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Abstract 19 

 20 
Genetic studies of human metabolism identified unknown disease processes and novel 21 

metabolic regulators, but have been limited in scale and allelic breadth. Here, we provide 22 

a data-driven map of the genetic regulation of circulating small molecules and 23 

lipoprotein characteristics (249 metabolic traits) measured using protein nuclear 24 

magnetic resonance spectroscopy (1H-NMR) across the allele frequency spectrum in 25 

~450.000 individuals. In trans-ancestry analyses, we identify 29,824 locus–metabolite 26 

associations mapping to 753 regions with edects largely consistent between men and 27 

women and major ancestral groups represented in UK Biobank. We develop a framework 28 

for classifying the observed extreme genetic pleiotropy, enabling identification of 29 

upstream ‘master’ regulators of lipid metabolism ('proportional pleiotropy’), such as 30 

ANGPTL3. We establish rare-to-common allelic series by integrating machine-learning 31 

guided edector gene assignments with rare exonic variant analyses providing high 32 

confidence gene assignments at >100 loci, including less established regulators of lipid 33 

metabolism like SIDT2. At 17 such loci we observed phenotypic heterogeneity among 34 

variants mapping to the same gene indicating diderential metabolic roles of the altered 35 
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gene product. We identify VEGFA as a potential modulator of HDL-mediated risk for 36 

coronary artery disease. Our results demonstrate how rare-to-common genetic variation 37 

combined with deep molecular profiling can identify unknown and inform on poorly 38 

understood regulators of human metabolism to guide prevention and treatment of 39 

diseases. 40 

Introduction 41 

 42 
Our understanding of human metabolism is mostly based on dedicated hypothesis 43 

testing in experimental settings, informed by model organisms or observations in rare 44 

diseases patients. Only recently, high-throughput profiling of small molecules in large-45 

scale studies has enabled systematic testing of genetic variation across the genome and 46 

provided an agnostic approach for the discovery of genes that encode key metabolic 47 

regulators1–11. These edorts have provided important new insights into how genetic 48 

variation shapes human chemical and metabolic individuality1 and have corroborated a 49 

large body of biochemical knowledge1,2,10,12.  50 

 51 

The value of such genome-metabolome-wide association studies (mGWAS) extends 52 

beyond the mapping of biochemical pathways, sometimes demonstrating almost 53 

immediate clinical value. They provided examples how readily available 54 

supplementation strategies may prevent disease or delay onset in high risk individuals, 55 

such as serine for the rare eye disorder macular telangiectasia type 22. Others further 56 

identified unknown variants adecting the absorption, distribution, metabolism, and 57 

excretion of exogenous compounds, most importantly drugs1,13, providing pathways to 58 

mitigate adverse drug edects. However, there are several challenges that currently limit 59 

the potential of mGWAS studies, in particular for causal inference. These include 1) the 60 

still rather small number of, at most, a dozen genetic variants linked to single molecules, 61 

2) the inability to distinguish whether pleiotropic variants act on diderent molecules or 62 

pathways independently (horizontal pleiotropy), or whether they serve as ‘root causes’ of 63 

successive downstream changes (vertical pleiotropy), 3) the didiculty in distinguishing 64 

between locus-specific and metabolite abundance edects when colocalization at 65 
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disease-risk loci is observed1, and 4) the challenge of confidently assigning edector 66 

genes at newly identified loci.  67 

 68 

Here, we integrated rare (based on whole exome sequencing) and common genetic 69 

variation with measures of 249 metabolic phenotypes, including small molecules and 70 

detailed lipoprotein characteristics, among >450,000 UK Biobank participants 71 

representing three distinct ancestries. We demonstrate largely consistent genetic 72 

regulation across ancestries and sexes for almost 30,000 locus – metabolite associations 73 

and systematically categorise abundant genetic pleiotropy. By integrating machine-74 

learning derived edector gene assignments with rare exonic variation, we identify 75 

previously unknown regulators of metabolism and observe heterogeneity in association 76 

profiles for variants mapping to the same gene. Finally, we demonstrate how systematic 77 

integration of statistical colocalization and Mendelian randomization can identify 78 

pathways with the potential to mitigate cardiovascular disease risk beyond current 79 

approaches focused primarily on LDL-cholesterol lowering. 80 

Results 81 

 82 
We integrated genome-wide association studies (GWAS; population-specific minor allele 83 

frequency (MAF)≥0.5%) with rare exome-wide association studies (MAF≤0.5%) on 84 

plasma concentrations of 249 metabolite phenotypes, quantified using 1H-nuclear 85 

magnetic resonance spectroscopy (NMR). We included up to 450,000 UK Biobank (UKB) 86 

participants across three major ancestries (British White European – EUR (n=434,646); 87 

British African – BA (n=6,573); British Central South Asian – BSA (n=8,796); 88 

(Supplementary Fig. 1). The NMR measures provided a detailed readout of lipoprotein 89 

particles along a range of lipoprotein sizes containing 14 subclasses (i.e., extra-large very-90 

low density (VLDL) to small high-density (HDL) lipoprotein particles), along with small 91 

molecules such as amino acids and ketone bodies quantified in molar concentration 92 

units (Supplementary Table 1).  93 

 94 

Common genetic variation underlying circulating metabolites  95 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 2, 2025. ; https://doi.org/10.1101/2025.01.30.25321073doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.30.25321073
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 4 

We identified 29,824 regional sentinel–NMR measure associations in trans-ancestral 96 

meta-analyses, representing 753 non-overlapping genomic regions (Fig. 1a; 97 

Supplementary Table 2). Nearly half of these regions (N=359, 47%) were associated with 98 

more than 10 NMR measures, demonstrating considerable pleiotropy cutting across 99 

metabolite classes for 350 regions. Characteristics of large HDL particles, such as 100 

concentration, particle size and (phospho)lipid, cholesterol, cholesteryl ester and 101 

triglyceride content, were associated with the largest number of regions (median: 166, 102 

IQR: 126-195), compared to median of 105 associated regions observed across all NMR 103 

measures (IQR: 68-142). Findings that considerably extended previous work3 and 104 

replicated parallel edorts using UK Biobank9 (Supplementary Fig. 2). Genes with well-105 

characterised roles in human metabolism were significantly enriched among the closest 106 

genes to regional sentinels across diderent significance bins (adjusted p-values < 4.24 x 107 

10-9; Supplementary Fig. 3). This suggests that ever-larger studies of often considered 108 

omnigenic traits, such as metabolites, still yield biological plausible findings and not 109 

merely non-specific upstream regulators.  110 

 111 

Almost all regional sentinel associations (n=29,410, 98.6%) showed little evidence of 112 

heterogeneity (p>10-4) across ancestries. To rule out possible artefacts that might have 113 

masked ancestral-specific edects (e.g., variant coverage and statistical power in the 114 

smaller ancestry groups), we repeated the GWAS within each ancestry separately. 115 

Consistent with the trans-ancestral meta-analysis, we observed high correlations of 116 

edect estimates for regional sentinels identified in the largest subgroup of White 117 

European participants when compared to those of African and Central South Asian 118 

ancestry (Fig. 1c-d; Supplementary Table 3, Supplementary Fig. 4). Although we note 119 

that the limited sample size did not permit comprehensive replication, our ancestry-120 

specific analyses also revealed one locus not seen in European participants. The 121 

previously reported14 missense variant rs3211938 within CD36 which is common in 122 

people of African ancestry (MAFBA= 0.12) but absent in European ancestry (MAFEUR= 0.0), 123 

was significantly associated (p-values < 1.49 x 10-10) with lower plasma concentrations of 124 

omega 3 fatty acids and 15 other NMR measures, including lipoprotein particle 125 

characteristics. This is in line with the role of CD36 as a fatty acid translocase, facilitating 126 

the recognition and uptake of long-chain fatty acids.  127 
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 128 
Figure 1: Common genetic regulation of circulating metabolites. A) Top-down Manhattan plot 129 
showing trans-ancestral sentinel variants for 249 metabolic phenotypes at a metabolome-adjusted 130 
genome-wide significance threshold of p < 2.0 x 10-10. Each row represents an NMR measure, coloured 131 
for biochemical class, chromosomal positions are shown on the x-axis. B) Weighted average allele 132 
frequency compared to estimated eJect size for trans-ancestral sentinel variants. Points are coloured 133 
for biochemical classification. C) Comparison of eJect sizes between White European samples (x-134 
axis) and British-African samples (y-axis). We considered variants that were significant in either 135 
population. D) Similar to C) but comparing British-Central /South Asian samples. Dots are coloured 136 
according to their absolute Z-score in White European samples. 137 
 138 

Refinement of regional associations through multi-ancestry fine-mapping 139 

We next employed a two-stage strategy to refine regional associations to a small number 140 

of candidate causal variants. Firstly, we implemented fine-mapping in the largest group 141 

of European-ancestry participants. We then further refined the subset of loci with at least 142 

suggestive evidence across ancestries (p<10-4) using trans-ancestral fine-mapping, 143 

leveraging the diderential blocks of linkage disequilibrium (LD) despite vastly diderent 144 

sample sizes.  145 
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 146 

We first identified 3,007 statistically independent metabolite quantitative trait loci 147 

(mQTLs) associated with one or more NMR measure, representing a total of 43,322 148 

credible set – NMR measurement pairs (Supplementary Table 4). This successfully 149 

defined 16,170 credible sets with a high-confidence variant (posterior inclusion 150 

probability (PIP) > 0.5). Among these were low-to-common frequent variants with 151 

functional consequences in metabolic genes, such as rs78734745 (MAF=0.8%; 152 

PIP=67.9%), a splice donor variant for ME1, associated with plasma citrate levels (beta=-153 

0.11; p-value<1.6x10-21). Lead fine-mapped mQTLs for a given NMR measure explained, 154 

on average, 6.9% (range: 0.57% - 13.42%) of the variance in plasma concentrations 155 

(Supplementary Fig. 5).  156 

 157 

Secondly, we leveraged the diderent LD-block structure among participants of British 158 

African and British Central South Asian ancestry to further refine a total of 3,336 credible 159 

sets that still contained >1 variant and for which the locus had at least suggestive 160 

evidence for significance in either ancestry (P < 1.0 x 10-4). Trans-ethnic fine-mapping led 161 

to an increase in the number of credible sets containing high-confidence variants 162 

(Europeans: 997, multi-ancestral: 1,794) and decreased the median credible set size 163 

from 9 to 4 variants, while increasing the median posterior inclusion probability from 0.06 164 

to 0.16 (Supplementary Fig. 6). This included 1,107 (33.7%) credible sets with two or 165 

fewer variants, and 1,518 (45%) credible sets that were reduced in size by more than half. 166 

We note, however, that most eligible European credible sets were already comparatively 167 

small (median 9 variants), but sometimes still spanned multiple genes.  168 

 169 

For example, a signal associated with mono-unsaturated fatty acids (MUFA) 170 

concentrations at 17q21.2 contained 76 genetic variants spread across several genes 171 

covering a 1Mb window in the European-only discovery. The signal was fine-mapped to 172 

as few as 4 variants (two intergenic, one <50kb distance to the gene body) after  173 

incorporating evidence from other ancestries (Supplementary Fig. 6). Three of these four 174 

variants mapped to the PTRF/CAVIN1 gene, which plays a crucial role in the formation of 175 

caveolae that are particularly abundant in adipocytes. Thus, PTRF/CAVIN1 has been 176 
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linked to generalized lipodystrophies15, providing a biologically plausible edector gene at 177 

this locus through trans-ancestral refinement of the credible set. 178 

 179 

Sex-di<erential e<ects at loci encoding metabolic genes 180 

Many aspects of metabolism are known to vary by sex16,17, but only few genetic loci have 181 

been identified that may explain such diderences18,19. While we observed highly 182 

correlated edect sizes across female and male participants (median R2: 0.98, range: 0.90 183 

– 0.99), we also identified 360 putative sex-diderential loci for 239 metabolic traits, 184 

representing 1,800 heterogenous associations in sex-stratified meta-analyses 185 

(heterogeneity p-value < 5 x 10-8, see Methods). To rule out that sex-diderential edects 186 

could be explained by other factors that dider between the sexes, we performed 187 

additional analyses identifying that sex-diderential edects at one-third of loci (n=625, 188 

34.7%) were attenuated when controlling for factors such as body mass index, tobacco 189 

use, alcohol intake, and the use of lipid-lowering or diabetes medication 190 

(Supplementary Fig. 7, Supplementary Table 5). For loci unadected by such additional 191 

factors, edect estimates were generally directionally concordant between the sexes but 192 

showed diderences in magnitude (Fig. 3a). This is consistent with results previously 193 

observed for proteomics20 and suggests that the majority of significant sex interactions 194 

do not reflect sex-discordant edects. We observed pleiotropic sex-diderential loci 195 

associated with 30 or more NMR measures near established lipoprotein genes (APOE, 196 

APOC1, LPL) but also less established genes (SIDT2), where sex was the most likely 197 

modifying factor. These finding may help to better understand sex-specific cut-ods in 198 

cardiovascular risk assessment in clinical guidelines to initiate treatment with lipid 199 

lowering medication21. We found CPS1 on 2q34 to show the strongest sex diderences, in 200 

line with previous reports18, with edect sizes for glycine being twice as large in females 201 

compared to males (rs1047891, beta females = 0.77, beta males = 0.34 s.d. units). 202 

 203 

Biological reclassification of established ‘lipid’ loci  204 

To assess the value of metabogenomic studies involving lipoprotein profiling based on 205 
1H-NMR spectroscopy over standard clinical markers, we systematically classified the 206 

NMR metabolome association profiles for 1,657 genetic variants reported for commonly 207 

measured clinical markers (LDL-cholesterol, HDL-cholesterol, total cholesterol and 208 
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triglycerides) by the Global Lipids Genetics consortium (GLGC) in 1.6 million samples22. 209 

Around 25% of associated variants had the corresponding NMR measure among the top 210 

10% of the most strongly associated NMR measures, with 22.5% of genetic variants 211 

showing significantly stronger associations with refined lipoprotein measures compared 212 

to their matching measure on the NMR platform, an observation most pronounced for 213 

non-HDL and LDL-cholesterol concentrations (Fig. 3b). While this indicated that relevant 214 

loci for lipoprotein metabolism can be discovered using readily available clinical 215 

measurements, it also demonstrates the necessity of refined lipoprotein profiles for 216 

better understanding the relevant biological pathways, including any inference about 217 

druggability or use for genetic causal inference methods. One such example was the 218 

PNPLAP3 locus (tagged by rs3747207, associated with LDL-cholesterol by the GLGC; p = 219 

2.3x10-21, beta = -0.014), where we observed no evidence of association with LDL-220 

cholesterol (beta=-0.001, p = 0.49) but LDL particle size (beta=0.045, p-value = 1.04 x 10-221 
73), and multiple characteristics of extra-large VLDL particles (Supplementary Fig. 8). The 222 

intronic rs3747207 variant is in strong LD (r2=0.98) with the well-known missense variant 223 

rs738409 (p.I148M) that has been demonstrated to confer hepatic lipid accumulation by 224 

altering ubiquniation of patatin-like phospholipase domain-containing protein 3 225 

(PNPLA3) encoded by PNPLA323. Our results provide human genetic support for a 226 

recently proposed role of PNPLA3 in the secretion of large VLDL particles24. The 227 

association with LDL-cholesterol in massive scale studies likely being a distant 228 

downstream consequence. 229 

 230 

 231 
Figure 3: Putative sex-di@erential loci and reclassification of established lipid loci. A) 232 
Comparison of eJect sizes of putatively sex-diJerential loci (defined as loci with heterogeneity p-233 
value < 5 x 10-8 in a meta-analysis across the sexes). B) Rank distributions for each of the five matching 234 
NMR traits compared to the Lipids Genetics traits across genetic loci. Per locus – trait combination, 235 
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205 lipid-related NMR traits were ranked based on their absolute eJect size and compared to the NMR 236 
trait that corresponds the Lipids Genetics consortium trait. Pie charts show the percentage of loci 237 
where the corresponding NMR trait is ranked among the top 10% of associated traits.  238 
 239 

Machine-learning guided e<ector gene assignment 240 

Assigning edector genes to genetic variants remains one of the most important 241 

bottlenecks for translating GWAS results into tangible insights. We assigned edector 242 

genes for almost three-quarters of European fine-mapped mQTLs (73.6%; n=2,213) with 243 

at least moderate confidence (candidate gene score ≥1.5, range 0 to 3), including about 244 

28.2% with high-confidence assignments (score≥2; n=848), by training a machine 245 

learning model that integrates functional genomic resources with pathway information 246 

inspired by the ProGeM framework25 (Supplementary Table 6). For example, we 247 

prioritised the fatty acid elongase gene ELOVL6 for 16 diderent NMR measures (tagged by 248 

rs3813829), including the fraction of cholesterol and other fatty acids on very small VLDL 249 

and very large HDL particles in addition to the fraction of saturated fatty acids. The gene 250 

product, ELOVL fatty acid elongase 6, catalyses the rate-limiting step in long-chain fatty 251 

acid elongation, which are subsequently incorporated into lipoprotein particles. We also 252 

prioritized genes with upstream roles in metabolism, including a locus on 17q25.3 where 253 

we prioritized cytohesin-1 (CYTH1) as the candidate causal gene for five independent, 254 

genetic variants linked to 11 distinct NMR measures mostly comprising characteristics 255 

of VLDL particles. CYTH1, previously associated with type 2 diabetes26, promotes 256 

activation of ADP-ribosylation factors (ARF)1, ARF5 and ARF6, regulators of lipid vesicle 257 

transport, membrane lipid composition and modification27, demonstrating a relevant but 258 

indirect link to lipoprotein metabolism.  259 

 260 

We observed considerable overlap of machine-learning guided edector gene predictions 261 

(top three genes) with those reported based on manually curated biological plausibility 262 

(191 out of 283 loci)3 or based on colocalization with protein quantitative trait loci that 263 

have not been used to train the algorithm28 (81 out of 143; Supplementary Table 6). While 264 

missing overlap indicates room for improvement, 24 high-confidence assigments did 265 

strongly disagree with either external source (gene score >2 but no match among pQTL 266 

prioritised or manually curated ones). This included a locus on chromosome 19q13.11 267 

tagged by rs62102718 for which we prioritised PEPD with high-confidence (score=2.42) 268 
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as opposed to CEBPA3. PEPD encodes peptidase D, highly relevant for collagen turnover, 269 

that has been shown to promote adipose tissue fibrosis in mouse knock-out models and 270 

promoting insulin resistance29. Insulin resistance, in turn, being a very plausible 271 

explanation for the pleiotropic edect of the variant on diverse lipoprotein characteristics 272 

(n=31).  273 

 274 

Tissue distribution of e<ector genes 275 

We next tested tissue-specific expression patterns of the identified edector genes to 276 

better understand organ sites contributing to (lipoprotein) metabolism. Strong clustering 277 

was observed at both the tissue and metabolite levels, reflecting both known and less 278 

established organ contributions (Supplementary Fig. 9a, Supplementary Table 7). 279 

Genes characteristic of the liver, adipose tissue, adrenal gland, but also female breast 280 

tissue (likely reflecting its high adipose tissue content) were significantly enriched among 281 

edector gene sets across the metabolic measures captured by NMR. This included 282 

significant enrichment of all amino acids in liver tissue (e.g., phenylalanine: odds ratio 283 

(OR): 14.8, p<1.3 x 10-8, histidine: OR 7.9, p<2.9 x 10-11) but also for skeletal muscle in 284 

alanine metabolism (OR:3.82; p-value<7.9x10-9). Similar enrichments were observed 285 

when using the closest gene instead of our annotated edector genes for mQTLs 286 

(Supplementary Fig. 9b).   287 

  288 

Modes of metabolic and systemic pleiotropy 289 

Pleiotropy is a widespread but poorly understood phenomenon and we developed a 290 

framework to characterise four diderent modes of metabolic pleiotropy for all fine-291 

mapped mQTLs (Fig. 4a-d; Supplementary Fig. 10 and Table 6; see Methods). About 292 

half of the pleiotropic mQTLs (n=880; ≥2 NMR measures) showed evidence for two 293 

diderent modes of vertical pleiotropy. Firstly, within confined pathways (n=218; ‘pathway 294 

pleiotropy’) or, secondly, as a function of the correlation with the 'lead’ NMR measure 295 

(n=662; ‘proportional pleiotropy’; Fig. 4a). For example, rs76594121 tagged an mQTL at 296 

3q21.3 associating with diderent characteristics of large HDL particles, for which we 297 

prioritized ACAD9 as the most likely candidate gene (Fig. 4a). The gene product of ACAD9, 298 

acyl-CoA dehydrogenase family member 9, is part of complex I of the respiratory chain 299 

that catalyses the oxidation of fatty acids with a high adinity for long chain fatty acids that 300 
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are, amongst others, carried by HDL particles. A prototype example for ‘proportional 301 

pleiotropy’ was an mQTL tagged by rs624698 for which we prioritized ANGPTL3 as the 302 

edector gene (Fig. 4b). Angiopoietin-like 3, encoded by ANGPTL3, inhibits lipoprotein 303 

lipase activity but also endothelial lipase, resulting in increased triglycerides, HDL-304 

cholesterol, and phospholipid concentrations, consistent with HDL-particle 305 

characteristics being the most strongly associated NMR measures (p<1.0x10-546). Other 306 

associations being downstream edects on lipoprotein metabolism rather than acting on 307 

independent pathways (Fig. 4b), considerably expanding previous genetic 308 

observations30. 309 

 310 

The remaining half of pleiotropic mQTLs showed evidence for two modes of horizontal 311 

pleiotropy: those with evidence for ‘disproportional pleiotropy’ (n=68) and a larger group 312 

with evidence for ‘nonspecific pleiotropy’ (n=720). For example, a small deletion on 313 

chromosome 1 (chr1:92982441:CA>C) was associated with a highly correlated cluster of 314 

NMR measures, including characteristics of IDL, LDL, and VLDL particles (Fig. 4c), but 315 

for which we detected no correlation of association strengths according to the lead NMR 316 

measure, the concentration of esterified cholesterol in medium-sized VLDL particles 317 

(p<6.8x10-14). We prioritized EVI5 as the most likely candidate gene, supported by 318 

previous studies on rare functional variants31. The gene product of EVI5, ecotropic viral 319 

integration site 5, has no apparent link to (lipoprotein) metabolism in line with most of the 320 

gene assignments for mQTLs with a similar nonspecific pleiotropy pattern. An example 321 

of ‘nonspecific pleiotropy’ was the APOB missense variant rs676210 (p.Pro2739Leu) 322 

associated with 126 NMR measures across the entire lipoprotein density range, but also 323 

creatinine and glycoprotein acetyl concentrations (Fig. 4d). The diderential edects of the 324 

same genetic variation on distinct lipoprotein subgroups aligns with changes in lipid 325 

profiles seen with mipomersen, an antisense oligonucleotide against APOB, that 326 

demonstrated reductions in LDL-cholesterol but also subsequent increases in the 327 

triglyceride content of VLDL particles as hepatic adaption occurs32.  328 

 329 

Modes of molecular pleiotropy only partially translated into pleiotropy across the entire 330 

breath of phenotypes and diseases studied genetically (Fig. 4e). We observed a two-fold 331 

enrichment of ‘proportional pleiotropic’ (OR: 2.11; p<2.0x10-14) and to a lesser extend an 332 
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enrichment of ‘nonspecific pleiotropic’ (OR: 1.52; p<1.1x10-5) variants among variants 333 

reported in the GWAS catalog for ≥5 non-metabolomic trait categories (see Methods). In 334 

contrast, the set of pleiotropic GWAS catalog variants was significantly depleted for 335 

‘specific’ mQTLs (odds ratio: 0.42; p<1.6x10-21). Some phenotypically specific variants 336 

thereby provided clues to understand non-specific molecular pleiotropy (Fig. 4f). For 337 

example, rs8101064, an intronic variant in INSR, encoding  the insulin receptor, has been 338 

reported for type 2 diabetes among East Asians33 and was associated with 40 NMR 339 

measures in a nonspecific manner, likely reflecting the broad edects of insulin resistance 340 

on whole body lipid metabolism. Systemic mechanisms explaining edects of 341 

‘proportional’ and ‘nonspecific’ pleiotropic mQTLs were further evidenced by a more than 342 

20-fold significant enrichment of associated trait categories such as ‘metabolic disease’, 343 

‘fatty liver disease’, and ‘arterial disorders’ (Fig. 4g).  344 
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 345 
Figure 4: Modes of pleiotropy. a-d) Exemplary scatterplots opposing the squared trait correlation of 346 
the lead NMR measure for the listed variant against the absolute Z-score from linear regression 347 
models for all associated NMR measures. The colours indicate diJerent modes of pleiotropy and 348 
correspond to the legend in e). For each plot, a linear regression fit with 95%-confidence interval is 349 
given. e) Number of associated NMR measures for each of 3007 mQTL groups opposed to 350 
associations reported in the GWAS catalog after pruning the GWAS catalog for metabolic phenotypes 351 
(see Methods). Colouring is according to modes of pleiotropy. f) Scatterplot opposing the number of 352 
associated NMR measures (x-axis) of each mQTL group with the number of reported EFO parent 353 
categories in the GWAS catalog. g) Odds ratios and 95%-confidence intervals from logistic regression 354 
models testing whether EFO categories (x-axis) are more frequently reported for pleiotropic mQTL 355 
groups compared to specific ones. Darker colours indicated estimates passing corrected statistical 356 
significance.   357 
 358 
Convergence of common and rare genetic variation shaping metabolism 359 

Previous investigations focussed on either large-scale common variant1–4,8 or 360 

comparatively small-scale rare exonic variant discovery edorts7,34, but these approaches 361 
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have not been able to integrate such information at scale to establish allelic series that 362 

confidently link genes to metabolites, including previously unknown regulators of 363 

metabolism. We identified rare variation (MAF≤0.05%) in a total of 209 genes to be 364 

significantly (p< 1.1 x 10-8) linked to one or more of 249 NMR measures combining ultra-365 

rare gene burden analysis (3,709 significant associations; Supplementary Table 8) and 366 

rare exonic variant analysis (4,131 significant associations; Supplementary Table 9). 367 

Edect sizes were significantly larger compared to more frequent variant edects (Fig. 5a). 368 

For example, people carrying rare predicted loss-of-function variants in SLC13A5 had 369 

more than 1.4 s.d. units higher plasma citrate concentrations per copy of the possibly 370 

damaging allele (beta:1.41; p-value<2.6x10-20).  371 

 372 

We also observed considerable pleiotropy, including 47 genes associated with 20 or more 373 

NMR measures. Many of these genes have well-known roles in metabolism or small 374 

molecule transport, such as half (n=23/51) of the genes being involved in (peripheral) 375 

cholesterol metabolism (Supplementary Fig. 11). On the other hand, rare pleiotropic 376 

variants with large edect sizes (MAF < 0.02% and beta > 0.6 s.d. units) pointed towards 377 

less-established regulators of metabolism including SIDT2 (chr11:117186662:C>T, 378 

n=124 carriers), JAK2 (chr9:5073770:G>T, n=73 carriers) or CEP164 379 

(chr11:117356670:C>G, n=49 carriers). Experimental work already suggested a role for 380 

the gene product of SIDT2 (SID1 transmembrane family member 2) in hepatic lipid 381 

metabolism and apolipoprotein A1 (ApoA1) secretion, the main protein component of 382 

HDL particles which constituted the majority of associated NMR measures (Fig. 5b)35,36. 383 

In contrast, associations with JAK2 variants indicate a link to clonal haematopoiesis of 384 

indeterminate potential (CHIP)37 with uncertain causality. 385 

 386 

We observed strong overlap between our gene burden and common variant findings, with 387 

85.4% of rare variant (n=3528) and 75.5% of gene burden (n=2802) associations being no 388 

more than 100kb away from the nearest statistically independent lead credible set 389 

variant (Fig. 5c). In contrast, most common variant findings (92.3%) were not within 390 

500kb of matching rare variant/burden evidence . Notably, 12.1% of gene burden results 391 

were more than 1Mb away from the next common credible set variant for the respective 392 
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NMR measure, aligning with recent observations that both approaches partly prioritise 393 

diderent genes38.  394 

 395 

At 116 genes (55.5%), rare variant and/or burden evidence overlapped with edector gene 396 

predictions for closeby common credible set variants (≤200kb) for one or more 397 

associated NMR measure (Fig. 5d), providing independent support for allelic series (Fig. 398 

5d; Supplementary Table 10). For example, we identified an allelic series composed of 399 

7 rare loss-of-function (LoF), 1 gain-of-function (GoF), and 4 common variants for serum 400 

citrate levels at SLC13A5 encoding a sodium-dependent citrate co-transporter. Another 401 

allelic series atANKH comprised four common variants (rs185448606 – MAF=1.3%; 402 

rs17250977 – MAF=4.0%; rs826351 – MAF=44.3%; rs2921604 – MAF=45.9%) and a rare 403 

missense variant chr5:14745916:T>C (MAF=0.0069%) being also associated with lower 404 

serum concentrations of citrate (beta=-2.18 s.d. units, p<5.2x10-11) (Fig. 5d). ANKH 405 

encodes for a multipass transporter, recently shown to transport citrate39, with an 406 

important role in bone health39.  407 

 408 

We observed evidence that genetic variants even within an allelic series had diderential 409 

metabolic consequences, covering a total of 17 genes associated with ≥10 NMR 410 

measures (Supplementary Table 10). The most outstanding example included 7 variants 411 

(5 rare; 2 common) and a cumulative burden of rare predicted LoF variants mapping to 412 

APOA1. They distinctively associated with one or more of 87 NMR measures, most 413 

strongly with diverse characteristics of HDL particles of which the gene product, 414 

Apolipoprotein A1 (ApoA1), is the major component (Fig. 5e-f). This included four rare 415 

missense variants (MAF≤0.03%) encoded in exon 4 that each had partly diderential 416 

edects on the number, size, and cholesterol content of HDL particles (Fig. 5e). Only one 417 

of which (p.Leu158Pro) primarly associated with serum ApoA1 concentrations and HDL 418 

particle number, micking the association with the cumulative burden of high-confidence 419 

predicted LoF variants in APOA1, suggesting a potentially dysfunctional protein that lacks 420 

interaction with lecithin cholesterol acyl transferase to facilitate cholesterol uptake40. In 421 

contrast, p.Lys131del and p.Arg201Ser seemed to rather predispose to a shift in 422 

cholesterol content from large towards small HDL particles, a pattern opposed by 423 

p.Asp113Glu (Fig. 5e). An observation consistent with amyloid formation by ApoA1 that 424 
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has been observed in early case reports of p.Lys131del (historically the ApoA-IHelsinki
41) in 425 

which HDL-cholesterol or ApoA1 concentrations are only mildly changed but aggregation 426 

of misfolded ApoA1 protein can confer organ damage later in life42). Since p.Asp113Glu 427 

and p.Arg201Ser have not yet been identified to cause amyloidosis, we cannot rule out 428 

the possibility that each variant maps to distinctive parts of ApoA1 with subsequently 429 

diderent consequences on function and/or stability (Supplementary Fig. 12).  430 

 431 

 432 
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Figure 5 Rare coding variation associated with NMR measures and convergence with common 433 
variant associations. a) EJect estimates against minor allele frequency (MAF) of significantly 434 
associated gene burden (diamonds; p<1.2x10-8 and rare exonic variants (MAF<0.05%; circles; p< 2.0 435 
x 10-10). b) EJect estimates and -log10(p-values) for associations of the rare intronic variant 436 
chr11:117186662:C>T within SIDT2 across all 249 NMR measures. The dotted horizontal line indicates 437 
the multiple testing threshold (p<2.0x10-10). c) Genomic distance between gene burden (blue) or rare 438 
exonic variants (orange) towards the next common credible set variant. d) Evidence for allelic series 439 
based on i) gene burden analysis (bottom panel), ii) rare exonic variants (middle panel), and iii) 440 
common variants with prioritized eJector gene matching to the evidence from exonic analysis. For 441 
each gene, only the NMR measure most significantly associated with the strongest common variant 442 
is shown in case multiple NMR measures were associated. Some bars for the number of associated 443 
rare exonic variants have been capped to fit into plotting margin but the number is given in the plot. e) 444 
EJect estimates (dots) and 95%-confidence intervals for 7 variants mapping to APOA1 as well as a 445 
cumulative burden of high-confidence pLOF variants within APOA1 and bespoke circulating measures 446 
of ApoA1 and HDL particles (colour gradient). f) The top displays a heatmap of standardized eJect 447 
estimates (per variant) across 87 NMR measures for each associated variant and a cumulative burden 448 
within APOA1. Variants mapping into the region encoding the protein are surrounded by a rectangle. 449 
Variant eJects have been aligned to the minor allele. The middle panel maps the corresponding 450 
variants to their respective transcripts encoding diJerent forms of APOA1, while the lowest panels 451 
maps missense variants onto the amino acid sequence of the protein. Variant names coloured 452 
similarly had highly correlated association profiles. 453 
 454 
Phenotypic consequences of rare variation in metabolic genes 455 

Rare inborn errors of metabolism are among the few disorders screened for at birth by 456 

most healthcare systems globally, as early intervention – such as appropriate 457 

substitution or dietary regimens – can prevent developmental issues and diseases later 458 

in life. We observed a more than 3-fold enrichment of genes previously linked to 459 

Mendelian diseases43 ('OMIM genes’) among those associated with NMR measures in 460 

gene burden and rare exonic variant analyses (odds ratio: 3.30; p-value<6.5x10-17; 461 

Supplementary Table 11), in line with results reported from previous mGWAS1,2,7,8. For 462 

15 out of 106 genes, we found evidence of significantly associated disease risk (p<7.5x10-463 
7), largely replicating signs and symptoms of corresponding rare disorders 464 

(Supplementary Table 12). Associations with NMR measures thereby represented 465 

diderent modes of action. For cardiovascular diseases, most prominently familial 466 

hypercholesterolemia (e.g., via APOB), they likely acted as mediators, whereas 467 

associations converging on PKD1 for cystic kidney disease likely indicated disease 468 

consequences. We further observed less understood pleiotropic roles of OMIM genes. 469 

For example, rare predicted loss-of-function variants within SMAD6 are known to cause, 470 

amongst others, malformations of bones, e.g., Craniosynostosis 7, characterised by 471 
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malformations of the skull and subsequent brain damage, and we observed a strongly 472 

increased risk for other disorders of the cervical region (OR:28.8; 95%-CI: 10.3 – 80.5; p-473 

value<1.4x10-10), as well as significantly smaller VLDL particles (beta:-0.13; 95%-CI: -0.16 474 

- -0.09; p-value< 1.5x10-9) among rare variant carriers in UKB. The gene product, SMAD 475 

Family Member 6, suppresses TGF-beta signalling, which has known edects on bone 476 

morphogenetic proteins44. Independent evidence suggests that SMAD6 downregulation 477 

reduces the expression of core genes involved in lipoprotein metabolism, such as LDLR 478 
45, that may explain the disease-unrelated association.  479 

 480 

When we tested more generally whether a rare variant burden in metabolic genes was 481 

associated with disease susceptibility, we observed a significant enrichment among 482 

susceptibility genes for endocrine and metabolic disorders, such as type 2 diabetes and 483 

diderent lipidemias but not among other disease categories (Supplementary Fig. 13).  484 

 485 

Risk mitigation of atherosclerotic cardiovascular disease beyond LDL-cholesterol 486 

The success of LDL-cholesterol-lowering drugs for the prevention of atherosclerotic 487 

cardiovascular disease (ACVD) can be edectively recapitulated by genetic evidence. 488 

Genetic predisposition to high LDL-cholesterol is strongly associated with an increased 489 

risk of ACVD (‘level edect’), and genetic variations that mimic potent drug targets, such 490 

as at PCSK9, show strong evidence of shared edects on both LDL-cholesterol and ACVD 491 

('locus edect’)46. To identify potential pathways to mitigate the residual risk not addressed 492 

by lowering of LDL-cholesterol47, we systematically integrated outcome data across 25 493 

CVD phenotypes48–62, including non-atherosclerotic diseases to test specificity of 494 

disease associations, with NMR phenotypes and assessed the convergence of locus and 495 

level edects (Supplementary Table 13).  496 

 497 

We identified significant evidence (false-discovery rate (FDR)<5%) for 1,146 ‘level edects’ 498 

across 218 NMR measures with one or more of 22 CVD phenotypes using pleiotropy 499 

curated genetic instuments in Mendelian randomization (Fig. 6a; Supplementary Table 500 

14). Independently, we observed evidence for 5,527 ‘locus edects’, establishing a shared 501 

genetic architecture (posterior probability (PP)>80%) between 87 mQTL associated with 502 

247 NMR measures and 17 CVD phenotypes (Fig. 6b; Supplementary Table 15). For a 503 
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total of 46 NMR measure – CVD combinations we found converging evidence for level- 504 

and locus-edects, including 23 not associated in our study with parameter of LDL-505 

metabolism (see Methods; Fig. 6b), providing potential alternatives for addressing 506 

residual risk (Supplementary Table 16).  507 

 508 

For example, we observed robust evidence that, among other measures related to HDL 509 

size and composition, genetic susceptibility to larger HDL particle size was associated 510 

with a 35% reduced risk of coronary artery disease (CAD; odds ratio=0.65; 95%-CI: 0.50 511 

– 0.83; padj<0.007, Fig. 6c) along with robust evidence of a shared and directionally 512 

concordant genetic signal tagged by rs4711750 at the VEGFA locus (PP = 99%, Fig. 6e). 513 

The locus has previously been implicated in CAD risk48, and our results now suggest that 514 

one likely pathway to modulate CAD risk might be via HDL particle size or characteristics 515 

of large HDL particles not captured by HDL-cholesterol. Vascular endothelial growth 516 

factor A (VEGFA), encoded at VEGFA, is primarily known for its role in angiogenesis63, but 517 

it has also been described as a regulatory factor of transendothelial transport of 518 

esterified cholesterol from HDL but not LDL particles via activation of scavenger receptor 519 

BI (SR-BI) during reverse cholesterol transport64. Inhibition of VEGFA is a major 520 

pharmaceutical target to suppress vascularisation of malignant tumours63, and agents 521 

targeting VEGF signalling are well-known for adverse cardiovascular edects65, suggesting 522 

that activation of VEGFA, rather than inhibition, might be necessary to potentially reduce 523 

CAD risk. Our observations contribute to a growing body of evidence that more tailored 524 

approaches - rather than increasing HDL cholesterol content – will likely be needed for 525 

potential cardiovascular benefits, given the discouraging trials for most agents increasing 526 

HDL-cholesterol66. We note, however, that HDL-particle size might still only be a 527 

‘measurable’ surrogate, rather than being the true underlying mechanism. For example, 528 

inhibition of reverse cholesterol transport via dysfunctional SR-BI increased HDL particle 529 

size as well as CAD risk67.  530 
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 531 
Figure 6 Genetic prioritisation to target residual cardiovascular risk. a) Summary of two-sample 532 
Mendelian randomization analysis testing for putatively causal eJects of NMR measures on the risk 533 
on diverse cardiovascular diseases (CVD). Shown are eJect estimates for NMR – disease pairs 534 
passing multiple testing. Metabolites are coloured according to the scheme from Figure 1. b) Locus – 535 
disease network highlighting loci for which at least one NMR measure showed evidence of 536 
colocalization with one or more CVDs (PP≥80%). Only loci without evidence for unspecific pleiotropy 537 
are depicted. Loci were annotated with the most likely causal gene. Loci coloured in blue showed 538 
evidence for being associated with LDL-Cholesterol whereas red did not. c) Dose-response plot for 539 
SNPs associated with HDL particle size (after filtering for pleiotropic SNPs) against the risk for 540 
coronary artery disease. EJect estimates (dots) and 95%-Cis are given and MR-regression lines 541 
added. d) EJect of rs4711750 across the NMR metabolome. e) Locuszoom plot centred around 542 
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VEGFA demonstrating colocalization for the genetic signal for HDL particle size and coronary artery 543 
disease.  544 
 545 

Disease-wide Mendelian randomization screen for non-lipoprotein measures 546 

Having established categories of pleiotropy  for mQTLs beyond simple association 547 

counting, we finally aimed to demonstrate its application in a disease-wide screen using 548 

1394 disease outcomes from the FinnGen study68 (relase 11) for non-lipoprotein 549 

measures. We observed a strong decline, 29 to 13 metabolite – disease association with 550 

significant evidence (adjusted p-value < 0.05) from two-sample MR (‘level edect’) once 551 

subsetting to metabolite-specific instruments, indicating false-positive results due to 552 

pleiotropy (Supplementary Table 17).  553 

 554 

We observed evidence for convergence of locus and level convergence for a risk-555 

increasing edect of genetically predicted plasma glycoprotein acetyl concentrations on 556 

type 2 diabetes risk (odds ratio per 1 s.d. increase: 1.67; p-value<3.9x10-7). The 557 

association persisted even after additional exclusion of variants with evidence for 558 

pleiotropy in the GWAS catalog (odds ratio: 1.69; p-value<9.1x10-5). Notably, ‘locus’ 559 

convergence was based on the consistent edect of the rare loss-of-function variant 560 

chr20:44413714:C>T (MAF = 0.02%) within HNF4A on plasma glycoprotein acetyl 561 

concentrations (beta: 0.60; p-value<8.3x10-15) and the cumulative edect of ultra-rare 562 

loss-of-function variants on type 2 diabetes risk (odds ratio: 2.68; p-value: 6.5x10-10). 563 

However, we note that plasma glycoprotein acetyl concentrations proxy a complex 564 

chronic inflammatory state69 warrants further follow-up analysis to establish 565 

mechanistic links to type 2 diabetes. In contrast, previously reported associations 566 

between genetically predicted levels of branched-chain amino acids and type 2 diabetes 567 

reached at best nominal significance with a smaller edect size than previously 568 

estimated70 (e.g., plasma leucine concentrations: odds ratio per s.d. unit: 1.19; p-569 

value<0.02). 570 

Discussion 571 

 572 
The genetic basis of circulating metabolites provides insights into the complexion of 573 

human metabolomic regulation and its subsequent influence on health and disease. By 574 
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integrating common and rare genetic variation with circulating metabolite 575 

concentrations in 450,000 individuals from three diderent ancestries, we provide here a 576 

data-driven map of the circulating metabolome across the allele frequency spectrum. 577 

This map identifies previously unrecognized modulators of metabolism with potential 578 

health implications. 579 

 580 

By combining ML-guided common variant-to-gene annotation with rare exonic variation, 581 

we provided high-confidence edector gene assignments at >100 loci, including some 582 

with less establised roles in (lipoprotein) metabolism, such as SIDT2. These findings 583 

present compelling candidates for further functional studies, with a strong incentive that 584 

they are likely relevant to human biology, in contrast to species diderences frequently 585 

encountered in animal models71,72. Large-scale studies similar to ours, but with a broader 586 

coverage of the plasma metabolome, will likely uncover many more genes with yet 587 

undefined roles in metabolism, complementing hypothesis-driven research in 588 

experimental models. 589 

 590 

After more than two decades of GWAS, it has become clear that pleiotropic edects of 591 

genetic variants are ubiquitous (see, e.g., 73 ). Little distinction has been possible beyond 592 

the generic concepts of ‘vertical’ and ‘horizontal’ pleiotropy or measures of simple 593 

counting. We refine these concepts by observing variants associated with dozens of NMR 594 

measures but consistent with the concept of edects diluting/propagating along pathways 595 

('proportional pleiotropy’). Conversely, we also observe variants associated with 596 

comparatively few NMR measures in an inconsistent pattern ('disproportional 597 

pleiotropy’) suggesting distinct edects on otherwise highly correlated traits. Our data-598 

driven approach thereby augments previous concepts focussed around biochemical 599 

pathways reporting directionally discordant pleiotropy to discover metabolic bottlenecks 600 
74.  601 

 602 

Disturbance in metabolism or rearrangements thereof are a hallmark of many diseases, 603 

including those not classically considered as ‘metabolic’, such as eye disorders2, but 604 

whether these are pathways for prevention or intervention rather than a consequence of 605 

the disease remains often elusive in humans. We demonstrated considerable overlap 606 
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between mQTLs with disease risk loci, including rare-to-common allelic series that can 607 

reveal unknown edector genes. However, many such ‘locus edects’ were characterised 608 

by nonspecific pleiotropy, implicating the plasma metabolite as a bystander rather than 609 

cause of the disease. This observation aligns with the relatively few notable exceptions, 610 

such as HDL particle characteristics and CAD, from two-sample MR analyses that 611 

contrasted the broad spectrum of observed disease-associations described for the same 612 

NMR platform75. These observations might be best explained by the concept of metabolic 613 

flexibility, which includes built-in redundance in key pathways to combat various intrinsic 614 

and extrinsic perturbations.  615 

 616 

An important distinction of our study compared to most previous edorts was the 617 

availability of highly standardized measurements in a well-designed single large cohort, 618 

mitigating influences of preanalytical variables and enabling analyses of even ultra-rare 619 

variants. However, this also meant that we had little opportunity to investigate the 620 

influence of diderent states of metabolism on our genetic results (such as an overnight 621 

fast) or investigate robustness of findings in diderent enviroments or at scale in other 622 

ancestries. For example, UKB participants were not asked to fast overnight prior to their 623 

baseline visit, which has been shown to impact genetic findings3. Consequently, sentinel 624 

variants capture relatively little variance (0.57% - 1.07%) in circulating ketone body 625 

concentrations that are highly dependent on the time since last food consumption. Other 626 

limitations included the sensitivity and coverage of the 1H-NMR platform, and future 627 

edorts are likely to reveal more diverse phenotypic consequences of genetically 628 

constrained flexibility of human metabolism. Another technical aspect to consider in the 629 

interpretation of our results is the indirect nature of 1H-NMR derived measurements of 630 

certain analytes, including apolipoproteins, that may have no longer be reliable in the 631 

presence of rare damaging variants that change the properties of apolipoproteins as 632 

observed for ApoA1. 633 
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UK Biobank is a prospective cohort study from the UK that contains more than 500,000 676 
volunteers between 40 and 69 years of age at inclusion. The study design, sample 677 
characteristics, and genotype data have been described elsewhere76,77. The UKBB was 678 
approved by the National Research Ethics Service Committee North West Multi-Centre 679 
Haydock and all study procedures were performed in accordance with the World Medical 680 
Association Declaration of Helsinki ethical principles for medical research. We included 681 
460,036 individuals across the three major ancestries in the UK Biobank in our analyses 682 
for whom inclusion criteria (given consent to further usage of the data, availability of 683 
genetic data, and passed quality control of genetic data) applied. Data from the UKBB 684 
were linked to death registries and hospital episode statistics (HES). We used the 685 
ancestry assignments as defined by the pan-UKB78, and further made an edort to assign 686 
unclassified individuals to their respective ancestries based on a k-nearest neighbour 687 
approach using genetic principal components. All analyses were conducted under UKBB 688 
application 44448 and 30418. 689 
 690 

Metabolomic measurements 691 

 692 
Up to 249 targeted metabolomic measurements were quantified using the Nightingale 693 
NMR platform in human EDTA plasma samples. Detailed experimental procedures for the 694 
NMR platform are described elsewhere75,79. The NMR platform covers a wide range of 695 
metabolic biomarkers, including lipoprotein lipids, fatty acids as well as small molecules 696 
such as amino acids, ketone bodies and glycolysis metabolites. All metabolites are 697 
quantified in molar concentration units. We combine here three data releases that cover 698 
the full breadth of the UKBB. Metabolomics data was available for 482276 individuals, 699 
including 19699 samples with data from both the baseline and repeat visit. 700 
 701 
Metabolites were reliably detected, with only one biomarker over 2.5% missingness in 702 
releases 1/2 (creatinine) and release 3 (3-Hydroxybutyrate). 98% of the samples had < 5% 703 
missingness over all biomarkers in releases 1/2 and release 3. We used the ukbnmr80 R 704 
package (v2.2, R v4.3.2) for quality control and removal of technical variation in the NMR 705 
data. This includes technical confounders such as sample preparation time, shipping 706 
plate well, spectrometer edects, time drift within spectrometers and outlier plates.  707 
 708 
We removed samples that were flagged by Nightingale for poor quality and used the MICE 709 
(Multivariate Imputation by Chained Equations)81 R package to impute the remaining 710 
dataset. In total, we imputed 0.16% and 0.17% of data in releases 1/2 and release 3, 711 
respectively. 712 
 713 
We observed overall good consistency with the overlapping routine blood biomarkers 714 
previously measured in the same cohort (median R2: 0.9, range: 0.62 – 0.94) 715 
(Supplementary Fig. 14).  716 
 717 

Adjustment of metabolomic data for medication use 718 

 719 
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We sought to adjust the NMR data for medication use, especially cholesterol-lowering 720 
medication to avoid false positive results driven by medication use in downstream 721 
genetic analyses. For male and female participants separately, we fitted linear models to 722 
quantify the impact of 6 drug categories on each NMR phenotype: cholesterol-lowering 723 
medicine, blood pressure medication, diabetic medication including Metformin usage, 724 
oral contraceptive pill or minipill (female only), hormone replacement therapy (female 725 
only) (UKB fields 6177 and 6153) (Supplementary Fig. 15, Supplementary Table 18).  726 
 727 
We used data from individuals with both baseline and repeat assessment metabolic data 728 
available and estimated the edect of medication in individuals that did not take any drugs 729 
at the time of the baseline visit (N = 6,312 male, N = 6,713 female participants). We fitted 730 
a linear model predicting the follow-up metabolic data from baseline metabolic data, 731 
sex, age and medication use: 732 
  733 

NMRbaseline ~ NMRfollow-up + age + bmi + medcholesterol + meddiabetic + medcontraception + medhormone  + error 734 
  735 
We note that the sample sizes for diabetic medication (Nmale = 45, Nfemale = 29), oral 736 
contraceptive medication (N = 27) and hormone replacement therapy (N=148) were too 737 
small to reliably estimate any edects. Edect estimates for diabetic medication were 738 
correlated to estimates for cholesterol-lowering medicine. The edect estimates for blood 739 
pressure medication were minimal across the phenotypes. We considered thus only the 740 
impact of cholesterol-lowering medicine and corrected the metabolic data in a sex-741 
specific manner. 742 
 743 

Genotyping and GWAS analyses 744 

 745 
GWAS was performed on 249 metabolic traits measured by the NMR platform on 746 
European (n = 434,646), British-Asian (n = 8,796) and British-African participants 747 
(n=6,573) that had complete phenotypic, covariate and genetic information available. We 748 
performed GWAS under the additive model using REGENIE (v3.2.5)82 that employs a two-749 
step procedure to account for population structure. We derived a set of high-quality 750 
genotyped variants per population by applying following filters: (MAF > 1%, MAC > 100, 751 
missingness rate < 10%, pHWE > 10^-15). Further, linkage disequilibrium pruning was 752 
performed using a 1000 kb window, shifting by 100 variants and removing variants with 753 
LD(r2) > 0.8.  We used these variants as input for the first step of REGENIE, to generate 754 
individual trait predictions using the leave-one-chromosome-out scheme. These 755 
predictions are used in the second step where individual variants are tested. Models were 756 
adjusted for age, sex and the first ten genetic principal components. We tested variants 757 
with a minor allele frequency > 0.5%, amounting to 11.5M variants in European 758 
individuals, 11.5M variants in British-Asian individuals and 19.3M variants in British-759 
African individuals. 760 
 761 
For initial discovery, we performed a meta-analysis across the three ancestral groups 762 
using METAL83. We required variants to be present in at least two ancestral groups. To 763 
declare significance, we considered a stringent p-value threshold (2.0 x 10-10) by dividing 764 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 2, 2025. ; https://doi.org/10.1101/2025.01.30.25321073doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.30.25321073
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 27 

the standard genome-wide threshold by the number of metabolic phenotypes (5.0 x 10-8 765 
/ 249). 766 
 767 
We tested our results for genomic inflation and calculated the SNP-based heritability 768 
using LD-score regression (LDSC)84 (Supplementary Table 19).  769 
 770 

Regional clumping and fine-mapping 771 

 772 
We used regional clumping (±500kb) around sentinel variants from the analyses 773 
including White European samples to select independent genomic regions associated 774 
with a metabolic phenotype and collapsed neighbouring regions using BEDtools 775 
(v2.30.0). We treated the extended MHC region (chr6:25.5-34.0Mb) as one region. 776 
 777 

Within each region of interest, excluding the MHC region, we performed statistical fine-778 
mapping for all phenotypes associated with that region using the ‘Sum of single edects’ 779 
model (SuSiE) implemented in the susieR (v0.12.35) R package85. Briefly, SuSiE employs 780 
a Bayesian framework for variable selection in a multiple regression problem with the aim 781 
to identify sets of independent variants each of which likely contains the true causally 782 
underlying genetic variant. We implemented the workflow using default prior and 783 
parameter settings, apart from the minimum absolute correlation, which we set to 0.1. 784 
Since SuSiE is implemented in a linear regression framework, we used the GWAS 785 
summary statistics with a matching correlation matrix of dosage genotypes instead of 786 
individual level data to implement fine-mapping (susie_rss()) as recommended by the 787 
authors85.  788 

 789 
Within a given region, a phenotype can be associated to multiple, independent genetic 790 
loci. To determine the appropriate number of credible sets, we iterated over the 791 
maximum credible sets parameter in susieR from two to ten, thus generating fine-792 
mapped results constrained to a range of maximum number of credible sets. For each 793 
collection of credible sets, we pruned sets where the lead variant was correlated to the 794 
lead variant of other credible sets (R2 > 0.25). After pruning, we considered the fine-795 
mapped results constrained to the largest number of credible sets that still contained 796 
one or more credible sets.  797 
 798 
We performed several sensitivity analyses by computing joint models per locus – 799 
phenotype combination. We obtained all lead variants across the credible sets provided 800 
by SuSiE based on posterior inclusion probability and fitted a single linear model, jointly 801 
modelling the edect of all distinct credible sets in the locus for a given phenotype. 802 
Subsequently, we retained only credible sets where the lead variant reached genome-803 
wide significance (p = 5.0 x 10-8) in both marginal and joint statistics. Furthermore, we 804 
ensured the estimated coedicients were directionally concordant and of similar 805 
magnitude between joint and marginal models (± 25%). Linear models were 806 
implemented in R using the glm() function and used only unrelated white-European 807 
participants and the same set of covariates as described above. 808 
 809 
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Finally, we used LD-clumping (r2 > 0.6) to identify credible sets shared across metabolic 810 
phenotypes. 811 
 812 
We computed the correlation matrix with LDscore v2.0 using genetic data from 50,000 813 
randomly selected, unrelated White European UKB participants. In situations where 814 
SuSiE did not deliver a credible set, we used the Wakefield approximation86 to compute 815 
95%-credible sets. 816 
 817 

Multi-ancestry finemapping 818 

 819 
We aimed to use ancestrally diverse genetic data to refine the credible sets identified in 820 
the White European analyses. For 35577 credible sets that contained two or more 821 
variants in the European analyses, we checked for evidence of a genetic signal in the 822 
British-African and British-Central/South Asian ancestries (P < 1.0 x 10-4) at the same 823 
locus (±25kb on either side of the credible set). After these filters, we considered 6979 824 
credible sets for finemapping across ancestries using MultiSuSiE87. We considered only 825 
quality-controlled variants that were prevalent in all populations (MAF>0.5%) and used 826 
the posterior inclusions probabilities from the European analyses as priors. LD matrices 827 
were calculated from a random subset of 50,000 White European participants for 828 
Europeans, and using all available individuals for the British-African and British-829 
Central/South Asian ancestries. 830 
 831 

Replication of genetic associations 832 

 833 
We replicated our trans-ancestral genetic signals using two independent studies: i) the 834 
so-far largest published mGWAS3, and ii) a parallel edort using overlapping UK Biobank 835 
data9, both using the same NMR platform. We considered a set of metabolic traits that 836 
were directly measured by the NMR platform and not inferred from other traits to avoid 837 
multiplicative errors in these more sensitive phenotypes. In total, we were able to match 838 
144 (Karjalainen et al) and 169 (Tambets et al) metabolic traits, for which we compared 839 
sentinel variants that passed metabolome-adjusted, genome-wide significance in our 840 
trans-ancestral meta-analysis and that overlapped between the studies.  841 
 842 

Sex-specific genetic analyses 843 

 844 
To assess whether our genetic analyses were driven by sex diderences and whether our 845 
results were transferrable to both sexes, we performed sex-stratified GWAS within the 846 
largest ancestry (EUR). We defined ‘female’ and ‘male’ sex including participants where 847 
the recorded sex and sex chromosomes aligned (XX for females and XY for males). The 848 
recorded sex was self-reported, and it was not possible to distinguish sex from gender. 849 
We acknowledge the importance of distinguishing between sex and gender in research 850 
and that chromosomal make-up does not always align with self-identified gender. In 851 
total, phenotypic, covariate and genetic data was fully available for 198,796 males and 852 
235,850 females. GWASs were performed using REGENIE as described above. Per 853 
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metabolic trait, we meta-analysed the sex-stratified results using the inverse-variance 854 
weighted model in METAL (v2020-05-05)83 and finally clumped results on the 855 
heterogeneity p-value using plink (v2.00)88 (--clump-p1 5 x 10-8, --clump-r2 0, --clump-kb 856 
2500).  We considered loci putatively sex-diderential if the meta-analysis heterogeneity 857 
p-values were genome-wide significant (p < 5 x 10-8). We performed additional sensitivity 858 
analyses on the putatively sex-diderential loci by assessing the influence of covariates 859 
confounded by sex (BMI, tobacco usage, alcohol consumption, lipid-lowering 860 
medication and diabetic medication). To properly model all gene by environment 861 
interactions89, we fitted the following model per clump lead variant and associated 862 
metabolic phenotype, including the same set of covariates used in the original GWAS: 863 
 864 
NMR phenotype ~ SNP + confounder + sex + age + fasting duration + PC1-10 + SNP*sex + SNP*confounder 865 

+ sex*confounder + error 866 
 867 

Causal gene assignment 868 

 869 
To assign candidate genes for all metabolite-QTLs residing outside the MHC region, we 870 
first collected annotations for each genetic variant or proxies thereof (r2 > 0.6), including 871 
1) distance to the gene body and 2) putative functional consequences based on the 872 
Variant Edect Predictor (VEP) tool odered by Ensembl. We further collated up to 10 873 
closest genes within a 2 Mb window and subsequent gene features such as:  1) eQTL 874 
evidence for a given variant-gene pair for each tissue available in the eQTL Catalogue 875 
release 790, 2) evidence of being annotated as metabolic in the MGI or Orphanet  876 
databases as defined in ProGem25, 3) evidence of being listed in the OMIM database43 4) 877 
and evidence of being an already assigned drug target in Open Targets91 clinical stage III 878 
and IV. 879 
 880 
With no universally accepted standard for variant-to-gene assignments, we relied on 881 
prior biological and genomic information to create three sets of “putative true positive” 882 
(PTP) set: 1) genes annotated as part of a cholesterol pathway in the KEGG92 or 883 
REACTOME93 database (n=6791 , 722 unique SNPs), 2) genes annotated as part of a lipid 884 
pathway (n=5670 , 603 unique SNPs) and 3) genes annotated as part of an amino acid-885 
related pathway (n=8349, 895 unique SNPs). We used all fine-mapped SNPs associated 886 
with metabolites classified in the respective NMR metabolite class (Cholesterol: 887 
Cholesterol, Cholesteryl esters, Free cholesterol; Lipid: Total lipids, other lipids, Relative 888 
lipid concentration, Phospholipids); Amino Acid: Amino acid) in the PTP set and used 889 
overlapping SNPs in only one PTP set.  The dataset was split in a 7:3 ratio to obtain training 890 
and test sets without overlapping variants. We trained a Random Forest classifier using 891 
5-fold cross-validation with implemented subsampling to account for the unbalanced 892 
datasets. The implementation was carried out using python scikit-learn v1.4.1. We used 893 
the balanced accuracy score to choose the best-performing forest from each training set. 894 
Subsequently, we used the best-performing Random Forest classifiers from each PTP set 895 
to assign candidate scores for all putative edector genes across the entire set of 896 
metabolite-QTLs. We then calculated the median score of these classifiers and selected 897 
the highest-scoring gene as the assigned gene for the variant. Within each PTP set, we 898 
omitted features used to define true positive sets. Each of the three classifiers exhibited 899 
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consistent performance with a mean ROC AUC of 0.80 and a mean balanced accuracy 900 
score of 0.69 (Supplementary Fig. 16). 901 
 902 
To provide another layer of evidence for assignment of causal genes at metabolic loci, we 903 
performed cis-colocalisation with protein targets measured in the independent Fenland 904 
study28. Cis (e.g. gene body ± 500kb) summary statistics were preprocessed using 905 
MungeSumStats94. To relax the single causal variant assumption, we employed a 906 
colocalization approach where we fine-mapped all traits with SuSiE and then performed 907 
colocalization among all credible sets using functionality of the `coloc` (v5.2.3)95,96 and 908 
`susieR` (v0.12.35)85 R packages. For this, we set the prior probability that a SNP is 909 
associated with both traits to 5x10-6 and restricted the maximum number of credible sets 910 
for the outcome data to 595.  911 
 912 

Tissue enrichment of metabolic loci 913 

 914 
We tested whether genes proximal to metabolic loci and assigned edector genes were 915 
enriched in tissue compartments by leveraging data from the Human Protein Atlas97. 916 
Specifically, we used a two-sided Fisher’s test whether metabolic genes were enriched 917 
among tissue-specific genes (tissue-enriched or tissue-enhanced as defined by the 918 
Protein Atlas) against all protein-coding genes as background. 919 
 920 

Pleiotropy assignment and overlap with the GWAS catalog 921 

 922 
To assign modes of pleiotropy for each mQTL, we first clumped lead credible set variants 923 
across NMR measures by LD, collating variants with r2≥0.6 as a single signal, referred to 924 
hereafter as ‘mQTL. This was done based on dosage files of all unrelated White European 925 
UKB participants and implemented with the igraph (v.2.0.1.1) package in R. For each 926 
mQTL, we then computed all possible Pearson correlation coedicients among 927 
associated NMR measures. To classify each mQTL-group, generated two metrics: 1) the 928 
25th percentile of all correlations among associated NMR measures, and 2) the Pearson 929 
correlation coedicient between the association strengths for each measure (-log10(p-930 
value) and its correlation coedicient with the most strongly associated measure within 931 
the mQTL. The latter is a measure to what extend the association between NMR 932 
measures at a given locus (‘pleiotropy’) can be explained by being correlated with the 933 
most proximal associated measure. Based on opposing those two measures for all 934 
mQTLs we opted to threshold each at 0.6 to define the following five groups: 1) ‘specific’ 935 
mQTLs associated with only ≤3 highly correlated NMR measures (rho≥0.6), 2) ‘pathway 936 
pleiotropic’ mQTLs associated with highly correlated NMR measures (rho≥0.6) that also 937 
followed the described association pattern (rho≥0.6), 3) ‘proportional pleiotropic’ mQTL 938 
groups associated with, in part, uncorrelated NMR measures but highly correlated 939 
association statistics (rho≥0.6), 4) ‘disproportional pleiotropic’ mQTLs associated with 940 
highly correlated NMR measures (rho≥0.6), but without evidence that this translated into 941 
a correlation of association statistics (rho<0.6), and 5) all remaining mQTLs as ‘unspecific 942 
pleiotropic’ groups. 943 
 944 
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To quantify the extent to which our pleiotropy assignment extends beyond the NMR 945 
measured analysed here, we intersected mQTLs and proxies thereof with results reported 946 
in the GWAS catalog (download: 20/05/2024). We first pruned GWAS catalog entries for 947 
those with mapped traits (to minimize double counting), results that met genome-wide 948 
significance (p<5x10-8) and had location information available. We further dropped 949 
results similar to NMR measures based on broad EFO terms (e.g., EFO:0005105 and child 950 
terms indicating 'lipid or lipoprotein measurement’). To further account for traits mapping 951 
to similar categories, we iteratively traced back mapped EFO terms to broader parent 952 
terms. We finally classified mQTLs to be ‘specific’ in the GWAS catalog, if they associated 953 
with less than five parent EFO-terms and ‘unspecific’ otherwise. This information was 954 
primarily used to define instruments for Mendelian randomization analysis.   955 
 956 

Integration of metabolomic measurements with cardiovascular 957 

endpoints 958 

 959 
We next aimed to utilize the mQTLs to investigate the shared genetic basis of the 249 NMR 960 
and 25 selected cardiovascular disease (CVD) traits. We utilized public databases (GWAS 961 
Catalog, openGWAS, CVD-KP) to collect CVD data comprising the largest currently 962 
publicly available GWASs on coronary artery disease and myocardial infarction, angina 963 
pectoris, aortic aneurysm, heart failure and stroke, peripheral arterial disease including 964 
2-5 subtypes for each phenotype. An additional 10 CVD traits had no subtype data 965 
available (Supplementary Table 13) Data was harmonized and if necessary, lifted over 966 
to GRCh37 using the `MungeSumstats` (v1.13.2) R package94. We queried mQTL lead 967 
variants and proxies in strong LD (r2>0.8; LD backbone based on UK Biobank, as described 968 
above) of each NMR trait in each region and corresponding summary staAsAcs for each CVD 969 
trait. 970 
 971 
To investigate `variant` edects  on NMR metabolite concentrations and CVD outcomes,  972 
we performed statistical colocalization screens for all combinations of the NMR traits in 973 
regions with at least one credible set and CVD traits with matching summary statistics98. 974 
We applied statistical colocalization as described before (see ‘Causal gene assignment’). 975 
 976 
To estimate `level` edects of NMR metabolite concentrations on CVD outcomes, we 977 
performed Mendelian Randomization analysis using the `TwoSampleMR` package 978 
(v0.5.1), implementing the inverse-variance weighted and the MR-Egger methods. We 979 
used all 249 NMR metabolites as exposure variables, the 25 CVDs as outcome variables 980 
and assessed separately four sets of instruments: 1) sentinel variants, 2) lead credible 981 
set variants, 3) lead credible set variants restricted for molecular pleiotropy (e.g. 982 
‘pathway pleiotropy’) and 4) lead credible set variants restricted for both molecular and 983 
phenotypic pleiotropy.  We used the Wald ratio method to estimate the edect of NMR 984 
concentrations on CVD outcomes using only single genetic variants99. We used MR Egger 985 
to test for evidence of a pleiotropic association, an intercept p-value of p> 0.0001 986 
indicating evidence of no pleiotropy and checked for concordance between the edect 987 
estimates of IVW-MR, MR-Egger and single genetic variant MR. We controlled the false 988 
discovery rate (FDR) at FDR=5% 100. To further limit the possible extend of pleiotropic 989 
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associations, we only reported `level edects` passing these filters in the variant sets 2-990 
4, prioritizing the association in the more stringent variant set. 991 
 992 
The overlap of `locus edects` showing no `disproportional pleiotropy` according to the 993 
section Pleiotropy assignment and overlap with the GWAS catalog as well as a 994 
significant single variant MR (FDR=5%) and `level edects` calculated from metabolite-995 
specific or metabolite- and phenome-specific variants was used to identify gene-996 
metabolite pairs associated with cardiovascular disease risk independent of LDL-997 
metabolism. We considered loci as independent from LDL-metabolism if they did not 998 
associate with clinical LDL-cholesterol at the locus with p < 2.0 x 10-10 and the edect 999 
estimate of any variant on clinical LDL-C ranked upwards the 80th percentile of all edect 1000 
estimates at the locus. 1001 

Rare Variant Analyses with whole exome sequencing data  1002 

 1003 

Whole Exome Sequencing data QC 1004 

An in-depth description of whole exome sequencing, including experimental details, 1005 
variant calling, and standard quality control measures for the UK Biobank, has been 1006 
extensively reported by Backman et al.101. We performed additional quality control (QC) 1007 
steps at the UKB Research Analysis Platform (RAP; https://ukbiobank.dnanexus.com/ ).   1008 
 1009 
We employed bcftools (v1.15.1) to process population-level Variant Call Format (pVCF) 1010 
files. Initially, we normalised the data using the reference sequence GRCh38 build, 1011 
followed by splitting multi-allelic variants. Subsequently, we conducted QC on these 1012 
variants using a set of parameters outlined below to filter high-quality variants for 1013 
downstream genetic analyses. Genotypes for SNPs were set to missing if the read depth 1014 
was less than 7 (or less than 10 for INDELs) or if the genotype quality was below 20. 1015 
Furthermore, we excluded variants if the allele balance (AB) was less than 0.25 or greater 1016 
than 0.8 in heterozygous carriers. 1017 
 1018 
Finally, we computed the missingness rate for each variant and excluded those with 1019 
missing values in over 50% of the participants. 1020 
  1021 

Variant Annotation and Gene burden Masks 1022 
Variants were annotated using ENSEMBL Variant Edect Predictor (VEP)102 (v106.1) with 1023 
the most severe consequence for each variant chosen across all protein-coding 1024 
transcripts. We further utilized additional plugins REVEL103, CADD v1.6104, and LOFTEE105, 1025 
for variant annotation. Based on these scores we defined six partially overlapping variant 1026 
masks: 1) high-confidence predicted loss-of-function (pLOF, based on LOFTEE and 1027 
includes stop-gained, splice site disrupting, and frameshift variants), 2) any pLOF 1028 
assigned high impact by VEP, 3) pLOF and high-impact missense variants (CADD score > 1029 
20 oe REVEL score > 0.5), 4) pLOF and any missense variants, 5) only high-impact 1030 
variants, and 6) any missense variants but not pLOF. We tested synonymous variants 1031 
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separately as a negative control. We tested each mask in diderent minor allele frequency 1032 
bins, using 0.5% and 0.005% as thresholds. 1033 
 1034 
We performed rare variant association testing (RVAT) using WES data across 249 1035 
quantitative NMR phenotypes using REGENIE (v3.1.1) via the DNAnexus Swiss Army Knife 1036 
tool (v4.9.1). Similar to common variant GWASs, we used a two-step approach by 1037 
REGENIE. However, we additionally generated step1 LOCO files with and without 1038 
adjusting for common signals via a polygenic score (PGS) in the RVAT models per 1039 
phenotype. In practice, we computed a PGS for each phenotype using edect sizes of lead 1040 
variants from the GWAS summary statistics and corresponding dosages of variants from 1041 
imputed data. All RVAT models were then adjusted for PGS in addition to age, biological 1042 
sex, fasting duration and the first ten genetic PCs. We first performed aggregated gene 1043 
burden testing across for 19,026 genes using a set of masks as defined above. For the 1044 
gene burden testing we used aggregated Cauchy association test (ACAT) to estimate a p-1045 
value for each gene across all combinations of masks and allele frequency bins. ACAT 1046 
first computes p-values for all sets defined by various masks within a gene and then takes 1047 
these p-values as input to compute one p-value for the respective gene via a well 1048 
approximated Cauchy distribution.  1049 
 1050 
We have also performed single variant association testing for exonic variants commonly 1051 
referred to as exome wide association study (ExWAS). For the ExWAS, we only tested 1052 
variants with MAC >5 and reported results for variants with a MAF < 0.0005. We have 1053 
performed these analyses in individuals of White Europeans, British African and British 1054 
South Asian ancestry.  1055 
 1056 
We considered findings as robust, if they passed multiple testing corrected statistical 1057 
significance (gene burden: p<1.2x10-8 [corrected for the number of genes x number of 1058 
traits]; ExWAS: p<2.0 x 10-10 [same as for common variant GWAS, conventional genome-1059 
wide significance corrected for the number of traits]) in both the model with and without 1060 
adjusting for the common variant PGS and edect sizes did not dider by more than 20% 1061 
between these models, since this might otherwise indicate that rare variant findings 1062 
cannot clearly distinguished from common variant edects. 1063 
 1064 

Phenotype definition 1065 
To systematically test for phenotypic consequences of genes identified through rare 1066 
variant analysis, we collated 626 disease entities following previous work1 by aggregating 1067 
information from self-report, hospital episode statistics, death certificates, and primary 1068 
care data (45% of the UKB population). Each of the disease entities had at least one 1069 
common variant finding passing statistical significance, and we employed a similar 1070 
analysis workflow using REGENIE as described for NMR measures but using logistic 1071 
regression with saddle point approximation.  1072 
 1073 
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Integration of OMIM (Online Mendelian Inheritance in Man) 1074 
We downloaded the OMIM gene – disease list (09/11/2023) and kept 7,327 unique entries 1075 
after filtering for gene entries with high confidence (level 3). We computed the 1076 
enrichment of genes associated with any NMR measure from rare variant or gene burden 1077 
analysis against a background of 19,989 protein coding genes using Fisher’s exact test.  1078 
 1079 

Mendelian Randomisation analyses 1080 

 1081 
We performed a phenome-wide Mendelian Randomisation screen using outcome 1082 
summary statistics from the independent FinnGenn68 cohort, release 11 (June 2024). We 1083 
assessed only outcomes with genome-wide significant signals (5 x 10-8), yielding 1394 1084 
phenotypic outcomes. We selected 21 non-lipid NMR biomarkers as exposure variables 1085 
and assessed separately four sets of instruments as described previously for the 1086 
cardiovascular Mendelian Randomisation analyses. We included two well-characterized 1087 
lipid biomarkers (LDL-C and ApoB) as positive controls in the MR analyses. 1088 
 1089 
We performed MR using the TwoSampleMR package (v0.5.1), implementing the inverse-1090 
variance weighted and the MR-Egger methods. We discarded results with MR Egger p < 1091 
0.001, Cochran’s Q p-value < 1.0 x 10-6 and results where the estimated edect was 1092 
directionally discordant between the IVW and Egger methods. 1093 
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