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Abstract

Background

Self-attention mechanisms and token embeddings behind transformers allow the ex-

traction of complex patterns from large datasets, and enhance the predictive power

over traditional machine learning models. Yet, being trained to make predictions about

individual cells or genes, it is not clear if transformers can learn the inherent interac-

tion patterns between genes, ultimately responsible for their mechanism of action. We

use Geneformer, pretrained on single-cell transcriptomes, to ask if transformers can im-

plicitly capture molecular dependencies, including protein-protein interactions (PPIs),

allowing us to explore the use of transformers to improve network medicine tasks such

as disease gene identification and drug repurposing.

Methods

We extracted the cosine similarity of gene embeddings and the attention weights con-

tained in Geneformer, allowing us to test if these weights capture experimentally vali-

dated protein interactions. Using dilated cardiomyopathy as a case study, we evaluated

the effectiveness of the resulting weighted networks in disease module detection and

drug repurposing.
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Results

We found that Geneformer displays awareness of experimentally documented Protein-

Protein Interactions, exhibiting higher cosine similarity and attention weights for gene

pairs with physical interactions. Weighting PPI networks with the cosine similarity and

attention weights improved the detection of disease-associated genes and the accuracy

of drug repurposing predictions for dilated cardiomyopathy, surpassing the accuracy of

unweighted networks. Finally, we find that combining attention weights and cosine sim-

ilarities with rankingmethods enhances drug candidate prioritization for drug repurpos-

ing.

Conclusions

We find that transformers, by implicitly learning the interactions between genes, offer

a promising pathway for advancing medicine and drug discovery when integrated with

the graph theoretic algorithms used in network medicine.

Introduction and Background

Transformers [1], a class of deep learning models designed for natural language processing

(NLP), are revolutionizing biological research by capturing complex patterns in data through

self-attention mechanisms. The transfer learning approach behind transformers has been

applied to improve protein structure prediction [2], genetic sequence analysis [3, 4], and

molecular interaction prediction [5], and to extract knowledge from large datasets [3, 6,

7].
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In NLP,models are given inputs in the form of tokens, which are vector representations of the

words in the sentence. In Geneformer, a transcriptome-based transformer pretrained with

30 million single-cell transcriptomes, genes are the individual tokens. While in language the

order of the tokens is predefined by the grammar, Geneformer uses Rank-Value Encoding

(RVE) to order genes by normalized expression defining the ‘grammar’ of the cell [7]. The

pretraining gives Geneformer a versatile context awareness that can be harnessed through

posterior task-specific training phases (fine-tuning).

Machine learning models are typically trained to predict individual tokens or classify groups

of tokens, ignoring the inherent interactions between them. In biology, however, the inter-

actions between genes are responsible for the mechanism of action of the individual genes

and proteins. In this study, we ask to what degree transformers capture the known molecu-

lar dependencies between proteins, allowing us to explore the utility of transformers to en-

hance the tool set of network medicine. Indeed, the activity pattern of a gene is the result of

multiple network-based dependencies, that are mapped and studied by network medicine.

By conceptualizing biological processes as networks of genes, proteins, and RNAs [8, 9],

network medicine offers a series of graph theoretic tools to predict drug repurposing op-

portunities or drug responses [10, 11, 12, 13]. Here we show that Geneformer, a six-layer

transformer trained with single-cell transcriptomes, develops an awareness of experimen-

tally documented Protein-Protein Interactions (PPI). This awareness allows us to adapt the

transformer to perform standard network medicine tasks, finding that it can improve the

performance of disease gene discovery and drug repurposing. Overall, our research reflects

a convergence of network medicine and deep learning, offering a path towards a better un-
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derstanding of complex diseases by providing predictive models of biological interactions

and disease mechanisms that can help develop more effective treatments.

Results

The Human Interactome

Network medicine unveils disease mechanisms by mapping out the physical interactions be-

tween cellular components (genes, proteins, RNAs). Geneformer, trained on expression data,

lacks direct information on these physical interactions. However, the experimentally ob-

served expression pattern of each gene is determined by regulatory processes driven by the

underlying physical interactions. Therefore, we hypothesize that information about physi-

cal interactions is implicitly encoded in Geneformer. To test this hypothesis, we examined

whether an experimentally validated network of protein interactions can be extracted by ex-

ploiting the relationships between their corresponding internal representationswithinGene-

former. This ground truth interactome is represented as a network of 18,260 protein-coding

genes (nodes) and 520,009 experimentally validated physical interactions (edges) [14]. By

filtering for the 18,062 genes common to Geneformer’s vocabulary and the interactome, we

derive a PPI network with 514,674 interactions. This network serves as the foundation for

the analyses presented in this paper.

Embeddings Predict Human Interactome

Geneformer encodes genes in 256-dimensional vectors known as embeddings [7]. These

vectors are initially oriented randomly and change direction during pretraining, updated as
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they progress through each layer of the model (see Fig. 1a-c). After pretraining, the model

develops a vocabulary of 25,424 genes, each corresponding to a 256 dimensional embedding

that represents a single protein coding gene ormiRNA. Cosine similarity of these vectors was

previously used for in silico network analysis of congenital heart disease [7], prompting us to

hypothesize that cosine similarity may reflect the underlying physical interactions between

gene pairs (Figure 1c).

We run 10,000 healthy single-cell transcriptomes from the 30M corpus through the pre-

trained model. For each sample, we extract the embeddings from the second to last layer

and calculate the cosine similarity matrix C that records the maximum cosine similarity be-

tween each gene pair across the 10,000 samples (Methods). If the embeddings are informed

by the physical interactions between the genes, we would expect that gene pairs with exper-

imentally validated binding interactions would have larger cosine similarity. In line with this

hypothesis, we find that the mean value 0.219 ± 0.001 of the cosine similarities (CSs) cor-

responding to experimentally validated PPIs is significantly different from the background

(nonexistant interactions) with the mean value 0.179± 0.001, a difference whose statistical

significance is verified by the Kolmogorov-Smirnov test (KS-test, p = 0) (Figure 2a).

Attention Weights Also Predict Interactions

“Attention is All You Need” stated the publication that introduced the transformer architec-

ture [1]. Indeed, the attention mechanism helps the transformer dynamically focus on differ-

ent parts of the input data by weighting the significance of each input element differently,

determining how much “attention” each part needs.
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Each of Geneformer’s six layers contains four attention heads (Figure 1e-f) [7]. Each head is a

square matrix whose dimensions match the length of the input transcriptome, capturing the

“attention” each gene assigns to every other gene within that transcriptome. We created an

aggregated attention matrix A from the same 10,000 single-cell samples used to generate

the cosine similarity matrix C (Methods). We find that the PPI edges have a higher mean

attention weight (AW) (2.25±0.04×10−3) than the background (1.62±0.02×10−3), whose

significance is again verified by a KS-test (p = 0).

Degree Dependence of Cosine Similarity and Attention Weights

Given the central role the node degree k (number of physical interactions with other nodes)

has in network medicine, we explored the relationship between the total attention and co-

sine similarity associated with a gene and the degree k of that gene in the network. By

summing along the rows of the cosine similarity matrix C, we calculated the total cosine

similarity Ctot associated to each gene. Similarly, we calculated the gene’s total attention

Atot. By fitting the logistic regression,

Ctot = βC ln(k), Atot = βA ln(k), (1)

we found that the total cosine similarity and attention of each gene have a strong positive

correlation with the gene’s degree k. Ctot shows a dependence on ln(k) with an R2 of 0.27,

whileAtot has anR2 of 0.09 with ln(k), indicating that the natural log of the degree explains

27% of the variance in Ctot and 9% in Atot (Figure 2d).

Taken together, we find that both cosine similarities and the attention weights show an
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awareness of the underlying physical interactions within the cell. While the resulting pre-

dictive power for protein interactions is relatively modest (Figure S4), the higher cosine sim-

ilarity and attention weights associated with these interactions prompt us to ask if the trans-

former technique may be able to contribute to the traditional network medicine tasks, like

disease module identification and drug repurposing, questions that we explore next.

Pretrained Model Pays Attention to Disease Modules

A foundational result in network medicine is that the disease genes associated with a spe-

cific disease or phenotype are not randomly distributed in the interactome, but tend to be

located in a specific network neighborhood, forming a connected subgraph known as the

disease module [15, 16]. We hypothesize that attention weights and embeddings, by reveal-

ing relationships between disease genes, highlight the specific network neighborhoodwithin

the interactome, helping us identify the disease module.

To test this hypothesis, we start from a gene-disease association (GDA) list consisting of 110

disease genes associated with dilated cardiomyopathy [10]. Of the 110 proteins, 74 form a

connected subgraph in the PPI, corresponding to a diseasemodule connected by 174 physical

interactions. We take expression data from 10,000 dilated cardiomyopathy (DCM) cardiomy-

ocytes [17] and run them through the model to create a new aggregated cosine similarity

matrix C ′. We categorize the obtained CSs between gene pairs corresponding to the 174

edges within the disease module and those corresponding to all physical interactions in the

PPI. We find that the CSs within the disease module have a mean weight of 0.313 ± 0.002,

slightly larger than 0.253 ± 0.001, observed for all PPI interactions (Figure 2e), a difference
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significant by KS-test (p = 6× 10−5). Similarly, we find that the attention weights within the

disease module have a mean weight of 9.29± 0.19× 10−3, which is 3 times larger than the

mean weight of all PPI interactions (2.78± 0.003× 10−3, Figure 2f, statistically significant by

the KS-test, p = 2× 10−14).

Improving Disease Module Detection

Next, we ask if we can use Geneformer to improve disease gene predictions [18], a central

task for network medicine, particularly pertinent for under-studied and rare diseases with

a limited number of associated genes. Current network medicine algorithms for identifying

the disease module aim to construct a connected component of disease genes in the net-

work, relying on the unweighted protein-protein interactome (PPI) [19]. While a weighted

interactome offers myriad potential improvements in network medicine [8, 10, 19], weight-

ing techniques can introduce batch effects [20, 21], methodological differences [22], or low

confidence edges [23].

Here, we hypothesize that an interactome weighted with either Geneformer AWs or CSs will

allow us to improve network medicine tasks such as disease module discovery. The leading

algorithm for disease module detection, randomwalk with restart (RWR) [24, 25, 26], begins

with a set of known disease genes acting as seeds and then ranks new candidate genes in the

interactome by calculating the steady-state probability that a walker, starting from any seed

gene, will reach each candidate gene. The probability that the walker reaches a candidate

gene defines the probability that the gene should be a part of the disease module.

We applied the aggregated Geneformer AWs from the pretrained model as weights to the

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 28, 2025. ; https://doi.org/10.1101/2025.01.27.25321204doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.27.25321204
http://creativecommons.org/licenses/by-nc-nd/4.0/


PPI edges. To be specific, for each link (i, j) in the PPI, the interaction strength is defined as

Wij = max(Aij, Aji), whereAij represents the aggregated attentionweight between genes

i and j, derived from the transcriptomes of 10,000 cardiomyocytes from dilated cardiomy-

opathy (DCM) samples. We repeated this process using AWs from the Geneformer model

fine-tuned on cardiomyopathy. Finally, we repeat the entire process using cosine similarities

(CSs), for a total of 5 networks (unweighted, pretrained embedding weighted, pretrained at-

tention weighted, fine-tuned embedding weighted, and fine-tuned attention weighted.) We

divided the set of 110 known cardiomyopathy genes into seed (80%) and recovery (20%) sets.

The seed set served as the starting point for RWR, while the recovery set is used to measure

the predicted rank of the known disease genes.

We find that all 4 weighted networks perform at least as well as the unweighted network,

and the attention weighted networks offer a notable improvement in disease module detec-

tion. Both the pretrained and fine-tuned attention weighted networks generate an AUROC

of 0.76 ± 0.02, which is within the standard error in the mean of the unweighted network

(AUROC = 0.74 ± 0.02, Figure 3a). For the purposes of disease module detection though

we are mainly interested in the top candidates. Therefore, we evaluated the precision and

cumulative true positives in the top 100 candidates (Figure 3c,d), since thesemetrics can rep-

resent the efficacy of the algorithmmore accurately than the AUROC.We find that in the top

100 candidates, the attention weighted networks record nearly twice the cumulative true

positives compared to the unweighted network(Figure 3d). The fine-tuned AWs in particu-

lar generate an initial precision of nearly 60%, a notable improvement on the unweighted

network, which records an inital precision of 0 (Figure 3b,c).
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Attention Weights Improve Drug Repurposing

Drug repurposing, the process of identifying new therapeutic uses for FDA-approved drugs,

has become increasingly important due to its potential to reduce the time and cost asso-

ciated with drug development. While some approaches leverage computational methods

and extensive biological databases to predict drug-disease associations [27, 28, 29], net-

work medicine based repurposing, using either graph theory tools [11, 13], graph neural net-

works [30], or a combination of these two methods [10], was able to identify promising ex-

perimentally tested drug candidates, along with the specific disease mechanism responsible

for the pathogenesis [31].

We evaluated whether the AWs and CSs between Geneformer embeddings could improve

drug repurposing accuracy. As a baseline, we used the dilated cardiomyopathy (DCM) fine-

tuned Geneformer model [7]. We extracted the AWs and CSs from themodel and used them

to assign weights to the PPI network. Subsequently, we calculated the network-based prox-

imity scores [32] between the DCM disease genes and the targets of 618 drugs, including 171

DCM-related (Positive) and 447 unrelated (Negative) drugs extracted from DrugBank (see

Methods) [33]. We ranked the drug list according to each drug’s proximity score and tracked

the number of positive and negative drugs predicted by the DCM-Geneformer weighted net-

works.

We repeated this procedure by extracting the AWs and CSs values fromall six transformer lay-

ers of Geneformer. As a control, we compared the results from theseweighted networkswith

those from the unweighted PPI network. We find that the PPI network weighted with AWs

from layer 5 and CSs from layer 0 enhanced the overall prediction capabilities for identifying
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DCM-related prescribed drugs, achieving an AUROC of 0.72 for AWs and 0.71 for CSs. This

performance considerably surpassed the predictive power of the unweighted PPI network

(AUROC = 0.60), as well the predictive power extracted from the other layers (Figures 4a,d

and g).

The aim of drug repurposing is to prioritize the available drugs, so that experimental efforts

can be focused on the highest-ranked compounds. For this reason, we calculated the number

of true positive drugs among the top 100 predicted drugs (precision), and the fraction of

all possible positive drugs among the top 100 predicted drugs (recall). For precision, the

PPI network weighted with AWs from layer 5 (AUPC = 0.43) and CSs from layer 0 (AUPC =

0.45) outperformed both the unweighted control network (AUPC = 0.40) and other layers.

Similarly, for recall, the PPI network weighted with AWs from layer 5 (AURC = 0.43) and CSs

from layer 0 (AURC = 0.50) also surpassed the control network (AURC = 0.39) and other

layers (Figure 4b,e,h and 4c,f,i).

Since AWs from layer 5 and CSs from layer 0 demonstrated the best overall performance

from each set, we further explored the relationship between their drug proximity scores. As

shown in Figure 5a, the scores derived from AWs and CSs exhibit a strong positive correla-

tion (Pearson correlation coefficient = 0.77,R2 = 0.59), indicating that both methods capture

similar network-based relationships between drug targets and DCM genes. However, dis-

agreement between the two scores suggests that each method captures different aspects of

the relationships, indicating their potential complementarity for improving prediction accu-

racy when combined. To assess this, we applied three ranking methods: Borda Count [34],

Dowdall Count [35], and CRank [30], to integrate the scores provided by AWs and CSs. These
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combined ranking methods yielded a marginally higher predictive performance than AW or

CSs scores alone, achieving AUROC values of 0.74 for Dowdall Count and CRank (Figure 5b).

Additionally, precision and recall analyses of the top 100 ranked drugs revealed that CRank is

the most effective combination method, outperforming Borda and Dowdall counts, as well

as the individual AW and CSs scores and the unweighted PPI network. This suggests that

integrating multiple layers of information from Geneformer enhances the accuracy of drug

repurposing predictions (Figure 5c,d).

Discussion

In this study, wedemonstrated that transformer-basedmodels, specifically Geneformer, have

the potential to enhance network medicine tasks, such as disease gene identification and

drug repurposing. Our results illustrate how transformer embeddings and attention weights

can be leveraged to capture and reinforce biological interactions within protein-protein in-

teraction (PPI) networks. While network medicine traditionally relies on unweighted or ex-

perimentally weighted networks [36, 37, 38], we show that attention-weighted networks

outperform traditional methods.

A key finding of this study is the superior performance of attention weights compared to

cosine similarity in disease gene identification and marginally in drug repurposing. While

both mechanisms capture relationships between gene pairs, we find that attention weights

outperform cosine similarity in accuracy and applicability.

Onepossible explanation for this difference is that attentionweights are dynamic and context-
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dependent, in contrast with the more static, global relationships between gene embeddings

offered by cosine similarity [1]. This dynamic nature of attention weights makes them par-

ticularly well-suited for tasks like disease module detection and drug repurposing, where

functional relationships between genes are context-specific.

We also find that fine-tuning Geneformer on disease-specific data, such as cardiomyopa-

thy transcriptomes, further enhances its ability to identify disease-relevant network regions.

In our analysis of the DCM disease module, the fine-tuned model’s cosine similarity values

and attention weights showed greater separation between PPI and disease module edges

than the pretrained model (Figure S5). This increased focus on the disease module, along-

side with a down-prioritization of unrelated interactions, highlights the value of fine-tuning

transformer models for specific diseases.

One of the most impactful applications of Geneformer’s attention weights and cosine sim-

ilarity is in drug repurposing. Our results show that AWs from layer 5 and CSs from layer

0 provided the highest overall accuracy, outperforming both the unweighted PPI network

and other layers. Moreover, integrating AWs and CSs from the Geneformer model slightly

improves drug repurposing predictions for dilated cardiomyopathy (DCM). While AWs and

CSs scores are strongly correlated, their differences suggest they capture complementary

information, with combined ranking methods like CRank [30] further enhancing predictive

power. These findings highlight the value of integrating transformer models with network

medicine approaches, demonstrating that attention weights and cosine similarity together

can improve the identification of therapeutic candidates for complex diseases.

WhileGeneformer’s performance in networkmedicine tasks is promising, limitations remain.
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Though improved, the AUROC values indicate room for further optimization, particularly in

integrating additional biological data or refining the transformer model architecture. Ad-

ditionally, exploring other deep learning architectures or expanding the training datasets

could help improve the accuracy of disease gene identification and drug repurposing pre-

dictions. Further research is needed to determine how these transformer-based models can

be applied to more diverse biological contexts, including signaling pathways or metabolic

networks.

This convergence of AI and network medicine offers unprecedented opportunities for un-

derstanding complex diseases. Using transformers in network biology could significantly ac-

celerate drug discovery efforts, reduce the cost and time of drug development, and improve

patient outcomes through more targeted therapeutic interventions.

Methods

To evaluate Geneformer’s ability to capture biological information, we compared embed-

dings and attention weights from a pretrained and fine-tuned model with a protein-protein

interaction (PPI) network and curated disease-gene association lists (SI 1.1). We sampled

10,000 single-cell transcriptomes and calculated the aggregated cosine similarity and atten-

tion weights to assess the distribution of known PPI and disease module edges (SI 1.2). We

further used the cosine similarity and attention weight values to construct weighted PPI net-

works (see SI 1.3). We used the weighted networks to perform disease module discovery (SI

1.3) and drug repurposing studies (see SI 1.4) in dilated cardiomyopathy.
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Figure 1: Similarity Measurements in Geneformer. (a) Starting with a transcriptome, genes
are tokenized into vector embeddings and fed through the first transformer encoder layer.
(b) Each layer outputs an updated set of embeddings before passing them into the next layer.
(c) The initial embeddings (layer 0) and the layer 1 embeddings are plotted to show how the
genes canmove in embedding space between layers. In this case, VHC andARL10 get closer in
embedding space after layer 1. (d) The layer 0 embeddings are turned into a cosine similarity
network, where each gene is connected to every other gene with an edge weighted by its
cosine similarity. Here, ARL10 andOIP5 are orthogonal in embedding space, so no edge exists.
(e) The final layer of the model is expanded to show the multi-head attention mechanism.
All six layers have an identical mechanism, giving the model 24 total attention heads. (f) An
attention head from the 6th layer is magnified. These attention weights are another way to
compare gene similarities, as each gene attends to every other gene in the sequence. Since
the matrix is asymmetric, the attention to TTC5 from ARL10 is different from the attention
to ARL10 from TTC5. (g) The layer 6 attention weights are turned into a weighted directed
network. This is an example of maximum aggregation, where we take the larger of aij, aji as
the edge weight between i and j.
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Figure 2: Geneformer Prioritizes PPI Edges. (a)Using 10,000 cells from Genecorpus, we plot
distributions of cosine similarities for the PPI and the fully connected background, sobserving
a higher median weight in the PPI edges. (b)We plot the same distributions using attention
weights and again find a higher median weight in the PPI edges. (c) Summing across rows of
the cosine similarity matrix C, the total cosine similarity for a gene is plotted against its de-
gree. We find that the total cosine similarity increases with the degree, and when modeled
as a logistic regression, ln(k) explains 27% of the variation in C, the total cosine similarity.
The red points with black error bars are the mean and standard deviation across all genes
with a given degree k, and the black dashed line is the resulting fit from the logistic regres-
sion. The blue points represent individual genes. (d) Summing across rows of the attention
matrix A, the total attention for a gene is plotted against its degree. We find that the total
attention increases with the degree, and when modeled as a logistic regression, ln(k) ex-
plains 9% of the variation inA, the total attention. (e) Using 10,000 dilated cardiomyopathy
(DCM) cardiomyocytes, we create a new cosine similarity matrix C and observe that cosine
similarities within the largest connected component (LCC) of DCM disease genes in the PPI
(also known as the disease module) have a higher median weight than other PPI edges. (f)
We generate a new attention matrix A from these same 10,000 DCM cells, observing again
that the DCM disease module edges have a higher median weight than other PPI edges.
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Figure 3: Geneformer Attention Weights Improve Capture-Recapture Analysis for Disease
Module Discovery. (a) ROC curves are plotted for 4 different Geneformerweighted networks
and a control unweighted network, comparing their recovery of removed disease module
genes. The shaded ribbon indicates standard error in the mean of 100 trials with different
seed genes. b) ThePrecision-Recall curve is plotted for each network. The attentionweighted
networks have considerably higher initial precision than other networks, prompting us to
look more closely at this region. (c) The precision is plotted for the top 100 candidates.
The fine-tuned attention weighted network has higher precision for the top 100 candidates
than any other network, followed by the pretrained attention weighted network. (d) The
cumulative true positives are plotted for the top 50 candidates. The attention weighted net-
works record the most true positives (between 3 and 4 on average), but the cosine similarity
weighted networks also outperform the unweighted network.
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Figure 4: Layer-Wise Comparison of Geneformer Attention Weights and Cosine Similarity
for Drug Repurposing in Dilated Cardiomyopathy. a, d) ROC curves comparing the drug
repurposing performance using attention weights (AWs) and cosine similarities (CSs) from
six Geneformer layers. AWs from layer 5 (AUROC = 0.72) and CSs from layer 0 (AUROC =
0.71) show the best predictive capacity in their respective sets, with both outperforming the
unweighted control. b, e) Precision curves for the top 100 drug candidates. AWs from layer
5 (AUPC = 0.50) and CSs from layers 0 (AUPC = 0.45), 1 (0.45) and 2 (0.46) maintain the
highest precision across most top candidates, indicating better predictive power compared
to other layers and the control. c, f) Recall curves for the top 100 drug candidates using AWs
and CSs from different layers. AWs from layer 5 (AURC = 0.43) and CSs from layer 0 (AURC
= 0.50) achieve the highest recall, identifying more known cardiomyopathy drugs in the top
candidates compared to other layers and the control network. g-i) AUROC, AUPC and AURC
values comparing AWs and CSs across Geneformer layers. The gray dashed line represents
the respective values derived from the unweighted control network (AUROC = 0.60, AUPC =
0.40, AURC = 0.39). In all cases, the results represent the average of ten independent runs,
with a standard deviation below 0.02.
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Figure 5: Correlation and Performance of Drug Repurposing Scores Derived from Cosine
Similarity (CSs) from Layer 0 and Attention Weights (AWs) from Layer 5 Using Combined
Ranking Methods. a) Correlation between drug repurposing scores derived from CSs from
layer 0 and AWs from layer 5. The score is calculated as −1 × proximity(DCM, D), where
DCM represents dilated cardiomyopathy disease genes, and D represents the drug targets.
Blue points correspond to negative drugs, and red points correspond to positive drugs used
to treat cardiomyopathy. The R2 value is 0.59. b) Receiver Operating Characteristic (ROC)
curves comparing the performanceof drug repurposing using individual scores fromCSs from
layer 0, AWs from layer 5, and combined scores generated using Borda Count, Dowdall Count,
and CRank methods. The combined ranking methods show improved performance, with
CRank (AUROC = 0.74) and Dowdall (AUROC = 0.74) achieving the highest AUROC values.
c) Precision curves for the top 100 drug candidates ranked by proximity to cardiomyopathy
genes. The combined ranking methods show improved precision over the individual CS and
AW scores, with CRank maintaining higher precision across most top candidates. d) Recall
curves for the top 100 drug candidates, comparing individual and combined scores. The
combined scores, particularly CRank and Dowdall, achieve higher recall, identifying more
known cardiomyopathy drugs in the top-ranked candidates. In all cases, the results represent
the average of ten independent runs, with a standard deviation below 0.02.
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