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Summary 

Background 

Liquid biopsy based on cell-free DNA (cfDNA) is an established approach in clinical 

diagnostics. In recent years, a fraction of cfDNA comprising short fragments has been 

discovered, that is enriched at gene promoters and binding sites of DNA-binding proteins. 

However, the diagnostic potential of such short double-stranded cell-free DNA (footprint 

DNA) remains to be fully explored. Therefore, we characterized the clinical utility of footprint 

DNA in septic patients. 

Methods 

We enriched for footprint DNA based on size selection and subsequent high-throughput DNA 

sequencing to receive an unbiased, genome-wide picture of the host response to the infection. 

Footprint DNA occupancies were analyzed for correlation with clinical metrics including urea, 

hemoglobin, or alanine aminotransferase (ALT). Additionally, footprint DNA markers were 

benchmarked by read and receiver operating curve (ROC) analysis against procalcitonin (PCT) 

as an established marker for infection status as well as against clinical parameters for early 

death prediction. 

Findings 

We found that levels of occupancy of footprint DNA at defined genomic loci semi-

quantitatively correlated with physiological markers like ALT or urea from major organ 

systems including liver or kidney. In a small proof-of-concept cohort, differential signatures of 

DNA footprints distinguished between patient groups with bacterial and viral infections with 

an area under the ROC (AUROC) of 1.0, which is considerably better than PCT with an AUROC 

of 0.75. Likewise, footprint DNA could also predict early death in septic patients with an 

AUROC of 0.983, compared to the SOFA (Sepsis-related organ failure assessment) score with 

an AUROC of 0.76. 
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Interpretation 

Our findings show that footprint DNA delivers quantitative information on physiology at the 

DNA level, demonstrating its diagnostic and prognostic potential. Identified footprint 

biomarker regions could be helpful in the clinical assessment of septic patients and other 

complex diseases outperforming current state-of-the-art clinical diagnostics. 

Funding 

This study was financed with internal funds from Fraunhofer society. 

 

Keywords 

Next-Generation diagnostics; Short cell-free DNA; Biomarker identification; Sepsis; Liquid 

biopsy 

 

Introduction 

The potential of liquid biopsy in clinical diagnostics has revolutionized the field of clinical 

diagnostics for multiple indications [1]. Especially cell-free DNA is widely used as a biomarker 

class for prognosis and diagnosis in non-invasive prenatal testing, cancer, sepsis and organ 

rejection, among others [2–4]. Exemplarily, several studies underline the potential of cfDNA 

based biomarkers for clinical sepsis diagnostics [5–7]. For pathogen detection in sepsis, it is 

well known that the clinical gold standard of culture-based analysis (e.g., blood culture) is 

associated with considerable limitations [8–10]. Using metagenomic high-throughput 

sequencing of plasma cfDNA, a six times higher sensitivity for pathogen detection than blood 

culture can be achieved [11]. More recently, in contrast to regular cfDNA, with an average 

fragment size of 167 bp, a very small subset of double-stranded cfDNA with a significantly 

shorter fragment length of 35 - 80 bp has been found to be protected by non-histone DNA-

binding proteins, like transcription factors [12,13]. Using ultra-deep high-throughput DNA-
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sequencing, it has been described that short cfDNA directly maps to genomic regions that are 

occupied by DNA binding proteins like transcription factors, indicating first potential for 

clinical application for example in breast cancer diagnostics [12,14]. Alternative approaches to 

infer the transcription factor occupancy make use of nucleosomal positioning therefore 

detecting open chromatin, where DNA regulatory binding protein may bind [15]. Quite 

recently, we have developed a workflow to specifically enrich short double-stranded cfDNA 

from plasma (footprint DNA) and could show that these fragments accumulate at open 

chromatin and gene regulatory elements [16]. The signals extracted from the footprint DNA 

were found to have the clinical potential to distinguish between two different types of 

gastrointestinal cancer as well as to discriminate sepsis from non-infected postoperative 

controls and healthy individuals [16].  

Sepsis, defined as a “life-threatening organ dysfunction caused by a dysregulated host response 

to infection” [17], is a major health threat with high mortality rates and a global incidence of 

estimated 48.9 mio sepsis cases with 11 mio deaths per year [18]. However, precise and reliable 

biomarkers for sepsis diagnosis and prognosis are still in their infancies. One standard 

assessment for sepsis diagnosis represents the Sequential (Sepsis-related) Organ Failure 

Assessment (SOFA) score, which evaluates multiorgan failure in ICU patients [19] and has 

been described to have predictive value for mortality risk [20,21]. Another important clinical 

parameter frequently used in sepsis is procalcitonin (PCT) which is an indicator for bacterial 

sepsis and primarily suggested to guide antibiotic treatment [22–24]. Still, PCT and SOFA, 

although routinely used in clinical practice, do not represent reliable predictors of infection 

and outcome, thus indicating that further research is needed to overcome limitations and to 

establish more precise biomarkers [25,26].  

In this study, we evaluated the diagnostic potential of footprint DNA in the context of sepsis. 

Consequently, we identified footprint DNA target regions that have the potential to semi-

quantitatively retrace patient physiology. Based on the host response, footprint DNA allowed 

to more accurately distinguish between bacterial and viral sepsis and to predict early deaths 

versus survivors better than established biomarkers, including SOFA and PCT. 
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Methods 

Ethics Approval and patient consent 

Septic patient samples from the monocentric clinical study S-097/2013, conducted in the 

surgical intensive care unit of Heidelberg University Hospital (November 2013 - January 2015, 

German Clinical Trials Register: DRKS00005463) [11] and from the multicentric study S-

084/2017 (March 2019 - August 2020, German Clinical Trials Register: DRKS00011911, 

ClinicalTrials.gov: NCT03356249) [27] were used, with study and control patients or their 

legal representatives signing written informed consent. Both studies were conducted in 

accordance with the Declaration of Helsinki and the professional code of conduct for 

physicians of the competent state medical association in the current versions, approved by the 

Institutional Ethics Committee of the Medical Faculty of Heidelberg University. Samples from 

S-097/2013 were used for correlating clinical metrics with footprint DNA signals [11,28]. For 

infection type and outcome prediction, septic samples from the study S-084/2017 [27] and 

postoperative, non-infection controls from S-097/2013 [11,28] were used. 

Blood plasma preparation and cell-free DNA isolation 

Plasma and cfDNA was isolated as described previously [11]. CfDNA was isolated with the 

QIAsymphony SP and the QIAsymphony DSP Circulating DNA Kit as well as the QiaCube 

connect and the QIAamp MinElute ccfDNA kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s instructions. Eluted cfDNA was quantified with the Qubit dsDNA HS Assay Kit 

(Thermo Fisher, Waltham, USA) and cfDNA quality was assessed by the Fragment Analyzer 

High Sensitivity DNA Kit (Agilent, Santa Clara, California, USA). 

Library generation and Next-Generation sequencing 

Footprint DNA sequencing libraries from isolated cfDNA were prepared as already described 

in [16], with 15 ng of cfDNA as input and final elution in 20 µL of nuclease-free water. Library 

generation with the NEXTFLEX Cell free DNA-Seq Kit (V2) (Perkin Elmer, Pittsburgh, USA) 

was automated using the Biomek FXP (Beckman Coulter, Brea, USA). Library quality was 
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assessed with the Fragment Analyzer High Sensitivity DNA Kit (Agilent, Santa Clara, USA) and 

concentration was measured by the Qubit dsDNA HS Assay Kit (Thermo Fisher, Waltham, 

USA). Size selection of cfDNA libraries was performed as described in [16] using BluePippin 

and 3% agarose cassettes (Sage Science, Beverly, USA) with one minor modification: following 

the second size selection, samples were purified with 1.8 x the volume of AMPureXP beads 

(Beckman Coulter, Brea, USA). Size selection performance was evaluated by the Fragment 

Analyzer High Sensitivity DNA Kit (Agilent, Santa Clara, USA) and by Qubit dsDNA HS Assay 

Kit (Thermo Fisher, Waltham, USA). After size selection and molarity normalization, 

sequencing was performed with a NextSeq 2000 (Illumina, San Diego, USA) using 100 bp 

single read kits with a targeted sequencing depth of 50 million reads per sample. 

Raw data processing 

After quality control of raw sequencing reads with FastQC (v0.12.1), the following steps were 

performed to remove sequencing artifacts: 1) Removal of sequencing adapters, terminal polyG 

sequences (min 10 G’s), and quality trimming (BBTools - bbduk.sh v39.01). 2) Removal of 

terminal single A introduced by library preparation (BBTools - bbduk.sh v39.01). 3) Size 

selection of sequenced reads allowing lengths greater than 20 bp and smaller than 60 bp 

(BBTools - bbduk.sh v39.01). 4) Removal of sequencing reads with dust scores smaller than 7 

(prinseq-lite v0.20.4) [29–31]. 5) Processed reads were mapped to the human reference 

genome GRCh37 using NextGenMap (v0.5.5) with default settings [32]. 6) Mapped reads were 

deduplicated with samtools rmdup (v1.6), reads in blacklisted regions were removed, and reads 

with a MAPQ value < 1 were removed with samtools view (v1.6) [33,34]. Resulting reads were 

converted to BigWig for visualization and other downstream analyses with deeptools (bin size 

= 10, normalization = counts per million (CPM), bamCoverage v3.5.2) [35]. 

Peak calling and annotation 

For footprint DNA data, peaks were called with MACS2 callpeak (narrow: --nomodel --extsize 

32 --call-summits --min-length 30 -q 0.05; v2.2.9.1) [36]. Consensus peaks of a condition were 

identified with R if narrow peaks were identified in at least fifty percent of samples of a given 
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condition. In addition, consensus peaks less than 31 nucleotides apart were merged. Consensus 

peaks were annotated to genomic functional elements with bedtools (nuc; v2.30.0)  [37] 

including gene bodies, CpG islands, cis-regulatory elements (CREs) and transcription factor 

binding sites (TFBS). References for functional elements are provided on github and were 

originally retrieved from UCSC (CpG islands: UCSC TableBrowser, track name=cpgIslandExt; 

TFBS: UCSC TableBrowser, track name=encRegTfbsClustered) and ENCODE (CREs: 

https://doi.org/doi:10.17989%2FENCSR461KLY, https://doi.org/doi:10.17989%2FENCSR471KRT, 

https://doi.org/doi:10.17989%2FENCSR676GWZ, https://doi.org/doi:10.17989%2FENCSR405FRQ). 

Transcription factor motif enrichment analysis 

Enriched transcription factor motifs were identified with MEME (AME; --scoring avg --

method fisher; v5.4.1) [38]. Input DNA sequences were retrieved from consensus peaks with 

bedtools (nuc; v2.30.0) and analyzed for enrichment of motifs in the 

HOCOMOCOv11_core_HUMAN_mono database [37,39]. DNA sequences from each 

condition's consensus peak set served as test or control, e.g., consensus peak DNA sequences 

from bacterial sepsis as test for consensus peak DNA sequences from viral sepsis as control. 

Motifs with adjusted p-values < 0.05 were considered significantly enriched. 

Identification of differentially occupied genomic regions  

Differentially enriched genomic regions were identified from the respective consensus peak 

sets of two conditions of sepsis outcomes or sepsis infection types. Genomic GC content of the 

consensus peak set used in a comparison was extracted with bedtools (nuc; v2.30.0), for later 

normalization of read counts [37]. Raw read counts were obtained with deeptools 

(multiBamSummary; v3.5.2) [35]. The read count matrix, GC content information and 

experiment design were used as input for differential enrichment analysis in R with EDASeq 

and edgeR packages (EDASeq v2.32.0; withinLaneNormalization (y=’GC’, which=’full’), 

betweenLaneNormalization (which=’full’), glmFit, glmLRT) [40,41]. Genomic regions with an 

adjusted p-value < 0.05 and a |log2(fold change)| > 0.5 were considered as differentially 

enriched regions (DERs). In addition, regions were ranked by p-values per fold change 
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direction. From the ranked regions, the top 5 per fold change direction were selected. The top 

5 DERs for the early death condition of the outcome comparison also includes regions with an 

adjusted p-value > 0.05. Normalized read counts from top regions were visualized as heatmaps 

with gplots (heatmap.2; v3.1.3; log2(normalized read count + 1), z-scaling per region, 

clustering by regions and samples using Euclidean distance and ward.D2 clustering). 

Normalized read counts of the top regions per condition were used as input for a principal 

component analysis (PCA) in R (prcomp; center=TRUE, .scale=TRUE). The first two principal 

components were evaluated for their discriminative power of the experimental conditions with 

receiver operating characteristic (ROC) analysis in R (pROC; v1.18.0). 

For the infection type comparison, bacterial and viral sepsis samples were separately compared 

to non-infected control samples. All three comparisons, bacterial vs. viral, bacterial vs. no 

infection, and viral vs. no infection, yielded each 10 top DERs, in total 30. The GC content, 

sequencing depth, and region size normalized read counts from these regions were used for 

PCA. 

Correlation analyses between clinical metrics and short cfDNA 

For the correlations between footprint DNA and clinical metrics, two patient groups were used. 

The 'Identification' cohort (n = 28) included time course samples from six sepsis patients over 

21 days, with eight samples missing due to unavailability or exclusion as described earlier [11]. 

Afterwards, identified correlates were validated with independent samples of varying time 

points from additional sepsis patients (‘Test’ cohort, n = 34). Correlations were derived from 

read counts of genomic bins to ensure an analysis that encompasses the entire genome, rather 

than focusing solely on regions with detectable peaks in the samples. This approach allows the 

detection of variations across the full dynamic range of read counts, including low or zero 

values, which might be missed by peak-calling methods. The genome was split in 30,962,143 

bins of length 100nt and the short cfDNA reads per bin were counted. Read counts of bins were 

adjusted for GC content in R with EDASeq (EDASeq v2.32.0; withinLaneNormalization 

(y=’GC’, which=’full’)) [40]. After GC adjustment, values were transformed to transcripts per 

million (TPM), to account for the sequencing depth of each sample [42]. Pearson correlations 
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were calculated between normalized read counts of each bin and the following clinical metrics: 

activated partial thromboplastin time, alanine aminotransferase, albumin, alkaline 

phosphatase, aspartate aminotransferase, bilirubin, C-reactive protein, creatinine, 

erythrocytes, hemoglobin, leukocytes, procalcitonin, Quick`s value, thrombocytes, and urea. 

Correlation values were computed for each patient individually and all samples combined. For 

the latter , p-values were adjusted for multiple testing using the false discovery rate (FDR) [43]. 

For metrics with over 50 bins having an FDR < 0.05, the top 50 bins were selected based on 

the sum of the combined and patient-wise correlation values. The correlates from the 

identification cohort were evaluated for robustness with the test cohort. This evaluation was 

based on the correlation value in the test cohort and the mean absolute error (MAE) to a linear 

model fitted on the identification cohort. Outliers, defined as values outside the identification 

cohort's clinical metric data range, were excluded from thew test cohort. Correlates with the 

strongest correlation and smallest MAE were manually manual inspected to ensure that the 

correlation was not overestimated by a subset of data points. All correlation analyses were 

executed with python. 

Statistics 

Summary statistics for sepsis infection type and sepsis outcome cohorts were calculated in R 

(tidytlg; v0.1.4). For numerical metrics, mean with standard deviation, median, range, and 

interquartile range are reported. Categorical metrics are reported as percentages. Numerical 

metrics were tested for difference of medians using a two-sided Wilcoxon rank-sum test. 

Categorical metrics were tested for differences in proportions using a two-sided Fisher's exact 

test. The discriminatory power of numerical metrics for the patient groups in the two cohorts 

was evaluated using the area under the receiver operating characteristic (AUROC) curve 

calculated in R (pROC; v1.18.0). 95 % confidence interval values of AUROC values are reported 

and were calculated using DeLong’s method. Differences between ROC curves were tested for 

significance with the bootstrap method of pROC. Optimal classification thresholds are 

provided that have been calculated using the Youden criterion. 
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Optimal classification thresholds derived from ROC analyses were used to categorize patients 

in the outcome cohort into high-risk or low-risk groups for mortality. Subsequently, time-to-

event analyses were conducted to evaluate potential differences between these groups. Cox 

proportional hazards models were fitted using R, and significance of differences was assessed 

with pairwise_survdiff function from survminer (v0.4.9) and survival (v3.5.7). Hazard ratios 

were calculated and tested for statistical significance using the Wald test. 

Role of the funding source 

This study was financed with internal funds from the Fraunhofer society, which had no direct 

role in the study design, in the collection, analysis, and interpretation of data, in the writing of 

the manuscript, or in the decision to submit the paper for publication. 

 

Results 

Characterization of footprint DNA 

Released DNA in the bloodstream gets rapidly degraded by DNA digesting enzymes, like DNase 

I, generating circulating cell-free DNA (cfDNA). Histones and other DNA binding proteins 

(DBP), like transcription factors, protect cfDNA from degradation (Figure 1a). Footprint DNA 

fragments originating from DBPs are generally shorter compared to cfDNA from histones, 

which facilitates specific enrichment and high-throughput sequencing of these fragments. 

Sequencing reads of footprint DNA are enriched at regulatory genomic sites like promoters, 

enhancers, transcription factor binding sites (TFBS), at CpG islands or in proximity to 

transcription start sites (TSS) [12,44] (Figure 1a, b, Supplement Figure 1 and 

Supplement Figure 2). An exemplary genomic region with enrichment of footprint DNA 

reads is shown for the NOCT gene (Figure 1b). Enrichment and sequencing of footprint DNA 

provides genome-wide information on regulatory interactions between DBPs and the genome, 

which correlates with the host response of sepsis patients and thus can be used to identify 

valuable biomarkers. Accordingly, genomic regions with differentially enriched footprint DNA 
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reads, potentially revealing bona fide biomarkers, were inferred from peak calls, while 

correlations between footprint DNA signals and clinical metrics were identified from genomic 

partitions (bins) of 100 bp in size (Figure 1b zoom).  

 

 

Figure 1: Origin of footprint DNA and genome-wide signal extraction approaches. a) CfDNA is 

protected from enzymatic digestion in the bloodstream either by histones (purple) or other DNA-binding proteins 

(DBP, footprint DNA, green). Isolating cfDNA from the plasma of patients, enriching DBP-bound footprint DNA 

according to size and sequencing it yields amplified signals at regulatory elements such as promoters or 

transcription start sites (TSS) of genes. Created in BioRender [Sonntag M., 2025, https://BioRender.com/i06x610]. 

Exemplary footprint DNA read enrichment at the NOCT gene promoter, enhancer, CpG island, and various TFBS. 

Either by peak calling (left) or by dividing the human genome into bins, footprint DNA signals can be extracted and 

analyzed (right, zoom in). 
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Footprint DNA contains information about sepsis patient physiology 

Footprint DNA provides genome-wide information about the interaction of regulatory proteins 

with the genome. Next, we investigate whether this information can be linked to known 

physiological functions measured by established clinical parameters. Blood and plasma 

samples were collected from sepsis patients over a period of 21 days for routine clinical 

measurements and plasma extraction (Figure 2a). Patient characteristics and physiological 

parameter are depicted in Supplement Table 1 and Supplement Table 2. Plasma was used 

for footprint DNA enrichment, sequencing, and extracted signals from the bin approach were 

evaluated for correlations to routine laboratory parameters. Parameters were evaluated for 

liver function (alanine aminotransferase (ALT), albumin, alkaline phosphatase (ALP), 

aspartate aminotransferase (AST), and bilirubin), kidney function (creatinine and urea), 

immune response (C-reactive protein (CRP), leukocytes, and procalcitonin (PCT)), blood 

coagulation system (activated partial thromboplastin time (aPTT), Quick`s value and 

thrombocytes), as well as oxygen transport (erythrocytes, hemoglobin). The correlations 

between footprint DNA signals and described metrics were tested both patient-centered and 

between patients (‘identification’ cohort) as well as validated in completely independent 

samples (‘test’ cohort). 

For four physiological parameters, significant footprint DNA correlations were identified, 

including kidney function (urea; Figure 2b), immune response (PCT; Figure 2c), oxygen 

transport (hemoglobin; Figure 2d), and liver function (ALT; Figure 2e). Additionally, 

weaker correlates for additional liver functions (ALP, AST, and bilirubin; Supplement 

Figure 3a-c) and oxygen transport (erythrocytes; Supplement Figure 3d) were also 

identified. Patient physiology can change dynamically within a few days, leading to an 

exponential decrease of PCT in patient S33, for example (Figure 2c). Within the identification 

cohort for all six patients combined, footprint DNA signals correlate significantly and strongly 

with clinical parameters including urea (Pearson r: 0.766) or PCT (Pearson r: 0.806) (Figure 

2b-e). At the individual patient level, correlations also showed similar trends (Supplement 

Figure 4, Supplement Figure 7). These correlations were then further validated using 
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samples from an independent test cohort (Supplement Table 3). Although extent of 

correlations decreased (Pearson r: 0.586 for urea and 0.440 for hemoglobin) and the MAEs of 

the linear fits increased, a moderate correlation with the clinical parameters was still observed 

(Figure 2b-e right plot). These results suggest that sequencing footprint DNA can provide 

semi-quantitative information to describe dynamic physiological changes of clinical metrices, 

which are used to assess the current status of the patient, e.g., organ function. 
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Figure 2: Correlation of footprint DNA signals to physiological markers. a) Experimental design for the 

identification and verification of footprint DNA correlates. Routine clinical metrics as well as short cfDNA 

sequencing data were acquired from six septic patients over 21 days (Identification, n=28 samples, 6 individuals). 

Independent samples from other septic patients were used for validation (Test, n=34 samples, 19 individuals). 

Created in BioRender [Sonntag M., 2025, https://BioRender.com/w86w257]. b-e) In the identification cohort, 

footprint DNA markers from the six patients were correlated patient wise to routine clinical metrics (left three plots) 

and across all patients (second right plot). In the test cohort, independent samples from sepsis patients were used 

for validation of identified correlation results. Reported correlations are pearson correlation values (r). Adjusted p 

values of correlations across patients: urea: r=0.766, p=0.0011; PCT: r=0.806, p=0.0163; hemoglobin: r=0.820, 

p=0.0424; ALT: r=0.784, p=0.0165. The red lines show the fitted linear function based on the identification cohort 

from which the MAE is calculated. PCT, procalcitonin; ALT, alanine transaminase: MAE, mean absolute error. 
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Footprint DNA accurately predicts type of infection in sepsis 

In clinical sepsis diagnostic, PCT is routinely measured to monitor bacterial sepsis, with 

potential use in detecting bacterial sepsis. However, PCT not always provides reliable results 

to differentiate between bacterial and non-bacterial sepsis. Therefore, our cohort was used to 

determine whether footprint DNA markers are able to differentiate between sepsis infection 

types and uninfected controls already at the day of admission to the ICU (Figure 3a and 

Supplement Table 4). Bacterial and viral sepsis groups of the cohort do not differ 

significantly in any of the measured standard clinical parameters (Supplement Table 5). In 

clinical routine, procalcitonin (PCT) is often used as an indicator for bacterial sepsis, however, 

we found PCT values only significantly different between non-infected postoperative controls 

(POP) and infected patients, but not between bacterial and viral septic patients (Supplement 

Figure 9). Footprint DNA markers were identified by differential read coverage analysis from 

the consensus peaks of each condition (Supplement Figure 10). The top five differentially 

enriched regions (DER) per condition and per comparison (POP vs. viral, POP vs. bacterial, 

bacterial vs. viral; in total 30 DERs) separate the three infection types by the first and second 

principal components applying a principal component analysis (PCA) (Figure 3b and 

Supplement Figure 11). Separation of these groups based on the top 30 DERs from the three 

comparisons is also accomplished by hierarchical clustering (Supplement Figure 12 and 

Supplement Figure 13a-c). Differential enrichment analysis for bacterial vs. viral sepsis 

revealed 220 DER in bacterial and 68 DER in viral sepsis, respectively (Figure 3c). Among 

significantly enriched bacterial DERs, a distinct differential DNA footprint in the promoter 

region of the AP1B1 gene could be detected (Supplement Figure 12). Among significant viral 

DERs, differential footprint DNA signals could be exemplarily detected in the promoter of the 

RNA Polymerase III subunit B (POLR3B) or the solute carrier family 30 member 10 

(SLC30A10), respectively (Supplement Figure 12). Receiver operating characteristics 

(ROC) analysis was used to compare the discriminatory and predictive power of the top DER 

with PCT. Results show that footprint DNA is a significantly better predictor of sepsis infection 

type than PCT (area under the ROC curve (AUROC): footprint DNA=1.000 vs. PCT=0.750; 
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p=0.0354) (Figure 3d). Additionally, differential enrichment of transcription factor binding 

motifs analysis was performed to identify regulatory proteins that may be involved in the 

discrimination of the conditions. In total, 37 significantly enriched transcription factor motifs 

for bacterial and 186 for viral sepsis were detected, respectively (Figure 3e,f). For viral sepsis 

the most significantly enriched binding motif belongs to SMAD family member 3 (SMAD3), 

while two Kruppel-like factors (KLF12 and KLF9) were detected among the top 10 most 

significant motifs in bacterial sepsis (Figure 3e,f). 
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Figure 3: Discrimination of sepsis infection types by footprint DNA. a) Experimental design: For 23 

samples (8 viral sepsis patients, 10 bacterial sepsis, 5 non-infected postoperative controls) plasma was prepared, 

footprint DNA enriched and sequenced. Created in BioRender [Sonntag M., 2025, 

https://BioRender.com/d50d259]. b) Principal component analysis based on the top 30 identified differentially 

enriched regions separates viral from bacterial sepsis and from non-infected postoperative controls. c) Differential 

enrichment analysis volcano plot for the comparison of viral and bacterial sepsis. Differentially enriched regions 

are colored according to their respective condition (adjusted p-value ≤ 0.05 and |log2 (fold change)| ≥ 0.5). d) 

Receiver operating characteristics analysis based on the top 10 identified Liquid Footprinting (LF) biomarkers from 

c) and for the routine clinical parameter PCT (95% confidence intervals are included for AUROC values; p=0.0354). 

e) and f) Top 10 most significant differentially enriched transcription factor motifs in bacterial sepsis (e) and in viral 

sepsis (f). 
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Footprint DNA accurately predicts early death in sepsis 

Prognostic biomarkers for the prediction of outcome in sepsis can be crucial to administer the 

most suitable treatment options and to reduce adverse outcomes. We therefore defined a 

cohort of severe sepsis cases (‘outcome’ cohort) including 22 sepsis survivors (survival > 28 

days) and 21 early death sepsis cases (death < 3 days). Based on the outcome cohort, we aim to 

identify footprint DNA biomarkers for identification of early death in sepsis (Figure 4a and 

Supplement Table 7). The outcome cohort groups differ significantly in eight of the 27 

measured clinical metrics, with the SOFA score showing the lowest p value and the highest 

AUROC of 0.76 (Supplement Table 8). Differential enrichment analysis identified one DER 

for early death and seven for sepsis recovery, respectively (Figure 4b). Based on the top 5 

footprint DNA signals per condition, early death and recovery from sepsis could be separated 

by the second principal component from PCA (Figure 4c), as well as by hierarchical clustering 

(Supplement Figure 13d). ROC analysis of the top 10 footprint DNA signals and the most 

established clinical metric SOFA yielded a significantly better predictive power for the 

footprint DNA biomarkers (AUROC: footprint DNA=0.983 vs. SOFA=0.760; p=0.002; 

Figure 4d). Additionally, time-to-event analysis revealed that the low-risk group identified 

by footprint DNA biomarkers had a significantly lower hazard ratio (HR) for death compared 

to the group identified by the SOFA score (HR: footprint DNA=0.042 (95 % confidence 

interval: 0.009-0.186), SOFA=0.364 (95 % confidence interval: 0.148-0.896); p=0.015; 

Supplement Figure 14). Differential enrichment analysis of transcription factor binding 

motifs identified 123 significantly enriched transcription factor motifs for early death and two 

for sepsis recovery, respectively (Figure 4e,f). For recovery in sepsis, the top binding motif 

reflects the transcription factor BTB domain and CNC homolog 1 (BACH1) (Figure 4e,f). 
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Figure 4: Discrimination of sepsis outcome by footprint DNA. a) Experimental design: From 43 septic 

patients samples (22 early death sepsis patients and 21 recovery patients) plasma was obtained, footprint DNA 

enriched and sequenced. Created in BioRender [Sonntag M., 2025, https://BioRender.com/b36q835]. b) 

Differential enrichment analysis volcano plot for the comparison of early death and recovery in sepsis. Differentially 

enriched regions are colored according to their respective condition (adjusted p-value ≤ 0.05 and |log2 (fold 

change)| ≥ 0.5). c) Principal component analysis based on the top 10 identified differentially enriched regions 

separates early death from recovery in sepsis. d) Receiver operating characteristics analysis based on the top 10 

identified Liquid Footprinting (LF) biomarkers from b) and for the routine clinical metric SOFA (95% confidence 

intervals are included for AUROC values; p=0.002). e) and f) Top 10 most significant differentially enriched 

transcription factor motifs in recovery (e) and early death in sepsis (f). 
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Discussion 

Sepsis remains a global health threat, in part due to the lack of specific diagnostic tools to assess 

the condition of septic patients. Monitoring the host immune response in sepsis offers valuable 

insights but is currently underutilized in clinical practice [45]. Several approaches aim to 

utilize host immune response information, for example gene expression data for pathogen 

detection or miRNA expression data for host response characterization [46,47]. However, 

dedicated sepsis biomarkers could facilitate early diagnosis, guide anti-infective therapy and 

track the severity of sepsis over time [48]. Accordingly, our approach aims to identify dedicated 

sepsis biomarkers based on cell-free DNA that capture the host response on the basis of a non-

invasive liquid biopsy.  

Footprint DNA sequencing provides genome-wide information on the interaction between 

regulatory proteins and the genome, hence signals mainly occur at regulatory genomic 

elements such as promoters or TFBS (Figure 1 and Supplement Figure 1, Supplement 

Figure 2). Individual footprint signals correlate to clinical, physiological parameters, such as 

liver (for ALT, r = 0.784) and kidney (for urea, r = 0.766 (Figure 2). These footprint DNA 

markers capture rapid changes of the clinical metrics on single patient level as well as across 

all patients (Supplement Figure 4, Supplement Figure 7, Supplement Figure 8), 

underlining that the dynamic in patient’s physiology can be assessed during disease 

progression, i.e., during a stay on the ICU. Despite the moderate correlation strength observed 

in the test cohort, the identified correlates suggest that DNA footprinting provides semi-

quantitative data about dynamic changes in the physiological state of a patient. Footprint DNA 

allows body- and genome-wide the monitoring of different organ systems beyond the 

hematologic system by capturing the dynamics of clinical metrices. These results also imply 

that a DNA-based liquid biopsy marker can deliver physiological insights about the patient’s 

status, similar to gene expression data from sources such as whole blood [49]. While this gene 

expression analysis only depicts signal mainly from the hematopoietic system, footprint DNA 

is capable deliver additionally information system-wide, e.g., from different organ systems or 

tumors. Advanced models that integrate multiple footprint DNA signals might further increase 
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correlation and therefore the prediction of established clinical metrics. However, directly 

replicating well-established, reliable, and inexpensive clinical metrics offers limited added 

value. Furthermore, the development of such models is limited by the comparably small cohort 

size. 

Inadequate treatment is associated with increased mortality in septic patients, while adequate 

and early administration of anti-infective treatment leads to improved survival chances 

[50,51]. Based on the top 30 DERs, we could distinguish non-infected controls from bacterial 

and viral sepsis (Figure 3b). and with the top 10 DERs discriminate viral sepsis cases from 

bacterial cases with an AUROC of 1.000, outperforming all clinical routine biomarkers for 

infection including PCT (AUROC = 0.750) (Figure 3c,d; Supplement Table 6). Among 

significant DERs enriched in bacterial sepsis, a footprint signal at the promoter of AP1B1 was 

detected. AP1B1 is located at the Golgi complex to mediate recruitment and sorting of 

intracellular processes. It is a known regulator of Stimulator of interferon genes (STING) and 

thereby the cyclic GMP–AMP synthase (cGAS)-STING pathway. STING functions as a receptor 

for bacterial cyclic dinucleotides and small molecules that activates immunity during bacterial 

infection [52]. An enhancer in the AKT serine/threonine kinase 3 (AKT3) gene body was also 

identified as DER. AKT3 is known to be manipulated by bacterial infection and takes part in 

immune cell signaling including macrophages [53,54]. For viral sepsis, a significant DER in 

the promoter of POLR3B was detected. POLR3B is a part of the RNA polymerase III complex 

and senses common DNA viruses, such as cytomegalovirus, vaccinia, herpes simplex virus-1 

and varicella zoster virus. This polymerase detects and transcribes viral genomic regions to 

generate AU-rich transcripts that bring to the induction of type I interferon [55,56]. Based on 

the transcription factor motif analysis, transcription factors enriched in either bacterial or viral 

sepsis were identified (Figure 3e,f). While the transcription factor SMAD3 is known to be 

activated during viral infection[57], the family of KLF transcription factors are induced during 

bacterial infection [58,59]. Also, footprint DNA sequencing outperforms common clinical 

routine metrics that were summarized in a recent review by Ahuja et al. [60]. Exemplarily for 

PCT, studies are described to reach an AUROC of 0.85 or lower discriminating bacterial sepsis, 
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which is in concordance with our infection cohort for PCT [61]. Other approaches using either 

miRNA signatures for host response profiling reach AUROC of 0.90 and 0.83 for bacterial or 

viral vs. non-infection, respectively [62], while integrated host response analysis for microbe 

detection reaches 0.96 [63]. Current clinical metagenomics detects microbial-derived cfDNA 

and is therefore limited in their analysis to bacteria and DNA viruses [4,11]. With footprint 

DNA biomarkers, also RNA-based microorganisms, e.g., RNA viruses, should be detected 

based on the host response analysis. Overall, our results show that footprint DNA biomarkers 

have the potential to discriminate sepsis infection types at an early time point solely on the 

host response, thereby delivering important information for adequate treatment decisions. 

In addition, we used ten footprint DNA markers to prognostically differentiate between early 

death in sepsis and recovery cases on the day of ICU admission (Figure 4a-c). With an 

AUROC of 0.983, footprint DNA marker’s discriminatory power is significantly better than 

that of clinical disease severity scoring tools such as the SOFA score (AUROC = 0.760) (Figure 

4d, Supplement Table 9). The SOFA score for prediction of early death in critically ill 

patients had a sensitivity of 80% in a study by Ferreira et al. [64]. Also, other clinical 

parameters like lactate (AUROC = 0.66), lactate and SOFA (AUROC = 0.679 for initial 

sampling), presepsin (91.5 % sensitivity 28-day mortality) or a combination of several 

biomarkers including interleukin 6 and PCT (AUROC = 0.823) did not perform as promising 

as footprint DNA markers [65–68]. Recent approaches utilizing machine learning models with 

readily available clinical data were able to reach AUROCs between 0.83 to 0.89 depending on 

study and used data [69–71]. The top TF motifs enriched in early death cases, include different 

cell fate determining transcription factors including myocyte enhancer factor 2 (MEF2) and 

Nanog homeobox (NANOG). However, a direct causality to sepsis severity or survival remains 

elusive, yet. 

Footprint DNA sequencing offers promising results for the quantitative assessment of the 

dynamic physiological changes and functionality of organ systems and for the prediction of the 

infection type and outcome of sepsis. At the current stage, the main limitation of this proof-of-

concept study is its small sample size of the analyses. Follow up studies are essential to verify 
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the results. The complete procedure for footprint DNA sequencing and quantification has 

currently a turnaround time of two days, which is valuable time for critically ill patients. 

Therefore, a future improvement of the approach will involve the quantification of the most 

promising footprint DNA markers in a targeted approach to shorten the turnaround time for 

clinical applicability. Nonetheless, footprint DNA sequencing represents a promising new 

platform to identify liquid biopsy biomarkers, here presented for application in sepsis 

diagnostics. By combining the evaluation of the host response using footprint DNA with the 

evaluation of pathogens using clinical metagenomics, a more holistic assessment of sepsis 

could be achieved in the future. Footprint DNA biomarkers might be valuable not only for 

sepsis but also in other complex diseases including autoimmune diseases, cancer or other 

related fields [16]. 
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Supplementary Data 

 

Supplement Figure 1: Characterizing of footprint DNA signals in regulatory elements for the 
infection type cohort. Obtained peaks from footprint DNA signals were mapped against the human genome (a). 
All annotated peaks were further mapped against annotated regulatory elements including transcription factors 
bindings sites (TFBS, b), genes (c), cis-regulatory elements (CRE, d) and CpG islands (e). 

 

 

Supplement Figure 2: Characterizing of footprint DNA signals in regulatory elements for the 
outcome cohort. Obtained peaks from footprint DNA signals were mapped against the human genome (a). All 
annotated peaks were further mapped against annotated regulatory elements including transcription factors 
bindings sites (TFBS, b), genes (c), cis-regulatory elements (CRE, d) and CpG islands (e). 
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Supplement Figure 3: Correlation of footprint DNA signals to additional physiology markers. 
Routine clinical metrics as well as short cfDNA sequencing data were acquired from six septic patients over a 21 
days timespan (Identification, n=28 samples). Independent samples from other septic patients were used for 
validation (Test, n=34 samples). In the identification cohort, footprint DNA markers from the six patients were 
correlated to routine clinical metrics across patients (left plot). In the test cohort, independent samples from sepsis 
patients were used for validation of identified correlation results (middle plot). Correlation of footprint DNA signals 
to a) Alkanine phosphatase (ALP), b) Aspartate aminotransferase (AST), c) Bilirubin, d) Erythrocytes. Reported 
correlations are pearson correlation values (r). Adjusted p values of correlations across patients: ALP: r=0.775, 
p=0.0011; AST: r=0.844, p=0.0163; bilirubin: r=0.843, p=0.0424; Erythrocytes: r=0.869, p=0.0165. The red lines 
show the fitted linear function based on the identification cohort from which the MAE is calculated. MAE, mean 
absolute error. 
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Supplement Figure 4: Correlation of footprint DNA markers to the physiological parameter PCT for 
single patients. a-f) Footprint DNA markers were analyzed for correlation to clinical metric PCT for all patients 
in the physiological cohort identification set. In the left and middle panel, PCT and normalized readcounts for the 
footprint, respectively, is depicted over time. The correlation of footprint DNA normalized counts and the clinical 
metric PCT is shown in the right panel. Results for patients are depicted the following: a) Patient S10, b) Patient 
S33, c) Patient S39, d) Patient S42, e) Patient S43 and f) Patient S49. PCT, procalcitonin. 

 

 

Supplement Figure 5: Correlation of footprint DNA marker to the physiological parameter 
hemoglobin for single patients. a-f) Footprint DNA markers were analyzed for correlation to the clinical metric 
hemoglobin for all patients in the physiological cohort identification set. In the left and middle panel, hemoglobin 
and normalized readcounts for the footprint, respectively, is depicted over time. The correlation of footprint DNA 
normalized counts and the clinical metric hemoglobin is shown in the right panel. Results for patients are depicted 
the following: a) Patient S10, b) Patient S33, c) Patient S39, d) Patient S42, e) Patient S43 and f) Patient S49.  

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 29, 2025. ; https://doi.org/10.1101/2025.01.29.25320179doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.29.25320179
http://creativecommons.org/licenses/by-nc/4.0/


 

29 

 

 

Supplement Figure 6: Correlation of footprint DNA marker to the physiological parameter ALT for 
single patients. a-f) Footprint DNA markers were analyzed for correlation to clinical metric ALT for all patients 
in the physiological cohort identification set. In the left and middle panel, ALT and normalized readcounts for the 
footprint, respectively, is depicted over time. The correlation of footprint DNA normalized counts and the clinical 
metric ALT is shown in the right panel. Results for patients are depicted the following: a) Patient S10, b) Patient 
S33, c) Patient S39, d) Patient S42, e) Patient S43 and f) Patient S49. ALT, alanine aminotransferase. 

 

 

Supplement Figure 7: Correlation of footprint DNA marker to the physiological parameter urea for 
single patients. a-f) Normalized readcounts of footprint DNA markers were analyzed for correlation to the clinical 
metric urea for all patients in the physiological cohort identification set. In the left and middle panel, urea and 
normalized readcounts for the footprint, respectively, is depicted over time. The correlation of footprint DNA 
normalized counts and clinical metric urea is shown in the right panel. Results for patients are depicted the 
following: a) Patient S10, b) Patient S33, c) Patient S39, d) Patient S42, e) Patient S43 and f) Patient S49. 
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Supplement Figure 8: Patient-wide correlation of footprint DNA markers to physiological 
parameters. a-d) Normalized readcounts of footprint DNA markers were analyzed for correlation to each clinical 
metric combined for all patients in the physiological cohort identification set. Results for clinical metrics are 
depicted the following: a) urea, b) PCT, c) hemoglobin and d) ALT. PCT, procalcitonin; ALT, alanine 
aminotransferase. 
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Supplement Figure 9: PCT concentration in the infection type cohort. The concentration of Procalcitonin 
(PCT) was measured for each sample and categorized to non-infection, postoperative controls (blue), viral sepsis 
(pink) and bacterial sepsis (yellow). Statistical testing was performed using a two-sided Wilcoxon rank-sum test. 
Resulting p-values are indicated above the brackets for each comparison.  

 

 

Supplement Figure 10: Differential enrichment analysis for non-infection controls and sepsis 
samples with viral or bacterial sepsis, respectively. Differentially enriched regions (DERs) were analyzed 
between two conditions for enriched transcription factor binding sites (log10 Adj. p-value ≤ 0.05 and log2 Fold 
change ≥ 2). Significant results are colored and depicted in a Volcano plot. a) non-infection controls (blue) were 
analyzed against bacterial sepsis cases (yellow) b) non-infection controls (blue) were analyzed against bacterial 
sepsis cases (pink). 
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Supplement Figure 11: Discrimination of non-infection, postoperative controls, viral and bacterial 
sepsis via PCA. Based on the top 5 differential enriched regions (DERs) per condition, principal component 
analysis (PCA) was performed. The following conditions of the infection type cohort were investigated a) bacterial 
sepsis against viral sepsis b) non-infection control against bacterial sepsis c) non-infection control against viral 
sepsis.  

 

 

Supplement Figure 12: Heatmap and hierarchical clustering of differential enrichment analysis of 
the infection type comparison of non-infected controls (blue), viral (pink) and bacterial sepsis 
(yellow). Based on the top 5 DER per condition, hierarchical clustering was performed. DER signals are 
normalized per row according to Z-score and color-coded.  
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Supplement Figure 13: Heatmap and hierarchical clustering of differential enrichment analysis of 
the infection type and outcome cohort. Based on the top 5 DER per condition, hierarchical clustering was 
performed. DER signals are normalized per row according to Z-score and color-coded. a) Heatmap for DERs for 
bacterial (yellow) in comparison to viral sepsis (pink). b) Heatmap for DERs for bacterial sepsis (yellow) in 
comparison to non-infected, postoperative controls (blue). c) Heatmap for DERs for viral sepsis (pink) in 
comparison to non-infected, postoperative controls (blue). d) Heatmap for DERs for early death (black) in 
compaison to recovery in sepsis (green).  
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Supplement Figure 14: Time-to-event analysis comparing footprint DNA and SOFA risk groups. 
Based on disease severity scoring with SOFA and footprint DNA signals, 43 patients from the outcome cohort were 
assigned to the low risk SOFA (SOFA ≤ 6; green dashed line) or high risk SOFA (Sofa > 6; black dashed line) and to 
the low risk footprint DNA (low risk LF, green line) or the high risk footprint DNA group (high risk LF, black line). 
Over the course of 28 days, the survival probability is depicted for each group.  
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Supplement Table 1: Patient metadata summary for sepsis cases over time (physiological status 
cohort).  

Patient Age BMI Gender 
Height 

[cm] 
RRT Weight [kg] 

S10 71-80 27.36 male 171 yes 80 
S33 61-70 19.05 female 162 no 50 
S39 71-80 24.34 male 172 no 72 
S42 71-80 20.44 male 167 yes 57 
S43 61-70 25.38 male 183 no 85 
S49 61-70 37.11 female 160 yes 95 

Key: BMI=Body mass index, RRT=Renal replacement therapy. 

 

Supplement Table 2: Patient metadata summary for sepsis cases over time for each physiological 
parameter and time point (physiological status cohort identification).  

Patient S10 
Time point T0 T1 T2 T3 T4 T5 

Albumin [g/L] 20.2 12.2 13.6 20.1 21.3 NA 

ALT [U/L] 96 104 62 77 37 NA 

AP [U/L] 73 60 78 96 389 NA 

aPTT [s] 29.3 31.6 31.6 35.7 38.8 NA 

AST [U/L] 40 139 304 92 135 NA 

Bilirubin [µM] 10.2624 28.56368 13.6832 24.45872 51.312 NA 

Creatinine [µM] 162.42 205.89 138.78 186.06 77.78 NA 

CRP [mg/dL] 40.89 28.28 31.93 24.26 16.31 NA 

Erythrocytes [1/pL] 2.9 2.4 2.3 2.7 2.4 NA 
Hemoglobine 

[g/dL] 
8.2 7 6.9 7.9 7.2 NA 

Hematocrite [%] 25 21 20 24 21 NA 

Leukocytes [gpt/I] 10.37 16.28 11.9 10.06 8.58 NA 

PCT [ng/mL] 6.40 11.67 9.96 6.80 4.88 NA 

Potassium [mM] 4.7 5.87 4.39 4.96 4.26 NA 

Quick [%] 87.9 64.9 92.1 57.2 109 NA 

Sodium [mM] 145 142 143 139 133 NA 

SOFA 6 13 13 13 14 NA 
Thrombocytes 

[gpt/L] 
501 319 243 273 125 NA 

Urea [mM] 15.984 17.316 10.323 12.8205 6.1605 NA 

       
Patient S33 

Time point T0 T1 T2 T3 T4 T5 

Albumin [g/L] 5.8 23.2 23.3 20 22.9 24.1 

ALT [U/L] 43 18 18 6 9 8 

AP [U/L] 35 46 122 125 192 172 

aPTT [s] 56.5 60.1 42.8 25.8 25.2 24.8 

AST [U/L] 93 39 34 14 17 12 

Bilirubin [µM] 3.4208 18.8144 8.552 3.4208 3.4208 3.4208 

Creatinine [µM] 43.46 59.48 48.80 44.23 36.60 34.31 

CRP [mg/dL] 2.83 15.87 29.83 15.49 15.63 11.95 

Erythrocytes [1/pL] 3.4 3.2 3.7 3 3 3.8 
Hemoglobine 

[g/dL] 
9.5 8.6 10.5 8.2 8.7 10.2 

Hematocrite [%] 29 26 32 25 26 31 

Leukocytes [gpt/I] 2.07 7.46 19.68 23.16 21.61 20.66 

PCT [ng/mL] 55.91 30.32 12.63 0.53 0.16 0.11 

Potassium [mM] 3.98 3.94 NA NA NA 4.35 

Quick [%] 30.7 40.5 66 63.4 61.8 63.4 
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Sodium [mM] 149 146 NA NA NA 141 

SOFA 11 11 11 11 8 8 
Thrombocytes 

[gpt/L] 
345 160 105 207 612 634 

Urea [mM] 5.328 5.661 6.1605 10.989 5.4945 5.4945 
       

Patient S39 
Time point T0 T1 T2 T3 T4 T5 

Albumin [g/L] 19.9 24.9 22.3 27.4 NA NA 

ALT [U/L] 13 19 70 24 NA NA 

AP [U/L] 101 81 92 150 NA NA 

aPTT [s] 41.2 34.8 30.2 29 NA NA 

AST [U/L] 30 52 128 44 NA NA 

Bilirubin [µM] 99.2032 109.4656 106.0448 25.656 NA NA 

Creatinine [µM] 70.92 73.20 76.25 69.39 NA NA 

CRP [mg/dL] 21.66 20.76 13.45 11.65 NA NA 

Erythrocytes [1/pL] 2.5 2.5 2.5 2.2 NA NA 
Hemoglobine 

[g/dL] 
7.4 7.9 8 6.7 NA NA 

Hematocrite [%] 23 23 23 21 NA NA 

Leukocytes [gpt/I] 16.74 9.33 4.77 3.46 NA NA 

PCT [ng/mL] 2.75 2.32 1.94 0.56 NA NA 

Potassium [mM] 4.73 4.81 4.37 4.15 NA NA 

Quick [%] 59.1 69.9 83.5 80.8 NA NA 

Sodium [mM] 138 143 147 139 NA NA 

SOFA 15 15 15 2 NA NA 
Thrombocytes 

[gpt/L] 
92 69 78 197 NA NA 

Urea [mM] 6.66 7.8255 9.324 5.4945 NA NA 
       

Patient S42 
Time point T0 T2 T3 T4 T5 T5 

Albumin [g/L] 31 NA NA 12.1 26.3 30.6 

ALT [U/L] 5 NA NA 4 5 5 

AP [U/L] 45 NA NA 223 183 137 

aPTT [s] 25.3 NA NA 47.9 43.6 25.3 

AST [U/L] 14 NA NA 15 16 16 

Bilirubin [µM] 6.8416 NA NA 5.1312 3.4208 3.4208 

Creatinine [µM] 93.79 NA NA 136.49 92.27 77.78 

CRP [mg/dL] 15.16 NA NA 19.33 15.37 10.37 

Erythrocytes [1/pL] 4 NA NA 2.8 2.3 2.7 
Hemoglobine 

[g/dL] 
11.7 NA NA 8.3 6.9 7.9 

Hematocrite [%] 34 NA NA 25 21 24 

Leukocytes [gpt/I] 2.12 NA NA 13.04 9.04 10.95 

PCT [ng/mL] 32.90 NA NA 2.87 0.78 0.19 

Potassium [mM] 3.71 NA NA 4.46 4.14 4.01 

Quick [%] 91 NA NA 91 110 101.3 

Sodium [mM] 136 NA NA 141 134 132 

SOFA 14 NA NA 13 8 6 
Thrombocytes 

[gpt/L] 
156 NA NA 147 468 350 

Urea [mM] 6.1605 NA NA 10.656 5.994 6.1605 
       

Patient S43 
Time point T0 T1 T2 T3 T4 T5 

Albumin [g/L] 30.7 14.1 15.5 27.1 NA NA 

ALT [U/L] 22 23 18 29 NA NA 
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AP [U/L] 36 76 57 90 NA NA 

aPTT [s] 50.2 37.8 38.7 27.2 NA NA 

AST [U/L] 35 40 27 40 NA NA 

Bilirubin [µM] 6.8416 6.8416 5.1312 6.8416 NA NA 

Creatinine [µM] 106.76 79.30 73.97 63.29 NA NA 

CRP [mg/dL] 43.03 49.99 43.01 18.11 NA NA 

Erythrocytes [1/pL] 2.1 2.6 2.2 2.4 NA NA 
Hemoglobine 

[g/dL] 
7.7 7.9 7 7.4 NA NA 

Hematocrite [%] 22 25 22 22 NA NA 

Leukocytes [gpt/I] 2.15 12.41 11.31 13.55 NA NA 

PCT [ng/mL] 36.14 41.07 24.38 1.70 NA NA 

Potassium [mM] 4.17 4.23 4.09 3.95 NA NA 

Quick [%] 82.4 85.3 111 91 NA NA 

Sodium [mM] 145 150 152 141 NA NA 

SOFA 12 12 12 4 NA NA 
Thrombocytes 

[gpt/L] 
187 128 152 165 NA NA 

Urea [mM] 8.8245 7.8255 9.4905 7.1595 NA NA 
       

Patient S49 
Time point T0 T1 T2 T3 T4 T5 

Albumin [g/L] 24.1 NA 17.6 NA NA NA 

ALT [U/L] 23 NA 19 24 22 17 

AP [U/L] 72 NA 66 123 204 219 

aPTT [s] 32.3 NA 40.1 25.9 29.1 24 

AST [U/L] 63 NA 118 114 43 26 

Bilirubin [µM] 3.4208 NA 11.9728 10.2624 5.1312 6.8416 

Creatinine [µM] 275.28 NA 128.87 50.33 39.65 30.50 

CRP [mg/dL] NA NA 29.45 12.07 18.67 5.11 

Erythrocytes [1/pL] 3.5 NA 3 2.9 2.4 2.4 
Hemoglobine 

[g/dL] 
10.4 

NA 9.4 8.7 7.3 7.5 

Hematocrite [%] 29 NA 25 25 21 21 

Leukocytes [gpt/I] 4.13 NA 3.62 1.07 1.23 5.15 

PCT [ng/mL] 3.71 NA 2.02 0.30 0.14 0.05 

Potassium [mM] 4.6 NA 4.77 4.18 4.2 3.8 

Quick [%] 50.9 NA 92.8 69.9 96.9 89.2 

Sodium [mM] 140 NA 141 161 150 140 

SOFA 17 NA 14 8 4 1 
Thrombocytes 

[gpt/L] 
70 

NA 62 32 53 341 

Urea [mM] 41.625 NA 18.1485 21.312 11.322 7.659 
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Supplement Table 3 – Patient metadata summary for sepsis cases over time for each physiological 
parameter and time point from the validation set (physiological status test validation cohort). 
NA=not available 

 Patient S03 Patient S05 Patient 
S11 

Time point T2 T3 T4 T1 T3 T4 T3 
Albumin [g/L] 13.9 23 28.3 21.4 20.5 NA 20.1 

ALT [U/L] 29 19 43 39 41 NA 36 
AP [U/L] 108 240 294 129 166 NA 203 
aPTT [s] 40.2 25.2 26.8 30.6 22.4 NA 30 

AST [U/L] 27 23 71 11 39 NA 27 
Bilirubin [µM] 27.3664 17.104 6.8416 13.6832 8.552 NA 39.3392 

Creatinine [µM] 80.83 39.65 32.79 91.50 38.13 NA 105.99 
CRP [mg/dL] 21.4 14.32 9.85 26.85 1.98 NA 14.1 
Erythrocytes 

[1/pL] 
2.9 3.3 2.7 3.9 3 NA 2.9 

Hemoglobine 
[g/dL] 

9.1 10.2 8.1 11.8 9.4 NA 8.6 

Hematocrite [%] 26 29 25 36 27 NA 29 
Leukocytes 

[gpt/L] 
16.87 24.13 14.36 26.32 17.84 NA 15.66 

PCT [ng/mL] 1.78 0.20 0.08 2.62 0.13 0.04 1.29 
Potassium [mM] 4.43 4.49 4.53 4.39 4.65 NA 5.07 

Quick [%] 61.8 97.8 108.7 80.6 95.8 NA 73.7 
Sodium [mM] 141 130 136 143 137 NA 153 

SOFA 10 1 1 9 1 1 11 
Thrombocytes 

[gpt/L] 
148 338 845 193 572 NA 392 

Urea [mM] 7.326 5.661 3.663 11.1555 4.995 NA 16.65 
        

 
 Patient 

S13 
Patient 

S14 
Patient 

S16 
Patient 

S17 
Patient S21 Patient 

S29 
Time point T3 T3 T2 T4 T2 T3 T0 

Albumin [g/L] NA 22.9 18.9 28.6 24.8 21.3 21.3 
ALT [U/L] 45 41 14 75 14 9 18 
AP [U/L] 116 177 54 120 103 85 50 
aPTT [s] 33.7 24.5 31.3 26.9 28.5 30.3 41 

AST [U/L] 20 57 21 62 22 19 43 
Bilirubin [µM] 5.1312 8.552 8.552 3.4208 5.1312 3.4208 17.104 

Creatinine [µM] 93.79 47.28 83.12 57.95 223.42 73.97 92.27 
CRP [mg/dL] 11.6 8.65 17.14 16.97 20.29 13.65 4.75 
Erythrocytes 

[1/pL] 
2.9 3 2.7 2.1 3.2 2.6 2.8 

Hemoglobine 
[g/dL] 

8.8 8.5 7.9 6.7 9.9 8.2 8.2 

Hematocrite [%] 27 26 24 20 32 25 25 
Leukocytes 

[gpt/L] 
19.92 19.66 4.55 8.14 17.23 14.69 2.58 

PCT [ng/mL] 0.31 0.42 1.32 0.18 50.81 2.56 15.4 
Potassium [mM] 4.7 4.37 4.26 4.28 4.83 4.67 3.82 

Quick [%] 100.2 111.4 85.4 100.2 100.8 92.3 65.1 
Sodium [mM] 145 148 148 135 136 140 148 

SOFA 7 10 12 1 12 9 13 
Thrombocytes 

[gpt/L] 
207 347 173 347 71 149 143 

Urea [mM] 18.981 18.8145 16.317 4.4955 18.8145 11.4885 16.65 
        
 Patient S27 Patient S30 Patient S32 

Time point T0 T0 T0 T2 T4 T2 T3 
Albumin [g/L] 17.1 17.1 23.3 20.6 24.1 22.7 22.2 
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ALT [U/L] 16 16 17 188 32 47 34 
AP [U/L] 34 34 230 153 289 113 126 
aPTT [s] 35.9 35.9 27 23.9 23.6 24.4 24.9 

AST [U/L] 29 29 29 322 31 90 30 
Bilirubin [µM] 6.8416 6.8416 18.8144 13.6832 10.2624 8.552 11.9728 

Creatinine [µM] 137.26 137.26 66.34 124.29 47.28 74.73 68.63 
CRP [mg/dL] 18.58 18.58 30.89 26.01 15.4 24.16 14.97 
Erythrocytes 

[1/pL] 
3.2 3.2 2.4 2.5 2.7 3 2.7 

Hemoglobine 
[g/dL] 

9 9 6.5 7.3 8 9.6 8.6 

Hematocrite [%] 29 29 20 22 24 30 26 
Leukocytes 

[gpt/L] 
17.81 17.81 13.67 34.96 9.52 19.34 15.98 

PCT [ng/mL] 178.72 178.72 1.14 6.55 0.13 2.72 0.26 
Potassium [mM] 5.18 5.18 3.81 4.43 4.05 5.17 4.47 

Quick [%] 49.1 49.1 83.7 106 78.6 106 87.6 
Sodium [mM] 143 143 136 143 143 148 144 

SOFA 9 9 10 12 4 12 4 
Thrombocytes 

[gpt/L] 
248 248 1127 505 751 258 327 

Urea [mM] 9.324 9.324 4.995 7.659 3.33 11.655 12.8205 
        
 Patient S35 Patient 

S41 
Patient S44  

Time point T3 T4 T3 T0 T1 T6  
Albumin [g/L] 24.3 19.1 24.3 17.3 15.2 19.9  

ALT [U/L] 9 23 9 282 287 51  
AP [U/L] 112 98 112 37 41 109  
aPTT [s] 29.2 40.9 29.2 38.2 53.3 39.9  

AST [U/L] 21 37 21 458 415 136  
Bilirubin [µM] 11.9728 11.9728 11.9728 32.4976 22.2352 8.552  

Creatinine [µM] 57.19 42.70 57.19 269.94 232.57 237.15  
CRP [mg/dL] 13.72 8.7 13.72 1.92 28.18 6.32  
Erythrocytes 

[1/pL] 
3.2 2.7 3.2 3.5 2.7 2.1  

Hemoglobine 
[g/dL] 

9.3 7.9 9.3 10.2 8.1 6.4  

Hematocrite [%] 28 25 28 30 24 20  
Leukocytes 

[gpt/L] 
10.26 11.2 10.26 18.15 16.17 20.27  

PCT [ng/mL] 3.98 0.47 3.98 75.36 90.63 3.67  
Potassium [mM] 4.2 4.58 4.2 5.47 5.89 4.41  

Quick [%] 82.4 87.1 82.4 67.2 84 51.4  
Sodium [mM] 143 159 143 144 143 155  

SOFA 4 12 4 15 13 11  
Thrombocytes 

[gpt/L] 
263 53 263 221 203 161  

Urea [mM] 9.324 22.977 9.324 18.315 14.8185 43.956  
        
 Patient S45 Patient S46 Patient S47 Patient 

S51 
Time point T0 T3 T0 T3 T0 T3 T0 

Albumin [g/L] 27.3 29.7 25.7 28 NA NA NA 
ALT [U/L] 18 14 96 205 24 NA NA 
AP [U/L] 155 150 53 107 52 NA 49 
aPTT [s] 28.7 30.5 31.5 53.3 27.1 22.8 39.4 

AST [U/L] 32 23 87 77 44 NA 24 
Bilirubin [µM] 3.4208 3.4208 64.9952 97.4928 18.8144 NA 15.3936 

Creatinine [µM] 240.96 247.06 158.61 222.66 465.91 143.36 130.39 
CRP [mg/dL] 23.93 17.61 16.71 30.03 33.64 NA 36.72 
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Erythrocytes 
[1/pL] 

4 3.5 2.9 3.4 4.6 3.7 4.5 

Hemoglobine 
[g/dL] 

10.5 8.9 8.6 10.3 14.5 11.1 14.2 

Hematocrite [%] 34 28 24 30 40 35 41 
Leukocytes 

[gpt/L] 
17.33 26.83 4.39 17.6 8.23 15.01 2.57 

PCT [ng/mL] 0.40 0.36 35.00 5.71 64.40 1.35 21.61 
Potassium [mM] 4.73 4.98 4.23 4.82 3.6 5.16 4.35 

Quick [%] 101.3 100.9 82.4 73.5 65.2 76.3 27.4 
Sodium [mM] 141 145 146 154 137 155 138 

SOFA 11 12 17 15 14 4 12 
Thrombocytes 

[gpt/L] 
457 656 83 277 281 348 172 

Urea [mM] 11.4885 15.4845 7.992 25.4745 29.304 16.65 12.1545 
        

Key: ALT=Alanine aminotransferase, AP=Alkaline phosphatase, AST=Aspartate aminotransferase, 
aPTT= activated Partial Thromboplastin Time, CRP=C-reactive protein, PCT=Procalcitonin, 
SOFA=Sequential organ failure assessment, RRT=Renal replacement therapy; Note: NA reflects 
missing values (not available) 
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Supplement Table 4 – Patient descriptive data, pathogen burden, outcome and infection type 
summary for sepsis cases in infection type cohort. Early death reflects patients that died within two days 
after ICU admission. Survivors reached the end of the study at 28 days after ICU admission. 

Patient Age Sex Pathogen burden Outcome Infection 
type 

01-061 61-70 Female Escherichia coli, Eubacterium 
rectale 

Recovery Bacterial 

01-078 71-80 Male Bacteroides spp., E. coli Recovery Bacterial 
01-001 71-80 Male Morganella morganii, 

Bacteroides fragilis 
Recovery Bacterial 

06-016 61-70 Male Propionibacterium acnes Early death Bacterial 
03-004 71-80 Female Proteus mirabilis, E. coli Recovery Bacterial 
01-113 71-80 Male Enterococcus faecium, 

Ruminococcus sp. SR1/5, 
Bacteroides vulgatus 

Early death Bacterial 

06-017 51-60 Female Haemophilus parainfluenzae, 
Veillonella parvula 

Recovery Bacterial 

06-037 71-80 Male Escherichia coli, Enterococcus 
faecium 

Recovery Bacterial 

01-075 61-70 Male Enterococcus faecium, 
Klebsiella pneumoniae, 
Enterobacter cloacae 

Recovery Bacterial 

01-118 71-80 Male Enterobacter aerogenes, 
Escherichia coli 

Recovery Bacterial 

01-104 71-80 Male Human herpesvirus 5 Recovery Viral 
03-030 71-80 Male Human herpesvirus 6B Recovery Viral 
03-046 81-90 Male Human herpesvirus 1 Recovery Viral 
05-015 41-50 Female Human herpesvirus 6A Recovery Viral 
08-015 51-60 Male Human mastadenovirus C Recovery Viral 
09-047 81-90 Male Human herpesvirus 6B Recovery Viral 
11-014 61-70 Male Human herpesvirus 5, Human 

herpesvirus 1 
Recovery Viral 

01-002 51-60 Male Human herpesvirus 6B Recovery Viral 
POP6_T1 N.A. N.A. n.d. Recovery Non-infected 
POP6_T2 N.A. N.A. n.d. Recovery Non-infected 
POP1_T1 N.A. N.A. n.d. Recovery Non-infected 

POP11_T2 N.A. N.A. n.d. Recovery Non-infected 
POP8_T1 N.A. N.A. n.d. Recovery Non-infected 
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Supplement Table 5 – Patient metadata summary statistics for bacterial and viral sepsis cases 
(infection type cohort). SD = Standard deviation, IQ = Inter quartile 

Infection type 

  Bacterial  Viral  
Age      

N  10  8  
Mean (SD)  71.1 (6.79)  66.4 (15.69)  
Median  71.5  69.5  
Range  (57; 79)  (41; 86)  
IQ range  (68.0; 76.0)  (54.0; 78.5)  

      
Albumin [g/L]      

N  9  6  
Mean (SD)  27.73 (2.310)  24.78 (7.776)  
Median  26.60  26.20  
Range  (25.7; 32.2)  (11.0; 32.5)  
IQ range  (26.00; 29.00)  (21.75; 31.00)  

      
ALT [U/L]      

N  10  7  
Mean (SD)  148.1 (158.39)  465.7 (734.08)  
Median  67.0  268.5  
Range  (22; 473)  (24; 2086)  
IQ range  (43.0; 291.0)  (48.0; 494.0)  

      
AP [U/L]      

N  10  6  
Mean (SD)  120.1 (66.60)  106.7 (62.46)  
Median  104.5  89.0  
Range  (63; 270)  (48; 192)  
IQ range  (76.0; 122.5)  (48.6; 174.0)  

      
aPTT [s]      

N  10  8  
Mean (SD)  39.0 (10.08)  34.9 (7.94)  
Median  38.5  33.8  
Range  (25; 58)  (24; 48)  
IQ range  (33.0; 47.0)  (29.5; 40.5)  

      
AST [U/L]      

N  10  6  
Mean (SD)  240.6 (316.32)  751.2 (648.67)  
Median  117.0  685.0  
Range  (34; 1080)  (72; 1747)  
IQ range  (68.5; 294.0)  (128.0; 1190.0)  

      
Bilirubin [µM]      

N  10  8  
Mean (SD)  31.984 (24.2498)  19.087 (16.5312)  
Median  28.222  10.981  
Range  (4.28; 80.39)  (8.55; 47.89)  
IQ range  (12.828; 53.878)  (8.980; 28.164)  

      
BMI      

N  10  8  
Mean (SD)  26.12 (3.748)  26.16 (4.787)  
Median  27.20  26.99  
Range  (17.9; 30.1)  (18.3; 31.8)  
IQ range  (24.62; 29.07)  (22.33; 30.27)  

      
Creatinine [µM]      
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Infection type 

  Bacterial  Viral  
N  10  8  

Mean (SD)  137.600 (91.0104)  220.083 (139.6112)  
Median  88.836  179.197  
Range  (56.05; 269.94)  (61.00; 494.50)  
IQ range  (73.204; 264.220)  (129.043; 294.340)  

      
CRP [mg/dL]      

N  10  7  
Mean (SD)  19.04 (12.300)  19.47 (10.791)  
Median  17.25  15.53  
Range  (3.1; 39.4)  (5.8; 37.1)  
IQ range  (12.17; 27.02)  (11.90; 29.03)  

      
Sex     

N  10  8  
Male  7 (70.0%)  7 (87.5%)  
Female  3 (30.0%)  1 (12.5%)  

      
GFR [mL/min]      

N  9  8  
Mean (SD)  53.28 (23.440)  34.10 (22.929)  
Median  57.50  26.90  
Range  (16.4; 87.0)  (10.8; 81.0)  
IQ range  (52.95; 59.70)  (18.28; 45.33)  

      
Hematocrit [%]      

N  10  8  
Mean (SD)  28.9 (4.13)  30.9 (5.24)  
Median  27.9  30.1  
Range  (24; 38)  (25; 41)  
IQ range  (26.0; 29.9)  (26.8; 33.5)  

      
INR      

N  10  8  
Mean (SD)  1.540 (0.3237)  1.326 (0.4704)  
Median  1.450  1.253  
Range  (1.26; 2.37)  (0.90; 2.40)  
IQ range  (1.305; 1.600)  (1.025; 1.375)  

      
Lactate [mM]      

N  10  8  
Mean (SD)  6.473 (5.3764)  2.866 (1.9934)  
Median  4.249  2.077  
Range  (1.00; 18.97)  (0.65; 5.98)  
IQ range  (3.258; 9.100)  (1.325; 4.750)  

      
Leukocytes [gpt/I]      

N  10  8  
Mean (SD)  16.018 (8.9481)  16.486 (6.9768)  
Median  16.223  14.860  
Range  (2.17; 34.80)  (9.55; 30.73)  
IQ range  (8.900; 20.400)  (11.085; 19.860)  

      
PCT [ng/mL]      

N  10  8  
Mean (SD)  55.01 (80.582)  10.73 (11.803)  
Median  31.93  5.74  
Range  (2.1; 268.4)  (0.4; 34.3)  
IQ range  (5.45; 55.96)  (2.14; 17.68)  
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Infection type 

  Bacterial  Viral  
Potassium [mM]      

N  10  8  
Mean (SD)  4.75 (0.439)  4.48 (0.542)  
Median  4.77  4.57  
Range  (4.0; 5.4)  (3.6; 5.2)  
IQ range  (4.55; 4.95)  (4.08; 4.88)  

      
Protein [g/L]      

N  7  5  
Mean (SD)  45.37 (6.583)  48.20 (9.549)  
Median  48.00  50.70  
Range  (32.5; 51.0)  (37.7; 59.6)  
IQ range  (40.45; 49.10)  (39.00; 54.00)  

      
Quick [%]      

N  10  8  
Mean (SD)  50.0 (10.87)  70.3 (27.90)  
Median  52.5  64.3  
Range  (28; 62)  (30; 111)  
IQ range  (44.5; 58.0)  (53.0; 93.8)  

      
RRT      

N  10  8  
No  6 (60.0%)  7 (87.5%)  
Yes  4 (40.0%)  1 (12.5%)  

      
Septic shock      

N  10  8  
No  2 (20.0%)  3 (37.5%)  
Yes  8 (80.0%)  5 (62.5%)  

      
Sodium [mM]      

N  10  8  
Mean (SD)  144.65 (5.088)  141.94 (8.287)  
Median  145.00  140.00  
Range  (136.5; 151.5)  (132.0; 155.0)  
IQ range  (140.00; 148.00)  (135.50; 148.75)  

      
SOFA      

N  10  7  
Mean (SD)  9.7 (3.53)  8.9 (3.13)  
Median  10.0  8.0  
Range  (4; 15)  (5; 13)  
IQ range  (7.0; 12.0)  (6.0; 12.0)  

      
Thrombocytes [gpt/I]      

N  10  8  
Mean (SD)  194.7 (129.37)  195.1 (141.16)  
Median  143.8  181.5  
Range  (42; 392)  (52; 494)  
IQ range  (105.0; 330.0)  (85.5; 240.5)  

      
Urea [mM]      

N  10  8  
Mean (SD)  17.210 (12.5304)  20.324 (6.1455)  
Median  12.446  20.754  
Range  (5.89; 43.00)  (9.74; 28.50)  
IQ range  (8.242; 27.056)  (16.209; 25.213)  

      
Vasopressors or inotropes      
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Infection type 

  Bacterial  Viral  
N  10  8  

No  1 (10.0%)  1 (12.5%)  
Yes  
 

9 (90.0%)  
 

7 (87.5%)  
 

Key: ALT=Alanine aminotransferase, AP=Alkaline phosphatase, AST=Aspartate aminotransferase, 
BMI=Body-Mass-Index, CRP=C-reactive protein, GFR=Glomerular filtration rate, INR=International 
normalized ratio, PCT=Procalcitonin, SOFA=Sequential organ failure assessment, RRT=Renal 
replacement therapy; Note: N reflects non-missing values  
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Supplement Table 6 - Patient metadata differences between bacterial and viral sepsis cases 
(infection type cohort). Categorical features are marked with an asterisk (‘*’). P values were obtained from two-
sided Wilcoxon rank-sum test for numerical features, and Fisher's exact test for categorical features. Area under 
ROC curves (‘AUROC’) is reported with 95% confidence interval boundaries (‘AUROC_ci_l’ = lower boundary, 
‘AUROC_ci_h’ = higher boundary). From the ROC analysis per metric, the decision threshold (‘Thresh’) that 
maximizes the sum of specificity (‘Spec’) and sensitivity (‘Sens’) is indicated with the corresponding specificity and 
sensitivity. ALT=Alanine aminotransferase, AP=Alkaline phosphatase, AST=Aspartate aminotransferase, 
BMI=Body-Mass-Index, CRP=C-reactive protein, GFR=Glomerular filtration rate, INR=International normalized 
ratio, PCT=Procalcitonin, SOFA=Sequential organ failure assessment, RRT=Renal replacement therapy. 

Infection type – Bacterial vs. Viral 

Metric P value AUROC AUROC_ci_l AUROC_ci_h Thresh Spec Sens 

Age 0.689 0.563 0.236 0.889 64.500 0.900 0.500 

Albumin 0.596 0.593 0.209 0.977 25.575 1.000 0.500 

ALT 0.407 0.629 0.335 0.922 189.000 0.700 0.571 

AP 0.447 0.625 0.299 0.951 103.000 0.600 0.667 

aPTT 0.374 0.631 0.359 0.903 32.000 0.800 0.500 

AST 0.093 0.767 0.497 1.000 446.750 0.900 0.667 

Bilirubin 0.142 0.713 0.451 0.974 13.683 0.700 0.750 

BMI 0.689 0.438 0.133 0.742 26.454 0.600 0.500 

Creatinine 0.198 0.688 0.415 0.960 132.284 0.700 0.750 

CRP 0.961 0.486 0.188 0.783 14.485 0.700 0.429 

Sex* 0.588 NA NA NA NA NA NA 

GFR 0.112 0.736 0.460 1.000 51.800 0.778 0.875 

Hematocrit 0.477 0.606 0.324 0.888 30.775 0.800 0.500 

INR 0.061 0.769 0.511 1.000 1.375 0.700 0.750 

Lactate 0.142 0.713 0.456 0.969 2.779 0.800 0.625 

Leukocytes 1.000 0.500 0.211 0.789 15.890 0.600 0.625 

PCT 0.083 0.750 0.515 0.985 8.068 0.700 0.625 

Potassium 0.424 0.619 0.338 0.899 4.425 0.800 0.500 

Protein 0.516 0.629 0.215 1.000 49.900 0.857 0.600 

Quick 0.068 0.763 0.503 1.000 63.000 1.000 0.625 

RRT* 0.314 NA NA NA NA NA NA 

Septic_shock* 0.608 NA NA NA NA NA NA 

Sodium 0.477 0.606 0.312 0.901 142.500 0.700 0.625 

SOFA 0.659 0.571 0.280 0.863 8.500 0.600 0.571 

Thrombocytes 0.894 0.525 0.232 0.818 151.500 0.600 0.625 

Urea 0.230 0.675 0.390 0.960 15.751 0.700 0.875 

Vasopressors_inotropes* 1.000 NA NA NA NA NA NA 
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Supplement Table 7 – Patient descriptive data, pathogen burden, infection type and outcome for 
sepsis cases in outcome cohort. Early death reflects septic patients that died within two days after ICU 
admission. Recovery reached the end of the study at 28 days after ICU admission. 

Patient Age Sex Pathogen burden Infection 
type 

Outcome 

01-001 71-80 Male Morganella morganii, 
Bacteroides fragilis 

Bacterial Early death 

01-002 51-60 Male Human herpesvirus 6B Viral Early death 
01-005 81-90 Male Enterobacter cloacae, 

Escherichia coli, Cronobacter 
sakazakii 

Bacterial Early death 

01-025 71-80 Female Escherichia coli, Klebsiella 
pneumoniae 

Bacterial Early death 

01-036 71-80 Male Enterobacter cloacae Bacterial Early death 
01-049 81-90 Male Escherichia coli Bacterial Early death 
01-061 61-70 Female Escherichia coli, Eubacterium 

rectale 
Bacterial Early death 

01-075 61-70 Male Enterococcus faecium, Klebsiella 
pneumoniae, Enterobacter 

cloacae 

Bacterial Early death 

01-078 71-80 Male Bacteroides spp., Escherichia coli Bacterial Early death 
02-037 51-60 Female Escherichia coli, Bacteroides 

fragilis, Bacteroides vulgatus, 
Alistipes shahii 

Bacterial Early death 

03-004 71-80 Female Proteus mirabilis, Escherichia 
coli 

Bacterial Early death 

03-009 51-50 Male Escherichia coli, Bacteroides 
fragilis 

Bacterial Early death 

06-017 51-60 Female Haemophilus parainfluenzae, 
Veillonella parvula 

Bacterial Early death 

06-037 71-80 Male Escherichia coli, Enterococcus 
faecium 

Bacterial Early death 

08-005 71-80 Male Enterobacter cloacae Bacterial Early death 
08-015 51-60 Male Human mastadenovirus C Viral Early death 
08-026 71-80 Male Escherichia coli Bacterial Early death 
08-056 71-80 Male Enterococcus faecalis Bacterial Early death 
08-059 81-90 Male Escherichia coli Bacterial Early death 
09-031 71-80 Male Escherichia coli Bacterial Early death 
16-004 51-60 Female Escherichia coli Bacterial Early death 
01-006 71-80 Male Staphylococcus aureus, Torque 

teno virus 
Bacterial, Viral Early death 

01-012 61-70 Female Pseudomonas aeruginosa, 
Lactobacillus fermentum 

Bacterial Recovery 

01-064 51-60 Female Escherichia coli Bacterial Recovery 
01-070 71-80 Female Streptococcus thermophilus, 

Propionibacterium freudenreichii 
Bacterial Recovery 

01-071 81-90 Male Enterococcus faecium, Candida 
glabrata, Escherichia coli 

Bacterial, 
Fungal 

Recovery 

01-074 61-70 Female Candida glabrata, Klebsiella 
oxytoca 

Bacterial, 
Fungal 

Recovery 

01-077 81-90 Male Klebsiella oxytoca, Streptococcus 
pneumoniae, Lactobacillus 

salivarius, Human herpesvirus 
6B 

Bacterial, Viral Recovery 

01-086 81-90 Female Staphylococcus aureus Bacterial Recovery 
01-090 61-70 Female Escherichia coli Bacterial Recovery 
01-092 61-70 Male Escherichia coli Bacterial Recovery 
01-113 71-80 Male Enterococcus faecium, 

Ruminococcus sp. SR1/5, 
Bacteroides vulgatus 

Bacterial Recovery 

02-018 81-90 Male Proteus mirabilis Bacterial Recovery 
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02-043 81-90 Male Escherichia coli Bacterial Recovery 
03-029 81-90 Male Escherichia coli Bacterial Recovery 
03-047 51-60 Female Pseudomonas aeruginosa, 

Escherichia coli 
Bacterial Recovery 

04-004 41-50 Male Clostridium perfringens Bacterial Recovery 
05-005 51-60 Male Roseburia intestinalis, 

Escherichia coli, Bacteroides 
vulgatus 

Bacterial Recovery 

06-003 61-70 Male Staphylococcus aureus Bacterial Recovery 
06-016 61-70 Male Propionibacterium acnes Bacterial Recovery 
08-034 61-70 Male Streptococcus spp. Bacterial Recovery 
08-044 81-90 Female Staphylococcus aureus, 

Lactobacillus fermentum 
Bacterial Recovery 

22-001 71-80 Male Escherichia coli, Bacteroides spp. Bacterial Recovery 
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Supplement Table 8 – Patient metadata summary statistics for early death and recovery sepsis 
cases (outcome cohort). SD = Standard deviation, IQ = Inter quartile 

Outcome 

  Early death  Recovery  
Age      

N  21  22  
Mean (SD)  69.9 (10.76)  70.5 (11.73)  
Median  74.0  70.5  
Range  (50; 84)  (45; 87)  
IQ range  (57.0; 77.0)  (65.0; 82.0)  

      
Albumin [g/L]      

N  15  19  
Mean (SD)  27.61 (3.414)  27.43 (5.033)  
Median  26.60  26.20  
Range  (21.8; 33.0)  (19.3; 39.0)  
IQ range  (25.65; 31.10)  (23.00; 30.70)  

      
ALT [U/L]      

N  16  19  
Mean (SD)  87.3 (106.37)  98.8 (145.46)  
Median  44.5  38.0  
Range  (7; 333)  (5; 509)  
IQ range  (26.0; 71.0)  (21.0; 112.0)  

      
AP [U/L]      

N  15  18  
Mean (SD)  100.9 (52.90)  132.2 (94.21)  
Median  82.0  114.3  
Range  (35; 206)  (23; 394)  
IQ range  (60.0; 143.0)  (63.0; 194.0)  

      
aPTT [s]      

N  21  22  
Mean (SD)  33.1 (8.98)  42.9 (13.90)  
Median  32.0  41.3  
Range  (24; 58)  (24; 79)  
IQ range  (26.5; 36.5)  (32.0; 49.5)  

      
AST [U/L]      

N  15  17  
Mean (SD)  156.1 (295.78)  216.4 (305.26)  
Median  63.0  72.0  
Range  (8; 1190)  (20; 1080)  
IQ range  (33.5; 149.0)  (37.5; 177.0)  

      
Bilirubin [µM]      

N  18  21  
Mean (SD)  18.280 (12.9571)  19.542 (13.9339)  
Median  14.966  17.000  
Range  (4.28; 54.73)  (3.42; 53.88)  
IQ range  (10.262; 25.656)  (10.262; 22.235)  

      
BMI      

N  21  21  
Mean (SD)  27.62 (7.028)  27.86 (10.385)  
Median  27.43  25.39  
Range  (17.9; 51.2)  (15.9; 69.2)  
IQ range  (23.88; 29.38)  (23.88; 27.78)  

      
Creatinine [µM]      
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Outcome 

  Early death  Recovery  
N  21  22  

Mean (SD)  155.931 (130.4415)  199.389 (110.8686)  
Median  90.361  191.969  
Range  (32.79; 494.50)  (30.50; 513.00)  
IQ range  (73.204; 181.485)  (136.495; 269.558)  

      
CRP [mg/dL]      

N  20  20  
Mean (SD)  18.48 (12.349)  19.17 (10.833)  
Median  15.36  15.98  
Range  (3.1; 54.2)  (4.7; 44.9)  
IQ range  (12.31; 25.95)  (12.24; 23.42)  

      
Sex      

N  21  22  
Male  15 (71.4%)  14 (63.6%)  
Female  6 (28.6%)  8 (36.4%)  

      
GFR [mL/min]      

N  20  19  
Mean (SD)  52.44 (30.011)  28.22 (16.158)  
Median  55.50  22.50  
Range  (10.5; 101.9)  (9.1; 60.0)  
IQ range  (21.58; 76.75)  (16.35; 39.65)  

      
Hematocrit [%]      

N  21  22  
Mean (SD)  29.9 (6.25)  30.7 (4.75)  
Median  28.5  30.0  
Range  (19; 41)  (23; 38)  
IQ range  (26.0; 36.0)  (25.9; 35.0)  

      
INR      

N  21  22  
Mean (SD)  1.394 (0.3392)  1.681 (0.5847)  
Median  1.305  1.523  
Range  (0.90; 2.26)  (1.03; 3.70)  
IQ range  (1.150; 1.500)  (1.330; 1.900)  

      
Lactate [mM]      

N  21  22  
Mean (SD)  4.795 (4.5987)  7.386 (5.2218)  
Median  2.800  6.368  
Range  (0.75; 18.97)  (1.00; 18.70)  
IQ range  (1.277; 6.000)  (2.581; 12.300)  

      
Leukocytes [gpt/I]      

N  21  22  
Mean (SD)  17.791 (10.1078)  14.615 (12.6624)  
Median  15.820  10.550  
Range  (4.44; 43.68)  (0.66; 43.62)  
IQ range  (10.320; 22.270)  (5.575; 23.500)  

      
PCT [ng/mL]      

N  21  22  
Mean (SD)  52.22 (86.922)  65.10 (89.933)  
Median  5.87  14.39  
Range  (0.1; 268.4)  (0.6; 279.2)  
IQ range  (2.14; 50.36)  (7.12; 100.00)  
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Outcome 

  Early death  Recovery  
Potassium [mM]      

N  21  22  
Mean (SD)  4.36 (0.703)  4.67 (0.480)  
Median  4.35  4.71  
Range  (3.3; 5.4)  (3.5; 5.4)  
IQ range  (3.95; 4.93)  (4.45; 5.00)  

      
Protein [g/L]      

N  14  13  
Mean (SD)  48.58 (8.706)  44.80 (9.309)  
Median  49.20  43.70  
Range  (32.5; 60.1)  (29.7; 58.0)  
IQ range  (40.45; 55.70)  (36.90; 55.00)  

      
Quick [%]      

N  21  22  
Mean (SD)  61.2 (20.57)  51.9 (17.14)  
Median  58.0  54.3  
Range  (31; 111)  (15; 96)  
IQ range  (49.5; 77.0)  (37.0; 60.0)  

      
RRT      

N  21  22  
No  18 (85.7%)  16 (72.7%)  
Yes  3 (14.3%)  6 (27.3%)  

      
Septic shock      

N  21  22  
No  7 (33.3%)  2 (9.1%)  
Yes  14 (66.7%)  20 (90.9%)  

      
Sodium [mM]      

N  21  22  
Mean (SD)  143.40 (5.183)  140.41 (6.607)  
Median  144.00  138.75  
Range  (132.0; 151.5)  (128.0; 160.5)  
IQ range  (140.00; 147.00)  (136.00; 143.50)  

      
SOFA      

N  21  22  
Mean (SD)  7.9 (3.68)  11.4 (3.11)  
Median  8.0  11.0  
Range  (1; 14)  (6; 18)  
IQ range  (5.0; 11.0)  (9.0; 13.0)  

      
Thrombocytes [gpt/I]      

N  21  22  
Mean (SD)  250.6 (143.36)  161.0 (136.67)  
Median  240.0  110.0  
Range  (86; 697)  (40; 566)  
IQ range  (140.0; 330.0)  (82.0; 193.5)  

      
Urea [mM]      

N  21  22  
Mean (SD)  14.119 (9.8640)  22.721 (15.3671)  
Median  9.990  21.006  
Range  (5.00; 43.00)  (3.41; 55.85)  
IQ range  (7.243; 18.200)  (11.405; 30.137)  

      
Vasopressors or inotropes      
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Outcome 

  Early death  Recovery  
N  21  22  

No  6 (28.6%)  1 (4.5%)  
Yes  15 (71.4%)  21 (95.5%)  

 

Key: ALT=Alanine aminotransferase, AP=Alkaline phosphatase, AST=Aspartate aminotransferase, 
BMI=Body-Mass-Index, CRP=C-reactive protein, GFR=Glomerular filtration rate, INR=International 
normalized ratio, PCT=Procalcitonin, SOFA=Sequential organ failure assessment, RRT=Renal 
replacement therapy; Note: N reflects non-missing values  
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Supplement Table 9 - Patient metadata differences between early death and survival sepsis cases 
(outcome cohort). Categorical features are marked with an asterisk (‘*’). P values were obtained from two-sided 
Wilcoxon rank-sum test for numerical features, and Fisher's exact test for categorical features. Metrics with a p 
value <= 0.05 are highlighted in bold font. Area under ROC curves (‘AUROC’) is reported with 95% confidence 
interval boundaries (‘AUROC_ci_l’ = lower boundary, ‘AUROC_ci_h’ = higher boundary). From the ROC analysis 
per metric, the decision threshold (‘Thresh’) that maximizes the sum of specificity (‘Spec’) and sensitivity (‘Sens’) is 
indicated with the corresponding specificity and sensitivity. ALT=Alanine aminotransferase, AP=Alkaline 
phosphatase, AST=Aspartate aminotransferase, BMI=Body-Mass-Index, CRP=C-reactive protein, 
GFR=Glomerular filtration rate, INR=International normalized ratio, PCT=Procalcitonin, SOFA=Sequential organ 
failure assessment, RRT=Renal replacement therapy. 

Outcome – Early death vs. Recovery 

Metric P value AUROC AUROC_ci_l AUROC_ci_h Thresh Spec Sens 

Age 0.990 0.498 0.318 0.678 71.500 0.571 0.591 
Albumin 0.835 0.523 0.323 0.723 25.525 0.800 0.368 

ALT 0.716 0.538 0.340 0.736 42.000 0.563 0.579 
AP 0.459 0.578 0.376 0.779 106.500 0.733 0.556 

aPTT 0.011 0.727 0.574 0.881 37.250 0.810 0.636 
AST 0.571 0.561 0.355 0.767 70.250 0.600 0.529 

Bilirubin 0.877 0.516 0.328 0.704 16.650 0.611 0.524 
BMI 0.753 0.529 0.349 0.710 26.398 0.571 0.619 

Creatinine 0.091 0.652 0.474 0.829 125.747 0.667 0.773 
CRP 0.797 0.525 0.341 0.709 15.605 0.550 0.550 
Sex* 0.747 NA NA NA NA NA NA 
GFR 0.018 0.724 0.556 0.892 47.275 0.650 0.842 

Hematocrit 0.601 0.548 0.368 0.727 29.175 0.571 0.636 
INR 0.039 0.685 0.523 0.847 1.323 0.571 0.773 

Lactate 0.050 0.675 0.511 0.839 6.050 0.762 0.545 
Leukocytes 0.178 0.621 0.447 0.795 13.485 0.667 0.591 

PCT 0.220 0.610 0.434 0.786 9.780 0.619 0.682 
Potassium 0.138 0.633 0.459 0.808 4.398 0.524 0.773 

Protein 0.244 0.635 0.416 0.853 44.900 0.714 0.615 
Quick 0.198 0.616 0.445 0.787 58.500 0.476 0.727 
RRT* 0.457 NA NA NA NA NA NA 

Septic_shock* 0.069 NA NA NA NA NA NA 
Sodium 0.030 0.694 0.531 0.857 139.250 0.810 0.545 

SOFA 0.003 0.760 0.617 0.902 9.500 0.667 0.682 
Thrombocytes 0.008 0.738 0.585 0.891 118.250 0.857 0.591 

Urea 0.048 0.677 0.510 0.845 11.280 0.571 0.773 
Vasopressors_inotropes* 0.046 NA NA NA NA NA NA 
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