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Abstract 30 

Evaluation of bone marrow morphology by experienced hematologists is key in the diagnosis of 31 

myeloid neoplasms, especially to detect subtle signs of dysplasia in myelodysplastic neoplasms 32 

(MDS). The majority of recently introduced deep learning (DL) models in cytomorphology rely 33 

heavily on manually drafted cell-level labels, a time-consuming, laborious process that is prone to 34 

substantial inter-observer variability, thereby representing a substantial bottleneck in model 35 

development. Instead, we used robust image-level labels for end-to-end DL and trained several state-36 

of-the-art computer vision models on bone marrow smears of 463 patients with MDS, 1301 patients 37 

with acute myeloid leukemia (AML), and 236 bone marrow donors. For the binary classifications of 38 

MDS vs. donors and MDS vs. AML, we obtained an area-under-the-receiver-operating-characteristic 39 

(ROCAUC) of 0.9708 and 0.9945, respectively, in our internal test sets. Results were confirmed in an 40 

external validation cohort of 50 MDS patients with corresponding ROCAUC of 0.9823 and 0.98552, 41 

respectively. Explainability via occlusion sensitivity mapping showed high network attention on cell 42 

nuclei not solely of dysplastic cells. We not only provide a highly accurate model to detect MDS from 43 

bone marrow smears, but also underline the capabilities of end-to-end learning to solve the bottleneck 44 

of time-consuming cell-level labeling. 45 

 46 

Introduction 47 

Myelodysplastic neoplasms (MDS) encompass clonal myeloid malignancies that are characterized by 48 

ineffective hematopoiesis, cytopenia, myelodysplasia, and recurrent genetic events.1 The incidence of 49 

MDS appears to be underestimated and incidence rates increase dramatically over the age of 70 years 50 

(up to an estimated 75:100,000 cases), representing a substantial societal burden in an aging 51 

population.2–4 Although genetic findings are becoming increasingly important according to the new 52 

WHO 2022 classification, accurate cytomorphologic evaluation of the bone marrow remains crucial 53 

for the initial diagnosis, response assessment, and detection of disease transformation to acute myeloid 54 

leukemia (AML).5 While counting myeloblasts is rather straightforward, signs of dysplasia are more 55 

subtle and their accurate identification requires experienced investigators. Still, detection is often 56 
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challenging and prone to inter-observer variability, even for seasoned morphologists6–8, and shows 57 

discrepancies between site and central review.9 58 

In general, cytomorphologic evaluation of bone marrow aspirates in hematology remains essentially 59 

unchanged over the last decades, as both preparation and evaluation are performed manually, 60 

rendering the entire process time- and cost-intensive, as well as dependent on the experience and 61 

subjective judgement of the observer.10–12 With the advent of deep learning (DL) systems for computer 62 

vision13, a multitude of applications in the healthcare sector have been identified where DL is applied 63 

in image-based diagnostics.14,15 Convolutional neural nets (CNN), which consist of multiple artificial 64 

neurons that are interconnected via convoluted deep layers, are commonly used for computer vision 65 

tasks.16 In cytomorphology, recent studies have utilized neural networks in order to correctly classify 66 

peripheral blood and bone marrow cells based on their respective morphology17–28, as well as to 67 

accurately identify myeloid malignancies.29,30 68 

In this study, we used an end-to-end DL system to accurately differentiate between MDS, AML, and 69 

healthy donor bone marrow samples based on image-level labels, without the need for manually 70 

labeling cells or dysplastic morphologies. 71 

 72 

Methods 73 

Data sets 74 

We identified 463 MDS patients that have been previously diagnosed and treated at the University 75 

Hospital Dresden, Germany. The first control group comprised 1301 AML patients that had been 76 

diagnosed and treated under the auspices of the multicenter German Study Alliance Leukemia (SAL) 77 

within the following previously reported multicenter trials: AML9631 [NCT00180115], AML200332 78 

[NCT00180102], AML60+33 [NCT 00180167], and SORAML34 [NCT00893373]. Patients were 79 

eligible upon diagnosis of MDS or AML according to the revised WHO/ICC criteria5,35, age 80 

≥18 years, and available biomaterial at initial diagnosis including bone marrow smears. The second 81 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 28, 2025. ; https://doi.org/10.1101/2025.01.27.25321165doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.27.25321165
http://creativecommons.org/licenses/by-nc/4.0/


4 

 

control group consisted of 236 bone marrow samples from healthy bone marrow donors who 82 

underwent allogeneic bone marrow donation at our center as previously reported.36 An additional 83 

external validation cohort was obtained from the Munich Leukemia Laboratory (MLL), Munich, 84 

Germany, consisting of 50 patients with diagnosed MDS according to the above-mentioned eligibility 85 

criteria. Prior to analysis, written informed consent was obtained from all patients and donors 86 

according to the revised Declaration of Helsinki.37 All studies were approved by the Institutional 87 

Review Board of the TUD Dresden University of Technology (EK 98032010 and EK 289112008). 88 

 89 

Image digitization 90 

Bone marrow smears (BMS) were prepared from anticoagulated bone marrow according to WHO 91 

guidelines.38 Staining of MDS, AML, and donor BMS was performed with the May-Grünwald-Giemsa 92 

method.11 Image-level labels were derived from case-level diagnostics, including cytomorphology, 93 

histology, cytogenetics and molecular genetics, previously documented for each case during routine 94 

diagnostics or as part of the respective clinical trial. Using a Pannoramic 250 FLASH III 95 

(3DHISTECH), we obtained high-resolution whole slide images. For every AML patient and bone 96 

marrow donor, one image (50x magnification) per whole slide image was obtained using SlideViewer 97 

(3DHISTECH). We assumed that subtle signs of dysplasia would not be fully captured in one field of 98 

view alone. Therefore, for each MDS patient, we obtained four pictures (50x magnification) of 99 

different areas of interest in the BMS. 100 

 101 

Deep learning 102 

End-to-end image-level prediction on bone marrow slides 103 

We extended our previously described DL pipeline29,30 for binary image-level predictions for the 104 

delineation of MDS, AML, and healthy controls. Based on case-level diagnosis, images were labeled 105 

with either “MDS”, “AML”, or “healthy donor”. Importantly, no cell-level manual labeling was 106 

performed. The pipeline was adapted to evaluate cases in a binary fashion, i.e. MDS vs. AML and 107 
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MDS vs. healthy donors. Potentially, imbalanced training data can bias a classifier towards the 108 

predominant class. Considering the imbalances between the data sets (n=463 samples for MDS with 4 109 

images per patient, resulting in 1852 MDS images in total; n=1301 samples for AML with 1 image per 110 

patient; n=236 samples per donor with 1 image per donor), we used image augmentation techniques, 111 

such as random sized cropping, color shifting and linear transformations, to balance the data sets for 112 

each binary classification task. For all binary classifications, a 5-fold internal cross-validation was 113 

used, i.e. a train-test-split of 80:20. Cases that were used for model training were strictly separated 114 

from cases that were used for testing. In DL, determination of an optimal model cannot be done a 115 

priori, but rather has to be evaluated given the specific use case, data set, and model architecture. 116 

Hence, we evaluated six recently introduced DL architectures for computer vision including ResNet-117 

18/34/50/101/15239, ResNeXt-50_32x4d/101_32x8d40, Wide-ResNet-50/10141, DenseNet-118 

121/161/169/20142, ShuffleNet v2_x0_5/v2_x1_0243, and SqueezeNet v1.144. All DL models were pre-119 

trained on ImageNet data.45 The final architecture for each model was determined using automated 120 

hyperparameter optimization with the Optuna framework.46 DL models were implemented in Python 121 

using the PyTorch framework. Computations were performed using the high-performance computing 122 

(HPC) cluster of the TUD Dresden University of Technology. 123 

 124 

Performance evaluation  125 

Recall (syn.: sensitivity), precision (syn.: positive predictive value), and accuracy were used to 126 

evaluate classification performances. Recall is defined as the fraction of all positive predictions among 127 

all relevant events and precision is defined as the fraction of true positives among all positive 128 

predictions. Further, the area-under-the-curve (AUC) was determined for the receiver-operating-129 

characteristic (ROC). All metrics are reported for each binary classification for the internal test sets as 130 

well as for the external validation cohort with 95% confidence intervals. 131 

 132 
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Explainability of classifications via occlusion sensitivity maps 133 

To highlight network attention and thereby identify morphological cues the network used to delineate 134 

MDS, AML, and healthy donors, we used occlusion sensitivity maps (OSM). In OSM, random image 135 

areas are iteratively blocked from view of the CNN and classification performance is measured. If the 136 

blocked image area is highly relevant for accurate image-level classification, model performance will 137 

drop accordingly. This process is repeated for the entire image. Thus, image areas that are crucial for 138 

accurate predictions are highlighted so that morphologies that prompt the CNN classifier to predict a 139 

label can be evaluated and interpreted. 140 

 141 

Results 142 

End-to-end deep learning accurately delineates MDS from AML and healthy controls 143 

Baseline characteristics of the MDS patient cohort are shown in Table 1. We evaluated six different 144 

neural network architectures39–44 for binary classification tasks iteratively. For the distinction between 145 

MDS and healthy donors, we found Densenet-20142 to provide the highest classification performance, 146 

with an accuracy of 0.97791 and a corresponding ROCAUC of 0.9708 (Table 2; Figure 1A). With 147 

respect to delineating MDS from AML, the best results were obtained using the Squeezenet44 148 

architecture, resulting in an accuracy of 0.98072 and a ROCAUC of 0.9945 (Table 2; Figure 1B). 149 

Detailed information on metrics and 95% confidence intervals of the best performing models for each 150 

use-case is provided in Table 2. Individual model training on the HPC system for MDS vs. healthy 151 

donors and MDS vs. AML took 20 hours each. An external validation set encompassing 50 MDS 152 

patients was obtained from the Munich Leukemia Laboratory (MLL). Using our pre-trained models, 153 

we achieved an accuracy of 0.9972 with a corresponding ROCAUC of 0.9823 in distinguishing 154 

external MDS samples from healthy controls (Table 3, Figure 2A). With respect to delineating 155 

external MDS samples from AML, an accuracy of 0.92104 was achieved with a ROCAUC of 0.98552 156 

(Table 3, Figure 2B). 157 

 158 
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Explainable predictions via occlusion sensitivity maps 159 

In order to make results interpretable to cytomorphologists, we used OSM that iteratively blocks 160 

image areas from neural network evaluation and thus highlights (in red) image areas that are of high 161 

importance for accurate predictions. In a proof-of-concept fashion, we found OSM to be cell-specific, 162 

indicating that network attention is being focused on cells, rather than background or smudge. 163 

Network attention was focused on cells in granulopoiesis and erythropoiesis and on megakaryocytes 164 

(Figure 3). Interestingly, neural networks focused not only on signs of dysplasia, but also on cells we 165 

deemed morphologically inconspicuous. High attention was given to defined signs of dysplasia 166 

involving altered nuclear morphology such as chromatin clumping, dysfunctional segmentation, or 167 

double nuclei. However, at times, high network attention was also given to cells with no apparent 168 

dysplasia as per conventional definition,11,47 while network attention in these cells was also mainly 169 

focused on the nucleus, sometimes including the perinuclear zone. This indicates more intricate and 170 

subtle morphological alterations unquantifiable by human observers. However, other signs of 171 

dysplasia, such as hypogranulation, were disregarded by our model. This could possibly be either due 172 

to confidence saturation - meaning the model found enough reasons in a given field of view to 173 

confidently predict MDS without paying attention to all apparent signs of dysplasia (defined or not) - 174 

or low-ranking signs of dysplasia that were not learned in the training process due to their limited 175 

weight in making accurate predictions. 176 

 177 

Discussion 178 

Using end-to-end DL, we developed a software framework to distinguish between MDS, AML, and 179 

healthy controls with very high accuracy based on BMS from 2000 individual patients and bone 180 

marrow donors. Importantly, we have demonstrated that information abstraction even in MDS with 181 

often subtle morphologies is feasible using end-to-end learning, in contrast to recent studies in 182 

hematology that primarily rely on the generation of cell-level labels.17–28,48,49 Using the latter approach, 183 

a bottom-up system has to be devised where first thousands (usually hundreds of thousands) of labels 184 

are required to build a robust classifier, and second individual cell-level predictions have to be 185 

aggregated to generate a diagnosis-level prediction. Apart from being obviously time-consuming and 186 
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cost-ineffective, the generation of cell-level labels, i.e. the ground truth many classifiers in hematology 187 

currently are based on, is flawed due to substantial classification biases. For instance, Sasada et al.7 188 

evaluated divergence in cell classifications on 100,000 hematopoietic cells of 499 MDS patients. Up to 189 

eleven experienced observers evaluated each cell image, however, only 55.6% of classifications were 190 

found to match and especially low classification overlap was reported for dysplastic morphologies like 191 

hypo-granularity and Pseudo-Pelger-Huët anomaly.7 This bottleneck and pitfall of cell-level labeling 192 

can essentially be bypassed by an end-to-end approach, such as ours. Our ground truth labels are not 193 

derived from subjective observer judgment. Instead, they are established by routine diagnostics, 194 

including cytomorphology, histology, flow cytometry, cytogenetics, molecular genetics and clinical 195 

examination, which provide image-level ground truth labels that are much more robust. 196 

With respect to explainability, DL is often referred to as a ‘black box’.50 The often elusive decision-197 

making of neural networks substantially hampers interpretability and thus acceptance of DL models in 198 

such high-risk applications as cancer diagnostics. Using OSM (among other methods of 199 

explainability51) not only enables internal proof-of-concept, but also provides additional information to 200 

the human observer, as novel features that are important for prediction can be investigated that 201 

otherwise would elude the human eye. Interestingly, our classifiers showed high attention for nuclei 202 

not only of dysplastic cells, but also for cells that we did not deem to be morphologically suspicious 203 

for dysplasia. Potentially, this alludes to a digital biomarker in MDS distinct from classical signs of 204 

dysplasia. Future work will focus on correlating attention maps with genetic alterations and/or gene 205 

expression in MDS. While certain molecular alterations have already been linked to certain 206 

morphologies, such as mutated SF3B1 in MDS with ringsideroblasts52,53, CNNs can potentially be 207 

used to identify novel gene-morphology links. For instance, Brück et al.54 used CNNs on MDS bone 208 

marrow core biopsies to predict mutations of TET2, spliceosome genes and monosomy 7. Further, 209 

Nagata et al.55 previously demonstrated a link between MDS morphology (assessed by pathologists) 210 

and genomic profiles. This suggests a starting point for CNNs to link gene alterations with specific 211 

morphologies and may potentially lead to an image-based predictor of genetic profiles and 212 

consequentially patient risk and outcome. 213 
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Our study is limited by several factors. As is the case for most recent studies of computer vision in 214 

(hemato-)pathology, our analysis is based on retrospective data. While external validation confirmed 215 

high classification accuracy, prospective validation is still warranted. In our study, we differentiated 216 

only between AML, MDS, and healthy bone marrow donors in a binary way. Still, some dysplastic 217 

morphologies can also be present to a certain degree in non-malignant disorders56 such as congenital 218 

syndromes57, nutritional deficiencies58,59, infectious disease60, and drug- or toxin-mediated bone 219 

marrow damage61,62. To increase routine applicability of our DL framework, future work will also 220 

focus on acquiring image data from reactive and non-neoplastic specimen exhibiting bone marrow 221 

dysplasia in order to make our classifier more versatile and applicable in clinical routine. 222 

In summary, we have developed a DL framework trained on patient and donor samples, achieving 223 

high accuracies in our internal test set and external validation set in distinguishing between MDS, 224 

AML, and healthy bone marrow donors. 225 

 226 
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Tables 418 

Table 1. MDS patient characteristics 419 

Parameter  

N 463 

Age in years, median (IQR) 66 (18-89) 

Sex, %  

Male 59 

Female 41 

MDS type (WHO 2022), %  

MDS-5q 10 

with SF3B1 mutation 0.1 

with TP53 mutation 0.1 

MDS biTP53 0.2 

MDS SF3B1 8.8 

MDS-LB 29.3 

MDS, hypoplastic 2.7 

MDS-IB1 15.6 

MDS-IB2 20 

MDS with fibrosis 1.3 

MDS/MPN-RS-T 0.5 

CMML-1 1.2 

CMML-2 9.8 

IPSS-R, %  

Very low risk 6.4 

Low risk 21.6 

Intermediate risk 38.7 

High risk 22.3 

Very high risk 10.9 

Blood count  

WBC in GPt/l, median (IQR) 3.58 (0.57-91.1) 

Hb in g/dl, median (IQR) 9.9 (4.4-15.6) 

Plt in GPt/l, median (IQR) 96 (3-1531) 

PB blasts in %, median (IQR) 0 (0-15) 

BM blasts in %, median (IQR) 5.5 (0-26.0) 

BM bone marrow, CMML-1/2 chronic myelomonocytic leukemia subgroup 1/2, Hb hemoglobin, MDS 420 

myelodysplastic neoplasm, MDS biTP53 MDS with biallelic TP53 inactivation, MDS-5q MDS with 421 

low blasts and isolated 5q deletion, MDS-IB1/2 MDS with increased blasts 1/2, MDS-LB MDS with 422 

low blasts, MDS/MPN-RS-T myelodysplastic/myeloproliferative neoplasm with ring sideroblasts and 423 

thrombocytosis, MDS-SF3B1 MDS with low blasts and SF3B1 mutation, N number, PB peripheral 424 

blood, Plt platelet count, WBC white blood cell count.  425 
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Table 2. Test set performance for binary image-level classifications. 426 

  MDS vs. healthy donors MDS vs. AML 

DL architecture Densenet-201 Squeezenet v1.1 

Accuracy 
0.97791 

[0.9561 - 0.9977] 
0.98072 

[0.9686 - 0.9904] 

 MDS Healthy donors MDS AML 

Precision 
0.9973 

[0.9948 - 1.0] 
0.8547 

[0.7121 - 0.9791] 
0.97065 

[0.9637 - 0.9967] 
0.98118 

[0.9565 - 0.9904] 

 MDS Healthy donors MDS AML 

Recall 
0.9775 

[0.9507 - 0.9974] 
0.9787 

[0.9574 - 1.0] 
0.98180 

[0.9565 - 0.9906] 
0.98030 

[0.9616 - 0.9968] 

ROCAUC 
0.9708 

[0.9241 - 0.9893] 
0.9945 

[0.98824 - 0.9984] 

Brackets indicate 95% confidence intervals. AML acute myeloid leukemia, DL deep learning, MDS 427 

myelodysplastic neoplasm, ROCAUC area-under-the-curve of the receiver-operating-characteristic. 428 
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Table 3. Model performance on external validation set 429 

 MDS (MLL cohort) vs. healthy donors MDS (MLL cohort) vs. AML 

DL 
architecture 

Densenet-201 Squeezenet v1.1 

Accuracy 
0.9972 

[0.9811 - 0.9963] 
0.92104 

[0.8905 - 0.9567] 

 MDS Healthy MDS AML 

Precision 
0.9925 

[0.9892 - 1.0] 
0.9852 

[0.9787 - 0.9957] 
0.91418 

[0.8880 - 0.9398] 
0.94668 

[0.8245 - 1.0] 

 MDS Healthy MDS AML 

Recall 
0.9970 

[0.9940 - 0.9980] 
0.9938 

[0.9755 - 1.0] 
0.97516 

[0.9139 - 1.0] 
0.80834 

[0.7375 - 0.8667] 

ROCAUC 
0.9823 

[0.9593 - 0.9972] 
0.98552 

[0.9746 - 0.9951] 

Brackets indicate 95% confidence intervals. AML acute myeloid leukemia, MDS myelodysplastic 430 

neoplasm, MLL Munich Leukemia Laboratory, ROCAUC area-under-the-curve of the receiver-431 

operating-characteristic.  432 
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Figure Legends 433 

Figure 1: Performance of deep learning models for binary classifications delineating MDS, 434 

AML, and healthy donors. The receiver-operating characteristic (ROC) with the corresponding area-435 

under-the-curve (AUC) is depicted for the best performing models for each classification task. For 436 

MDS vs. healthy donors, best results were achieved with Densenet-201 (A). For MDS vs. AML, best 437 

results were achieved with Squeezenet (B). Internal cross-validation was performed with an 80:20 438 

split. Individual run performance (Fold 1-5; graphs in light blue, orange, green, red, and purple) as 439 

well as aggregate macro average performance (graph in dark blue) are reported. Only testing results 440 

are reported. 441 

 442 

Figure 2: External validation of deep learning models for binary classifications delineating 443 

MDS, AML, and healthy donors. The receiver-operating characteristic (ROC) with the 444 

corresponding area-under-the-curve (AUC) is depicted for the best performing models for the binary 445 

classifications MDS (MLL) vs. healthy donors (A) and MDS (MLL) vs. AML (B). Individual run 446 

performance (Fold 1-5; graphs in light blue, orange, green, red, and purple) as well as aggregate macro 447 

average performance (graph in dark blue) are reported. 448 

 449 

Figure 3: Occlusion Sensitivity Mapping (OSM) highlights network attention for explainable 450 

output interpretation. OSM iteratively blocks image areas from being evaluated by the deep learning 451 

network. If an image area is highly important for classification, the network’s performance will thus 452 

drop substantially in the given iteration. Image areas that are of high importance for correct 453 

classification can thereby be highlighted (high attention shown in red). A standard field of view of 454 

bone marrow smears from MDS patients is shown in A , C, and E. The corresponding OSM is 455 

displayed in B, D, and F, respectively. First, in a proof-of-concept fashion, the network focuses its 456 

attention on cells and specifically on nuclei. It does not consider background, noise or smudge as 457 

important for classification. Second, high attention is directed at erythropoietic and granulopoietic 458 

cells as well as megakaryocytes. 459 
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