington University School of
172 173	This was an open-label, single-center (Washington University School of Medicine, St. Louis, MO) randomized crossover trial in which study participants
172 173 174	This was an open-label, single-center (Washington University School of Medicine, St. Louis, MO) randomized crossover trial in which study participants completed two study periods in random order: usual care (UC) and usual care plus
172 173 174 175	This was an open-label, single-center (Washington University School of Medicine, St. Louis, MO) randomized crossover trial in which study participants completed two study periods in random order: usual care (UC) and usual care plus dapagliflozin (DAPA). During UC, participants continued their usual insulin regimen,
172 173 174 175 176	This was an open-label, single-center (Washington University School of Medicine, St. Louis, MO) randomized crossover trial in which study participants completed two study periods in random order: usual care (UC) and usual care plus dapagliflozin (DAPA). During UC, participants continued their usual insulin regimen, either multiple daily injections (MDI) or continuous subcutaneous insulin infusion
 172 173 174 175 176 177 	This was an open-label, single-center (Washington University School of Medicine, St. Louis, MO) randomized crossover trial in which study participants completed two study periods in random order: usual care (UC) and usual care plus dapagliflozin (DAPA). During UC, participants continued their usual insulin regimen, either multiple daily injections (MDI) or continuous subcutaneous insulin infusion (CSII), for 14 days while performing paired measurements of capillary BOHB and
172 173 174 175 176 177 178	This was an open-label, single-center (Washington University School of Medicine, St. Louis, MO) randomized crossover trial in which study participants completed two study periods in random order: usual care (UC) and usual care plus dapagliflozin (DAPA). During UC, participants continued their usual insulin regimen, either multiple daily injections (MDI) or continuous subcutaneous insulin infusion (CSII), for 14 days while performing paired measurements of capillary BOHB and BrACE 3 times per day. This was followed by a one-day supervised insulin withdrawal
 172 173 174 175 176 177 178 179 	This was an open-label, single-center (Washington University School of Medicine, St. Louis, MO) randomized crossover trial in which study participants completed two study periods in random order: usual care (UC) and usual care plus dapagliflozin (DAPA). During UC, participants continued their usual insulin regimen, either multiple daily injections (MDI) or continuous subcutaneous insulin infusion (CSII), for 14 days while performing paired measurements of capillary BOHB and BrACE 3 times per day. This was followed by a one-day supervised insulin withdrawal study. During DAPA, participants added dapagliflozin 10 mg daily to their usual care for
 172 173 174 175 176 177 178 179 180 	This was an open-label, single-center (Washington University School ofMedicine, St. Louis, MO) randomized crossover trial in which study participantscompleted two study periods in random order: usual care (UC) and usual care plusdapagliflozin (DAPA). During UC, participants continued their usual insulin regimen,either multiple daily injections (MDI) or continuous subcutaneous insulin infusion(CSII), for 14 days while performing paired measurements of capillary BOHB andBrACE 3 times per day. This was followed by a one-day supervised insulin withdrawalstudy. During DAPA, participants added dapagliflozin 10 mg daily to their usual care for14 days and continued to perform paired measurements of capillary BOHB and BrACE 3
 172 173 174 175 176 177 178 179 180 181 	This was an open-label, single-center (Washington University School ofMedicine, St. Louis, MO) randomized crossover trial in which study participantscompleted two study periods in random order: usual care (UC) and usual care plusdapagliflozin (DAPA). During UC, participants continued their usual insulin regimen,either multiple daily injections (MDI) or continuous subcutaneous insulin infusion(CSII), for 14 days while performing paired measurements of capillary BOHB andBrACE 3 times per day. This was followed by a one-day supervised insulin withdrawalstudy. During DAPA, participants added dapagliflozin 10 mg daily to their usual care for14 days and continued to perform paired measurements of capillary BOHB and BrACE 3times per day. A supervised insulin withdrawal study followed immediately after a dose
 172 173 174 175 176 177 178 179 180 181 182 	This was an open-label, single-center (Washington University School of Medicine, St. Louis, MO) randomized crossover trial in which study participants completed two study periods in random order: usual care (UC) and usual care plus dapagliflozin (DAPA). During UC, participants continued their usual insulin regimen, either multiple daily injections (MDI) or continuous subcutaneous insulin infusion (CSII), for 14 days while performing paired measurements of capillary BOHB and BrACE 3 times per day. This was followed by a one-day supervised insulin withdrawal study. During DAPA, participants added dapagliflozin 10 mg daily to their usual care for 14 days and continued to perform paired measurements of capillary BOHB and BrACE 3 times per day. A supervised insulin withdrawal study followed immediately after a dose of dapagliflozin in the morning. The study was unblinded to both participants and
 172 173 174 175 176 177 178 179 180 181 182 183 	This was an open-label, single-center (Washington University School of Medicine, St. Louis, MO) randomized crossover trial in which study participants completed two study periods in random order: usual care (UC) and usual care plus dapagliflozin (DAPA). During UC, participants continued their usual insulin regimen, either multiple daily injections (MDI) or continuous subcutaneous insulin infusion (CSII), for 14 days while performing paired measurements of capillary BOHB and BrACE 3 times per day. This was followed by a one-day supervised insulin withdrawal study. During DAPA, participants added dapagliflozin 10 mg daily to their usual care for 14 days and continued to perform paired measurements of capillary BOHB and BrACE 3 times per day. A supervised insulin withdrawal study followed immediately after a dose of dapagliflozin in the morning. The study was unblinded to both participants and investigators.

185 Study Participants

186	The study was approved by the Washington University Human Research
187	Protection Office (IRB #202206078) and all study participants provided written informed
188	consent. The trial was registered in clinicaltrials.gov (NCT05541484). Inclusion criteria
189	included: i) T1D of >1 year duration, ii) age 18 to 75 years, iii) HbA1c \leq 10%, iv) stable
190	insulin delivery method for the past 30 days, v) vision of 20/40 or better, vi) insulin
191	delivery by either continuous subcutaneous insulin infusion (CSII) or multiple daily
192	injections of insulin (MDI), and vii) use of Dexcom G6 or G7 continuous glucose
193	monitor (CGM) Key exclusion criteria include: i) history of DKA within 6 months of
194	study entry or more than 1 episode of DKA in the past 2 years, ii) use of SGLT2i or prior
195	intolerance of SGLT2i, iii) eGFR <30 mL/min/1.73 m ² , iv) adherence to a very-low-
196	carbohydrate (<90 g/day) or ketogenic diet, v) pregnancy, plan to become pregnant within
197	the next 3 months, or lack of contraceptive use in premenopausal women, vi) history of
198	urinary tract infection within 3 months of study entry, vii) unwilling to avoid alcohol
199	ingestion during the study period, viii) vomiting within the past 30 days.
200	
201	Breath Ketone Analysis
202	The Biosense® breath ketone analyzer uses a metal oxide semiconductor (MOS)
203	sensor which is selective for acetone. A specific breathing pattern is recommended that
204	includes prolonged forced exhalation because breath acetone concentration increases
205	during exhalation. The MOS sensor is housed inside a sealed flow cell to decrease the
206	entrance of surrounding environmental air. ³¹ Results from this device are reported as
207	units of parts per million (ppm). Each device is calibrated using laboratory gas standards

208 certified by the National Institute of Standards and Technology, with acetone

209 concentrations of 0, 5, and 20 ppm.

211 Procedures

212	Study participants completed a screening evaluation including demographics,
213	medical history, physical examination, assessment of insulin administration (doses and
214	routes), download of continuous glucose monitor (CGM) data and insulin pump data if
215	applicable. Participants were instructed in the use of the Precision Xtra® ketone
216	monitoring system and the Biosense® breath ketone analyzer (BKA), and the need for
217	paired (within 30 minutes) measurements three times every day. Specifically, participants
218	were instructed to use the BKA device prior to eating, smoking, drinking soda, using
219	toothpaste, mouthwash, or lip balm and to avoid environmental contaminants such as
220	cleaning solutions. The device was to be used only in indoor spaces only. Study
221	participants were educated on a ketone action plan and provided individual insulin dosing
222	recommendations for capillary blood BOHB \geq 1.5 mmol/L. During the DAPA period,
223	insulin dose adjustments were recommended based on insulin delivery method and level
224	of glucose control. The standard recommendation was to reduce bolus doses by 10-20%.
225	For the insulin withdrawal study, participants were admitted to the Clinical
226	Translational Research Unit (CTRU) after an overnight fast. Participants on continuous
227	subcutaneous insulin infusions were instructed to stop insulin delivery 1 hour prior to
228	arrival. Participants using multiple daily injections (MDI) were transitioned to morning
229	basal insulin for the study period, which was held the morning of the insulin withdrawal.
230	Participants were required to have blood glucose level between 90-250 mg/dL and
231	capillary blood BOHB <1.5 mmol/L before leaving home on the morning of the
232	supervised insulin withdrawal study visit or the visit was cancelled. Participants remained
233	fasting with serial venous blood sampling for plasma BOHB and basic metabolic panel
234	every 2 hours and paired measurements of capillary blood glucose, capillary blood
235	BOHB, and BrACE every hour. A plastic cap was applied to the BKA device when not in
236	use to minimize VOC interference. The supervised insulin withdrawal study was

237	terminated when c	ne or more stopping	o criteria were met	(capillary blood	1 olucose > 400
231	terminated when t	me of more stopping		(capinal y 0100)	1 gracosc > 400

- 238 mg/dL, capillary blood BOHB > 4 mmol/L, symptoms of DKA, more than 8 hours
- elapsed from insulin withdrawal, or participant request).
- 240
- 241 *Outcomes*

242	The primary outcome for the study was the correlation coefficient between
243	capillary blood BOHB and BrACE in the outpatient periods with and without
244	dapagliflozin. Other outcomes included the correlations between capillary blood BOHB
245	and BrACE levels during the insulin withdrawal days. Adverse events were actively
246	collected for safety and included the daily ketone measurements, severe hypoglycemia
247	events, sensor glucose <54 mg/dL for more than 1% of time, diabetic ketoacidosis,
248	genitourinary infections, gastrointestinal distress, or dehydration.
249	

250 Statistical Analysis:

251 The prespecified primary outcome of the study was the correlation of capillary 252 blood BOHB and BrACE during the 2-week outpatient periods. We calculated using the 253 pwr R package that at least 84 ketone measurements above baseline (~0.1 mmol/L or 1 254 BrACE ppm would provide >80% power to detect a weak correlation of 0.3 using a two-255 sided significance level of 0.05 and estimated that 20 participants would need to be enrolled to achieve this sample size.³¹ Descriptive statistics were examined for normality 256 257 by using histograms and Kolmogorov-Smirnov tests and are reported as mean \pm SD or 258 median (interquartile range) as appropriate. Median capillary blood BOHB or BrACE 259 concentrations between UC and DAPA periods were compared by using the Mann-260 Whitney U test. Correlations of blood and breath ketone concentrations were calculated 261 as Spearman's ρ given non-normal variable distributions. For ROC curves, Youden's J 262 statistic was used to determine the optimal BrACE threshold. Values were excluded from

analysis if study participants described reason for BrACE >10 ppm that included food or

- 264 drink prior to measurement, use of lip balm, environmental contaminants or
- 265 measurements taken outside. Paired values were compared by using paired two-tailed t-
- tests or Wilcoxon matched-pairs signed-rank test as appropriate. Statistical analyses were
- 267 completed in SPSS 29 (IBM), R version 4.3.2 and GraphPad Prism 10.
- 268

269 **Results**

- 270 Participant characteristics are shown in **Table 1**. Twenty-one adults with T1D
- were screened, and 20 participated in the study, including 11 males and 9 females. The
- average age was 48 ± 18 years and mean BMI was 29.5 ± 5.2 kg/m². CSII in hybrid
- 273 closed loop systems were used by 16 (80%) of the participants. At baseline, CGM time-

in-range (70-180 mg/dL) was $61 \pm 18\%$, with mean hemoglobin A1c of $7.0 \pm 0.9\%$.

275

N	20
Age (yr)	48 ± 18
Sex (Male/Female)	11/9
Race (White/Black)	19/1
BMI (kg/m ²)	29.5 ± 5.2
Diabetes duration (yr)	26 ± 16
History of DKA (yes/no)	7/13
Hemoglobin A1c (%)	7.0 ± 0.9
Time in range 70-180 mg/dL (%)	61 ± 18
Insulin delivery (CSII/MDI)	16/4
Total daily insulin (units/kg)	0.70 ± 0.32

276 **Table 1.** Baseline characteristics

	Estimated GFR (mL/min/1.73 m ²)	90 (83-94)	
277	BMI, body mass index; DKA, diabetic ketoacidosis; CSII, co	ntinuous subcutaneous	
278	insulin infusion; MDI, multiple daily injections; GFR, glomerular filtration rate. Data are		
279	expressed as mean \pm SD or median (IQR) as appropriate.		
280			
281	The correlation between BrACE and BOHB during u	nsupervised outpatient care	
282	was moderate ($\rho = 0.41$; 95% CI: 0.36 to 0.45; $P < 0.0001$; Fi	gure 1). During the DAPA	
283	period, the median (IQR) capillary blood BOHB concentratio	n was greater than in the	
284	UC period [0.2 (0.1 – 0.3) mmol/L DAPA vs. 0.1 (0.1 – 0.2) n	mmol/L UC, <i>P</i> < 0.001].	
285	Median (IQR) BrACE was also greater during the DAPA peri	od than in the UC period [2	
286	(1 – 4) ppm DAPA vs. 1 (1 – 3) ppm UC, <i>P</i> < 0.001]. During	unsupervised outpatient UC	
287	periods, 3 of 718 BOHB readings were \geq 1.5 mmol/L.		
288			

290 Figure 1. Correlation of blood and breath ketones during unsupervised outpatient

291 periods. Paired capillary BOHB and BrACE measurements during unsupervised

292 outpatient periods (n =1425 paired measurements). Linear trendline is shown.

2	0	Λ
4	7	4

295

- 296 During unsupervised outpatient DAPA periods, 10 of 707 BOHB readings were
- $\geq 1.5 \text{ mmol/L}$, but 6 of these occurred in a single bout of ketosis in one participant
- 298 (Figure 2). In this individual, BrACE identified clinically significant ketosis during the
- 299 outpatient dapagliflozin treatment period. Repeated paired BrACE and BOHB
- 300 measurements showed that BrACE values were slower to normalize compared to
- 301 capillary BOHB (**Figure 2**).

302

303 Figure 2. Paired BrACE and capillary blood BOHB values during a bout of

304 **outpatient ketosis.** Paired values collected over a 48-hour period in a participant who

305 developed and treated ketosis while taking dapagliflozin.

- 306
- 307
- 308
- 309

316

317

318 Figure 3. Paired BOHB and BrACE measurements during supervised insulin

319 withdrawal. (A) Correlation of capillary blood BOHB and BrACE (n=341 paired

320 measurements). (B) Correlation of plasma BOHB and BrACE (n=254 paired

321 measurements). Study visits with and without dapagliflozin treatment were pooled (n=38

- 323
- 324
- 325
- 326
- 327
- 328
- 329

- 331 When the data from the two-week unsupervised outpatient care and supervised
- insulin withdrawal study periods were combined, the correlation of capillary blood
- BOHB and BrACE was moderate ($\rho = 0.56$; 95% CI: 0.53 to 0.59; *P* < 0.0001; Figure 4).

- 335 Figure 4. Correlation of capillary BOHB and BrACE during unsupervised
- **outpatient care and supervised insulin withdrawal.** Data from Fig. 1 and Fig. 3A were

- 349 ROC analysis including data from both the unsupervised outpatient periods and
- 350 the supervised insulin withdrawal visits with and without dapagliflozin was performed to
- determine the optimal BrACE value for identification of ketosis, defined as capillary
- BOHB \geq 1.5 mmol/L (Figure 5). Optimal sensitivity (92%) and specificity (83%) were
- 353 obtained at BrACE values \geq 5 ppm.

354

Figure 5. ROC curves for BrACE identification of ketosis. Pooled data from 2-week

356 outpatient periods and supervised insulin withdrawal studies with and without

357 dapagliflozin treatment were analyzed. Ketosis status was defined as capillary blood

- 358 BOHB \geq 1.5 mmol/L (YES) or <1.5 mmol/L (NO). n=1743 non-ketotic and 103 ketotic
- 359 paired measurements.
- 360
- 361
- 362
- 363
- 364
- 365

- 366 As expected, dapagliflozin use in those with T1D was associated with a reduction
- in insulin requirements and an improvement in blood glucose metrics (Table 2). As
- 368 compared to UC, DAPA was associated with a ~11% reduction in total insulin
- 369 requirement, a ~5% decrease in average CGM glucose level and a ~8% increase in time
- 370 in range (70-180 mg/dL) (**Table 2**).
- 371

372 Table 2. Effect of dapagliflozin on insulin requirement and glycemia.

	UC (n=18-19)	DAPA (n=18-19)	P value
Daily basal insulin (units)	27.2 (17.4 –	21.9 (15.4 - 40.9)	0.0134
	55.4)		
Daily bolus insulin (units)	31.4 ± 15.8	26.7 ± 11.6	0.0401
Total daily insulin (units)	47.9 (36.2 –	44.7 (35.0 - 76.3)	0.0082
	85.5)		
Total daily insulin (units/kg)	0.66 ± 0.30	0.59 ± 0.24	0.0104
Average CGM glucose (mg/dL)	154 (138 – 165)	143 (139 – 147)	0.0016
Time-in-range 70-180 mg/dL	70.1 ± 10.7	75.6 ± 9.5	0.0111
(%)			

373 Data are from each 14-day outpatient period, with or without dapagliflozin. CGM,

374 continuous glucose monitor. UC, usual care. DAPA, usual care plus dapagliflozin. Data

are mean \pm SD or median (IQR) as appropriate. 18 of 20 subjects had paired insulin data

and 19 had paired CGM data from both study periods for analysis. P values by Wilcoxon

377 matched-pairs signed-rank test or paired two-tailed t-test.

378

379

381 **Discussion**

382	The increased ketoacidosis risk associated with SGLT2i has prevented their
383	regulatory approval and widespread use in people with T1D. To alleviate this concern
384	and potentially allow those with T1D to benefit from the established cardiovascular and
385	renal benefits of SGLT2i, expert consensus panels have recommended the development
386	of noninvasive ketone monitoring technologies. ²⁴ Handheld BrACE analyzers represent
387	one such technology with potential clinical utility. BrACE has been shown to correlate
388	well with capillary blood ketone measurements in free-living people with T1D, but the
389	performance of breath ketone analyzers has not been examined during insulin
390	withdrawal-a scenario closely mimicking real-world ketogenesis associated with insulin
391	pump failure or insulin omission. ³²
392	In this study, to explore the utility of BrACE measurement in T1D, participants
393	monitored ketones with paired blood and breath assessments both during 14 days of their
394	usual care at home, and during 14 days of usual care plus dapagliflozin treatment, which
395	we hypothesized would enhance ketone production. Further, participants underwent
396	supervised insulin withdrawal during usual care and immediately after 14 days of
397	dapagliflozin treatment. We observed a strong correlation between capillary blood BOHB
398	and BrACE during supervised insulin withdrawal conditions but a moderate correlation
399	in the unsupervised outpatient settings.
400	The lower correlation between capillary blood BOHB and BrACE observed
401	during the unsupervised outpatient periods may be related to several factors. First, most
402	ketone values collected during the unsupervised outpatient periods were very low,
403	generating the problem of restricted range. ³⁶ Second, proper use of the breath ketone
404	analyzer including the correct breathing pattern and the use of a filter cap was enforced
405	by supervision during the insulin withdrawal study. Third, VOC interference may have
406	occurred in the outpatient setting. VOCs are released from many items used in daily life

407	and can result in falsely elevated BrACE readings. During the insulin withdrawal study,
408	all measurements were done during fasting and under supervision, so the technical
409	validity of the measurements and the range of ketones produced were both greater.
410	In ROC analysis, a BrACE level of \geq 5 ppm had 92% sensitivity and 83%
411	specificity for detecting a capillary BOHB of \geq 1.5 mmol/L. This level of BrACE was
412	therefore considered the actionable level for prevention of ketoacidosis. A recent study of
413	SGLT2i treatment in people with T1D demonstrated that DKA mitigation strategies
414	including ketone monitoring with capillary BOHB or urinary ketones can reduce DKA
415	episodes despite higher average BOHB levels in those taking sotagliflozin. ¹⁹ BrACE
416	measurement using a BKA is non-invasive, allows repeated measurements without
417	additional cost and may represent a viable method for ketone monitoring that can be
418	included in DKA mitigation strategies for persons with T1D using SGLT2i and those at
419	increased risk of episodic DKA.
420	One individual experienced a clinically significant bout of ketosis during the
421	unsupervised outpatient DAPA period. This individual did not eat breakfast and lunch,
422	thus reducing his automated insulin delivery. He did not have hyperglycemia, did not
423	manually change insulin doses, and did not report symptoms during the ketosis episode.
424	He reported the rise in ketones to the study team and was instructed in a treatment
425	strategy that led to resolution of the ketosis. He did not skip any further meals and did not
426	have additional ketosis episodes during the remainder of the study period despite
427	continuing SGLT2i treatment. Identifying persons at risk for episodic ketosis may require
428	trial periods of SGLT2i use with frequent ketone monitoring and underscores the
429	importance of appropriate patient selection for SGTL2i use in people with T1D.
430	Notable aspects of this study's design include the collection of over 1700 paired
431	BrACE and BOHB measurements and testing in the participants' home environment. The
432	data from the supervised insulin withdrawal study is relevant to scenarios such as insulin

433	pump failure or loss of insulin access, in which absolute insulin deficiency gradually
434	develops. ³⁷ This is important as CSII remains a risk factor for development of DKA. ³⁸
435	This study has important limitations including the small sample size. Further, in
436	the unsupervised outpatient care periods, the range of values used for correlation
437	calculations was relatively narrow and the risk for interference of VOC with BrACE
438	measurements was higher. The restricted range likely contributed to the weaker
439	correlation between BrACE and capillary BOHB observed in the outpatient setting. In
440	addition, the strong correlation between BrACE and BOHB measurements during
441	supervised insulin withdrawal may have been enhanced by the controlled environment of
442	the research unit, in which paired measurements were supervised by a nurse and the BKA
443	device was capped when not in use to reduce the risk of VOC interference. Additionally,
444	this study has the limitation of excluding individuals with history of frequent DKA,
445	uncontrolled diabetes (HbA1c >10%) or use of a ketogenic diet, who may be at increased
446	risk for DKA with use of SGLT2i especially during insulin withdrawal. Future studies
447	should consider investigating BrACE monitoring in patients at greater risk for
448	ketoacidosis.
449	Our study demonstrates that BrACE measurement using a noninvasive, handheld
450	breath ketone analyzer can detect clinically actionable ketosis but is more reliable in
451	supervised settings as compared to unsupervised outpatient care. A critical limitation for
452	more widespread real-world use in T1D is that currently available BKA devices remain
453	highly susceptible to VOC interference. Whether repeated training on proper use of the
454	device or deployment of a filter cap in the outpatient care setting would have reduced
455	presumed interference in the BrACE measurements is unknown. Additional BKA device
456	development is needed to explore modifications that could address these issues, making
457	them more viable for home use in people with T1D. Additionally, the occurrence of
458	ketosis in more than one patient while at home reminds health care providers that persons

- 459 with T1D are at risk for asymptomatic ketosis that may lead to serious adverse
- 460 consequences. The advice to test for ketones after symptoms develop may be too late for
- 461 early detection and effective treatment at home.
- 462
- 463 **Conclusions**
- 464 BrACE monitoring in adults with T1D offers a noninvasive assessment of
- 465 circulating ketones. A BrACE reading of \geq 5 ppm had 92% sensitivity and 83%
- 466 specificity for a capillary blood BOHB concentration ≥ 1.5 mmol/L. The efficacy of the
- 467 breath ketone analyzer is limited by common interfering VOC found in the home and by
- 468 the need for proper operating technique. Larger studies are needed to further evaluate the
- 469 utility of BrACE measurements as a substitute for capillary BOHB measurements in
- 470 persons with T1D at risk of ketosis.
- 471
- 472
- 473

474 **References**

475 476 477	1	McCoy RG, Herrin J, Galindo RJ, Sindhu Swarna K, Umpierrez GE, Hill Golden S <i>et al.</i> All-cause mortality after hypoglycemic and hyperglycemic emergencies among U.S. adults with diabetes, 2011–2020. <i>Diabetes Res Clin Pract</i> 2023; 197 : 110263.
478 479 480	2	Shaka H, Aguilera M, Aucar M, El-Amir Z, Wani F, Muojieje CC <i>et al.</i> Rate and Predictors of 30-day Readmission Following Diabetic Ketoacidosis in Type 1 Diabetes Mellitus: A US Analysis. <i>J Clin Endocrinol Metab</i> 2021; 106 : 2592–2599.
481 482 483	3	Benoit SR, Zhang Y, Geiss LS, Gregg EW, Albright A. Trends in Diabetic Ketoacidosis Hospitalizations and In-Hospital Mortality — United States, 2000– 2014. MMWR Morb Mortal Wkly Rep 2018; 67: 362–365.
484 485	4	Virdi N, Poon Y, Abaniel R, Bergenstal RM. Prevalence, Cost, and Burden of Diabetic Ketoacidosis. <i>Diabetes Technol Ther</i> 2023; 25 : S75–S84.
486 487	5	Rosenbloom AL. The management of diabetic ketoacidosis in children. <i>Diabetes Ther Res Treat Educ Diabetes Relat Disord</i> 2010; 1 : 103–120.
488 489 490 491	6	American Diabetes Association Professional Practice Committee, ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS <i>et al.</i> 6. Glycemic Goals and Hypoglycemia: <i>Standards of Care in Diabetes</i> —2024. <i>Diabetes Care</i> 2024; 47 : S111–S125.
492 493	7	"Ketone Testing." Joslin Diabetes Center, www.joslin.org/patient-care/diabetes- education/diabetes-learning-center/ketone-testing-0. Accessed 28 Feb. 2024
494 495 496	8	Song C, Dhaliwal S, Bapat P, Scarr D, Bakhsh A, Budhram D <i>et al.</i> Point-of-Care Capillary Blood Ketone Measurements and the Prediction of Future Ketoacidosis Risk in Type 1 Diabetes. <i>Diabetes Care</i> 2023; 46 : 1973–1977.
497 498 499	9	Larsson CR, Januszewski AS, McGrath RT, Ludvigsson J, Keech AC, MacIsaac RJ <i>et al.</i> Suboptimal behaviour and knowledge regarding overnight glycaemia in adults with type 1 diabetes is common. <i>Intern Med J</i> 2018; 48 : 1080–1086.
500 501 502	10	Foster NC, Beck RW, Miller KM, Clements MA, Rickels MR, DiMeglio LA <i>et al.</i> State of Type 1 Diabetes Management and Outcomes from the T1D Exchange in 2016-2018. <i>Diabetes Technol Ther</i> 2019; 21 : 66–72.
503 504 505	11	Albanese-O'Neill A, Wu M, Miller KM, Jacobsen L, Haller MJ, Schatz D <i>et al.</i> Poor Adherence to Ketone Testing in Patients With Type 1 Diabetes. <i>Diabetes Care</i> 2017; 40 : e38–e39.
506 507 508	12	Goldenberg RM, Berard LD, Cheng AYY, Gilbert JD, Verma S, Woo VC <i>et al.</i> SGLT2 Inhibitor–associated Diabetic Ketoacidosis: Clinical Review and Recommendations for Prevention and Diagnosis. <i>Clin Ther</i> 2016; 38 : 2654-2664.e1.
509 510	13	Haidar A, Yale J, Lovblom LE, Cardinez N, Orszag A, Falappa CM <i>et al.</i> Reducing the need for carbohydrate counting in type 1 diabetes using closed loop automated

511 512		insulin delivery (artificial pancreas) and empagliflozin: A randomized, controlled, non □inferiority, crossover pilot trial. <i>Diabetes Obes Metab</i> 2021; 23 : 1272–1281.
513 514 515 516	14	Pasqua M-R, Jafar A, Kobayati A, Tsoukas MA, Haidar A. Low-Dose Empagliflozin as Adjunct to Hybrid Closed-Loop Insulin Therapy in Adults With Suboptimally Controlled Type 1 Diabetes: A Randomized Crossover Controlled Trial. <i>Diabetes Care</i> 2023; 46 : 165–172.
517 518 519	15	Tomasoni D, Fonarow GC, Adamo M, Anker SD, Butler J, Coats AJS <i>et al.</i> Sodium- glucose co transporter 2 inhibitors as an early, first line therapy in patients with heart failure and reduced ejection fraction. <i>Eur J Heart Fail</i> 2022; 24 : 431–441.
520 521 522 523	16	Dandona P, Mathieu C, Phillip M, Hansen L, Griffen SC, Tschöpe D <i>et al.</i> Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (DEPICT-1): 24 week results from a multicentre, double-blind, phase 3, randomised controlled trial. <i>Lancet Diabetes Endocrinol</i> 2017; 5 : 864–876.
524 525 526 527	17	Mathieu C, Dandona P, Gillard P, Senior P, Hasslacher C, Araki E <i>et al.</i> Efficacy and Safety of Dapagliflozin in Patients With Inadequately Controlled Type 1 Diabetes (the DEPICT-2 Study): 24-Week Results From a Randomized Controlled Trial. <i>Diabetes Care</i> 2018; 41 : 1938–1946.
528 529 530	18	Boeder SC, Thomas RL, Le Roux MJ, Giovannetti ER, Gregory JM, Pettus JH. Combination SGLT2 Inhibitor and Glucagon Receptor Antagonist Therapy in Type 1 Diabetes: A Randomized Clinical Trial. <i>Diabetes Care</i> 2025; 48 : 52–60.
531 532 533 534	19	Peters AL, McGuire DK, Danne T, Kushner JA, Rodbard HW, Dhatariya K <i>et al.</i> Diabetic Ketoacidosis and Related Events With Sotagliflozin Added to Insulin in Adults With Type 1 Diabetes: A Pooled Analysis of the inTandem 1 and 2 Studies. <i>Diabetes Care</i> 2020; 43 : 2713–2720.
535 536 537	20	Boeder S, Davies MJ, McGill JB, Pratley R, Girard M, Banks P <i>et al.</i> Beta- Hydroxybutyrate Levels and Risk of Diabetic Ketoacidosis in Adults with Type 1 Diabetes Treated with Sotagliflozin. <i>Diabetes Technol Ther</i> 2024; : dia.2023.0605.
538 539 540 541	21	Rodbard HW, Peters AL, Slee A, Cao A, Traina SB, Alba M. The Effect of Canagliflozin, a Sodium Glucose Cotransporter 2 Inhibitor, on Glycemic End Points Assessed by Continuous Glucose Monitoring and Patient-Reported Outcomes Among People With Type 1 Diabetes. <i>Diabetes Care</i> 2017; 40 : 171–180.
542 543 544	22	Rosenstock J, Marquard J, Laffel LM, Neubacher D, Kaspers S, Cherney DZ <i>et al.</i> Empagliflozin as Adjunctive to Insulin Therapy in Type 1 Diabetes: The EASE Trials. <i>Diabetes Care</i> 2018; 41 : 2560–2569.
545 546 547	23	Garcia-Tirado J, Farhy L, Nass R, Kollar L, Clancy-Oliveri M, Basu R <i>et al.</i> Automated Insulin Delivery with SGLT2i Combination Therapy in Type 1 Diabetes. <i>Diabetes Technol Ther</i> 2022; 24 : 461–470.
548 549	24	Danne T, Garg S, Peters AL, Buse JB, Mathieu C, Pettus JH <i>et al.</i> International Consensus on Risk Management of Diabetic Ketoacidosis in Patients With Type 1

550 551		Diabetes Treated With Sodium-Glucose Cotransporter (SGLT) Inhibitors. <i>Diabetes Care</i> 2019; 42 : 1147–1154.
552 553	25	Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. <i>Diabetes Metab Res Rev</i> 1999; 15 : 412–426.
554 555	26	Dhatariya K. Blood Ketones: Measurement, Interpretation, Limitations, and Utility in the Management of Diabetic Ketoacidosis. <i>Rev Diabet Stud RDS</i> 2016; 13 : 217–225.
556 557	27	Owen OE, Trapp VE, Skutches CL, Mozzoli MA, Hoeldtke RD, Boden G <i>et al.</i> Acetone metabolism during diabetic ketoacidosis. <i>Diabetes</i> 1982; 31 : 242–248.
558 559 560	28	Amlendu P, Ashley Q, Di W, Haojiong Z, Mirna T, David J <i>et al.</i> Breath Acetone as Biomarker for Lipid Oxidation and Early Ketone Detection. <i>Glob J Obes Diabetes Metab Syndr</i> 2014; 1 : 012–019.
561 562	29	Anderson JC. Measuring breath acetone for monitoring fat loss: Review. <i>Obesity</i> 2015; 23 : 2327–2334.
563 564	30	Güntner AT, Kompalla JF, Landis H, Theodore S, Geidl B, Sievi N <i>et al.</i> Guiding Ketogenic Diet with Breath Acetone Sensors. <i>Sensors</i> 2018; 18 : 3655.
565 566	31	Suntrup Iii DJ, Ratto TV, Ratto M, McCarter JP. Characterization of a high-resolution breath acetone meter for ketosis monitoring. <i>PeerJ</i> 2020; 8 : e9969.
567 568 569	32	Akturk HK, Snell-Bergeon J, Pyle L, Fivekiller E, Garg S, Cobry E. Accuracy of a breath ketone analyzer to detect ketosis in adults and children with type 1 diabetes. <i>J Diabetes Complications</i> 2021; 35 : 108030.
570 571 572	33	Naunheim R, Jang TJ, Banet G, Richmond A, McGill J. Point-of-care test identifies diabetic ketoacidosis at triage. <i>Acad Emerg Med Off J Soc Acad Emerg Med</i> 2006; 13 : 683–685.
573 574 575	34	Charles RA, Bee YM, Eng PHK, Goh SY. Point-of-care blood ketone testing: screening for diabetic ketoacidosis at the emergency department. <i>Singapore Med J</i> 2007; 48 : 986–989.
576 577 578	35	Brooke J, Stiell M, Ojo O. Evaluation of the Accuracy of Capillary Hydroxybutyrate Measurement Compared with Other Measurements in the Diagnosis of Diabetic Ketoacidosis: A Systematic Review. <i>Int J Environ Res Public Health</i> 2016; 13 : 837.
579 580	36	Bland JM, Altman DG. Correlation in restricted ranges of data. <i>BMJ</i> 2011; 342 : d556.
581 582 583 584	37	Herring RA, Shojaee-Moradie F, Garesse R, Stevenage M, Jackson N, Fielding BA <i>et al.</i> Metabolic Effects of an SGLT2 Inhibitor (Dapagliflozin) During a Period of Acute Insulin Withdrawal and Development of Ketoacidosis in People With Type 1 Diabetes. <i>Diabetes Care</i> 2020; 43 : 2128–2136.
585 586	38	Wersäll JH, Adolfsson P, Forsander G, Hanas R. Insulin pump therapy is associated with higher rates of mild diabetic ketoacidosis compared to injection therapy: A

- $2\Box$ year Swedish national survey of children and adolescents with type 1 diabetes.
- *Pediatr Diabetes* 2022; **23**: 1038–1044.