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Abstract 12 

Introduction  13 

Identifying disease–target associations is a pivotal step in drug discovery, offering insights that guide 14 
the development and optimization of therapeutic interventions. Clinical trial data serves as a valuable 15 
source for inferring these associations. However, issues such as inconsistent data quality and limited 16 
interpretability pose significant challenges. To overcome these limitations, an integrated approach is 17 
required that consolidates evidence from diverse data sources to support the effective prioritization of 18 
biological targets for further research.  19 

 Methods  20 

We developed a comprehensive data integration and visualization pipeline to infer and evaluate 21 
associations between diseases and known and potential drug targets. This pipeline integrates clinical 22 
trial data with standardized metadata, providing an analytical workflow that enables the exploration of 23 
diseases linked to specific drug targets as well as facilitating the discovery of drug targets associated 24 
with specific diseases. The pipeline employs robust aggregation techniques to consolidate multivariate 25 
evidence from multiple studies, leveraging harmonized datasets to ensure consistency and reliability. 26 
Disease–target associations are systematically ranked and filtered using a rational scoring framework 27 
that assigns confidence scores derived from aggregated statistical metrics.  28 

 Results  29 

Our pipeline evaluates disease–target associations by linking protein-coding genes to diseases and 30 
incorporates a confidence assessment method based on aggregated evidence. Metrics such as 31 
meanRank scores are employed to prioritize associations, enabling researchers to focus on the most 32 
promising hypotheses. This systematic approach streamlines the identification and prioritization of 33 
biological targets, enhancing hypothesis generation and evidence-based decision-making.  34 

 Discussion  35 
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This innovative pipeline provides a scalable solution for hypothesis generation, scoring, and ranking 36 
in drug discovery. As an open-source tool, it is equipped with publicly available datasets and designed 37 
for ease of use by researchers. The platform empowers scientists to make data-driven decisions in the 38 
prioritization of biological targets, facilitating the discovery of novel therapeutic opportunities.  39 

   40 

1 Introduction 41 

ClinicalTrials.gov, managed by the U.S. National Library of Medicine (NLM), is a critical public 42 
repository that enhances transparency and accessibility in biomedical research. Established in 2000 43 
under the Food and Drug Administration Modernization Act (FDAMA) of 1997, it serves as a 44 
centralized platform for registering clinical studies and disseminating trial results, addressing 45 
challenges related to data accessibility and reliability (Zarin et al., 2005; Tse et al., 2018). By 46 
supporting clinical trial registration, the database provides researchers, policymakers, and the public 47 
with comprehensive information about study designs, methodologies, and outcomes. Adherence to 48 
global reporting requirements, including those mandated by the International Committee of Medical 49 
Journal Editors (ICMJE) and the World Health Organization (WHO), ensures standardized practices 50 
across the research community (Laine et al., 2007).  ClinicalTrials.gov aligns with FAIR (Findable, 51 
Accessible, Interoperable, and Reusable) principles (Wilkinson et al., 2016), employing standardized 52 
data formats to enhance interoperability across platforms and disciplines. It curates metadata, 53 
harmonizes submissions, and implements consistent reporting standards, addressing challenges such 54 
as incomplete reporting, variability in trial methodologies, and inconsistencies in diagnostic criteria 55 
(Riveros et al., 2013). The platform supports centralized trial registration and compliance with legal 56 
and ethical mandates for transparency (Zarin et al., 2011). Its study results database enables researchers 57 
to submit and access summary results, fostering evidence-based decision-making and mitigating 58 
publication bias through the inclusion of unpublished trial data (Prayle et al., 2012). Furthermore, 59 
integration with global registries, such as the WHO’s International Clinical Trials Registry Platform 60 
(ICTRP), promotes harmonization and accessibility of clinical research data worldwide. Despite its 61 
significant contributions, ClinicalTrials.gov faces challenges including variations in reporting quality, 62 
delays in result submissions, and inconsistencies in terminology (DeVito et al., 2020). The platform 63 
continues to evolve by introducing advanced data validation tools, promoting adherence to global 64 
reporting standards, and collaborating with stakeholders to refine metadata frameworks and bridge 65 
reporting gaps. As a robust and scalable platform for managing clinical trial data, ClinicalTrials.gov 66 
fosters transparency and enhances research reproducibility while empowering the scientific community 67 
and improving public trust.  68 

The Database for Aggregate Analysis of ClinicalTrials.gov (AACT) was introduced to address 69 
challenges in analyzing aggregate data from ClinicalTrials.gov, such as inconsistent data structures, 70 
variability in nomenclature, and evolving data collection practices. Its purpose is to enhance the 71 
usability of ClinicalTrials.gov data by consolidating and normalizing information, enabling more 72 
effective aggregate analysis, policy studies, and systematic evaluations of clinical trial attributes and 73 
trends (Tasneem et al., 2012). AACT transforms raw clinical trial data into a structured, enriched, and 74 
analyzable format, integrating Medical Subject Headings (MeSH) terms and advanced curation 75 
techniques to ensure consistency and usability (Tasneem et al., 2012). By enabling systematic reviews, 76 
policy analysis, and diverse applications, AACT plays a pivotal role in evaluating global trial trends, 77 
aligning with FAIR principles, and driving innovation in clinical research. Despite challenges like 78 
reliance on MeSH hierarchies and limited global representation, ongoing advancements in ontology 79 
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integration and interoperability aim to position AACT as an indispensable resource for the future of 80 
clinical trial analysis. 81 

 82 

The core principle of pharmacology is that drugs, whether small molecules or biologics are designed 83 
to specifically interact with target molecules, often proteins, to modulate physiological processes and 84 
influence disease progression (Moffat et al., 2017; Scannell et al., 2012). Advanced methods in the 85 
pharmaceutical industry facilitate the discovery and optimization of these drugs, addressing challenges 86 
in efficacy, dosing, and safety for market approval (Hay et al., 2014). However, analysis of drug 87 
development pipelines reveals that insufficient efficacy, particularly in late-stage clinical trials, is a 88 
primary cause of failure, often due to inadequate validation of the target's role in disease physiology 89 
(Ledford, 2011; Liu et al., 2021). This highlights the need for rigorous evidence supporting target-90 
disease associations to improve success rates and minimize costly late-stage failures (Dahlin et al., 91 
2015). Traditionally, drug targets were selected based on experimental evidence linking their 92 
modulation to disease outcomes (Muller & Milton, 2012). Recent advancements in high-throughput 93 
technologies, such as sequencing, genotyping, and mass spectrometry, have enhanced our ability to 94 
characterize biological samples, uncovering new opportunities to understand disease mechanisms 95 
(Vincent et al., 2015; Huang et al., 2011). Furthermore, the growing repository of clinical trial data, 96 
alongside extensive literature, serves as a valuable resource for identifying targets and generating 97 
hypotheses to inform the drug discovery process (Lysenko et al., 2018). 98 

Here, we present TICTAC (Target Illumination Clinical Trial Analytics with Cheminformatics), an 99 
application designed to illuminate understudied drug targets by leveraging aggregated data from 100 
AACT. TICTAC enables ranking, filtering, and interpretation of inferred disease–target associations, 101 
assigning scores derived from aggregated evidence linking diseases to protein-coding genes mapped 102 
from drugs. This study outlines the analytical framework and interpretability of TICTAC, addressing 103 
statistical and semantic challenges. TICTAC demonstrates the application of data science in achieving 104 
scientific consensus and improving interpretability.   The validation of disease-target associations is 105 
critical for ensuring the accuracy and reliability of biomedical datasets. This study also presents a 106 
methodology for validating the TICTAC disease-gene associations against MedlineGenomics 107 
(formerly Genetics Home Reference) by leveraging standardized disease terminologies, such as 108 
Disease Ontology IDs (DOIDs) (Schriml et al., 2022) and UMLS Concept Unique Identifiers (CUIs) 109 
(McInnes et al., 2007). By comparing disease-target associations across these datasets, the aim is to 110 
quantify overlap, identify areas of divergence, and provide insights into the consistency and reliability 111 
of the two data sources.  112 

 113 

2 Material & Methods 114 

2.1 AACT Data Preprocessing  115 

The initial step in our methodology involved applying NextMove LeadMine (version 3.14.1). 116 
LeadMine, developed by NextMove Software, is a commercial text mining tool that identifies and 117 
annotates chemical entities, protein targets, genes, diseases, species, and more using curated grammars 118 
and dictionaries with advanced capabilities like correcting misspelled terms with CaffeineFix 119 
technology and supports chemical entity recognition in multiple languages, including Chinese and 120 
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Japanese(Lowe & Sayle, 2015). This tool was utilized to analyze intervention names and study 121 
descriptions retrieved from ClinicalTrials.gov, enabling the identification of unique drug names and 122 
their corresponding SMILES (Simplified Molecular Input Line Entry System) representations. 123 
However, many terms encountered, such as "placebo," "test product," "medication," and 124 
"chemotherapy," lacked specific structural chemical information. For disease-named entity recognition 125 
(NER), we leveraged the JensenLab Tagger (Cook & Jensen, 2019). The JensenLab Tagger is a 126 
dictionary-based NER tool designed to identify and annotate entities such as genes, proteins, species, 127 
diseases, and other biomedical terms within text. It has been instrumental in text-mining applications, 128 
including extracting protein-protein interactions and annotating biomedical literature. The source code 129 
is available on GitHub: https://github.com/larsjuhljensen/tagger. This tool was applied to trial 130 
descriptions to identify and categorize diseases, resolving disease mentions to standardized terms in 131 
the Disease Ontology (DOID). This enhanced the consistency and granularity of disease data across 132 
sources. Subsequently, compound-target mapping was conducted to identify potential drug targets. 133 
Chemical entities were mapped to PubChem(Kim et al., 2021) using the PUG REST API with 134 
SMILES-based exact search and to ChEMBL(Zdrazil et al., 2024) using REST API queries via 135 
InChIKey. Biological targets were then mapped from ChEMBL bioassays and linked to the Integrated 136 
Disease-Target Knowledgebase (IDG-TCRD/Pharos)(Sheils et al., 2021) using UniProt IDs (The 137 
UniProt Consortium, 2023). This systematic mapping established relationships between chemical 138 
entities, their biological targets, and associated diseases, forming a foundation for data aggregation 139 
efforts.  140 

Our dataset, extracted from the Aggregate Analysis of ClinicalTrials.gov (AACT) database as of 141 
September 30, 2024, comprised 507,584 studies, each identified by a unique NCT_ID. These studies 142 
referenced 901,776 publications, associated with 632,153 PubMed IDs (PMIDs) and 127,455 143 
RESULT-type references, spanning 170,697 unique NCT_IDs. For drug-related data, 133,760 unique 144 
drug names were linked to 365,878 unique intervention IDs. It is worth noting that individual NCT_IDs 145 
often referenced multiple drugs, with synonymous naming conventions contributing to challenges in 146 
precise drug identification.  147 

Our analysis focused exclusively on interventional drug studies, excluding observational studies. Of 148 
the total dataset, 388,958 (76.6%) studies were classified as interventional, with 177,780 designated as 149 
interventional drug studies, each linked to a unique NCT_ID. To refine the chemical data, NextMove 150 
LeadMine was used to resolve drug names into standardized chemical structures via SMILES notation. 151 
This process identified 6,595 unique SMILES associated with 23,982 unique intervention IDs and 152 
19,662 unique drug names. The resulting dataset included 901,776 study references and 632,153 153 
PubMed IDs, offering a robust basis for linking identified entities in clinical trial data to biomedical 154 
literature.  155 

  156 

2.2 Computations for Disease-Target Associations  157 

nStudyNewness  158 

The nStudyNewness metric quantifies the recency-weighted relevance of clinical studies associated 159 
with each disease-gene pair, reflecting the higher impact of newer studies. This is achieved using an 160 
exponential decay function that prioritizes recent studies.  161 

      wi = 2e-ti/h 162 
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where: 163 

● 𝑡! is the age of the study in years, 164 
● h is the half-life determining the decay rate (h = 5 years for 165 

studies ≤ 10 years old and h=10 years for older studies). 166 

The total nStudyNewness for a disease-target pair is: 167 

nStudyNewness = ∑"#$% (𝑤! 	) 168 

where N is the total number of studies associated with the disease-target pair. 169 

 170 

nPublicationWeighted 171 

The nPublicationWeighted metric assigns weights to publications based on their reference type, 172 
accounting for their varying levels of impact on disease-target associations. For each publication i 173 
with reference type 𝑟!, the weight 𝑤! is defined as: 174 

● 𝑤!=1.0: If the publication reference type 𝑟! is a Result (denoted by 0.0), it is given the highest 175 
weight. 176 

● 𝑤!=0.5: If 𝑟! is a Background reference (denoted by 1.0), it is assigned a medium weight. 177 
● 𝑤!=0.25: If 𝑟! is a Derived reference (denoted by 2.0), it is given the lowest weight. 178 

Ranking Associations  179 
To facilitate the prioritization of disease-gene associations, rankings are computed based on multiple 180 
metrics, culminating in an overall score.  181 

1. Rank Computation: For each metric (nDiseases, nDrug, nStud, nPub, nStudyNewness, 182 
nPublicationWeighted), the rank  𝑅&,( for disease-target pair j is computed in descending 183 
order:  184 

𝑅&,( =  Rank(m,j) 185 

2. Mean Rank: The average rank across all metrics for a disease-target pair j is:  186 

meanRankj = %
)
∑)#$% 𝑅&,(  187 

 where K is the total number of metrics. 188 

3. Percentile Rank: Percentile rank is calculated to normalize the meanRank values:  189 

    percentileMeanRankj = !
"

 Rank(meanRankj  x 100 190 
where N is the total number of disease-target pairs.  191 

4. Mean Rank Score: The final mean rank score, providing a scale from 0 to 100, is:  192 

meanRankScorej =100 − (percentileMeanRankj) 193 
 194 
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This methodology ensures inferred disease-target associations are systematically ranked based on 195 
multiple evidence metrics, with the highest meanRankScore indicating the most promising targets for 196 
further research and development.  197 

2.3 Validation Method  198 

The validation methodology included key steps to map and compare disease-target associations 199 
between TICTAC and MedlinePlus Genetics (MedlineGenomics) (U.S. National Library of Medicine, 200 
n.d). The mapping from Disease Ontology was processed to link DOIDs with UMLS CUIs and validate 201 
data integrity through unique counts. MedlinePlus genetics conditions were formatted to align with 202 
these mappings, ensuring compatibility and accuracy. TICTAC disease-target associations were 203 
similarly prepared by standardizing identifiers, refining data fields, and verifying counts of key entities. 204 
Common CUIs between datasets were identified, and their corresponding associations were extracted 205 
for comparison. Overlaps between the datasets were evaluated by analyzing shared associations, with 206 
the percentage of MedlinePlus Genetics associations present in TICTAC calculated. The validation 207 
assessed dataset integrity, overlap in conditions (common CUIs), and overlap in disease-target 208 
associations to measure alignment and reliability.  209 

 210 

3 Results 211 

3.1 The TICTAC Application 212 

TICTAC supports drug target identification by scoring and ranking associations between drug targets 213 
(protein-coding genes) and diseases. The TICTAC workflow aggregates and filters inferred clinical 214 
trial findings to generate actionable insights. These insights can be leveraged to enhance target 215 
prioritization through interactive visualizations and hit lists (Fig. 2), enabling users to identify the 216 
strongest, evidence-supported associations. 217 

Hits in the TICTAC dashboard are ranked by meanRankScore, as described in Section 2. The 218 
scatterplot presents evidence (meanRankScore) on the X-axis versus publication count (nPub) on the 219 
Y-axis, visually representing disease-target associations. The workflow allows users to filter results 220 
using query parameters such as disease terms (e.g., "type 2 diabetes/insulin resistance," DOID:9352) 221 
and gene symbols. Data points in the scatterplot are colored by target development level (TDL), a 222 
knowledge-based classification system that categorizes human proteins into four distinct groups (Oprea 223 
et al., 2018) as Tclin (Santos et al., 2017), Tchem, Tbio, and Tdark for the comprehensiveness of 224 
exploration from clinical, chemical, and biological perspectives. This framework enables the 225 
prioritization of disease-target pairs based on their evidence levels and functional classifications, 226 
facilitating drug discovery efforts and identifying novel targets for further research. 227 

 228 

3.2 Agreement-Based Validation of TICTAC and MedlinePlus Genetics Datasets 229 

The agreement-based validation process revealed that the TICTAC dataset includes 2,243 unique 230 
Disease Ontology IDs (DOIDs) and 2,022 unique gene symbols, while the MedlinePlus Genetics 231 
dataset contains 1,216 conditions mapped to Concept Unique Identifiers (CUIs) and 2,142 unique 232 
CUIs. A total of 193 CUIs were shared between the two datasets, allowing for a comparative analysis 233 
of associations. For the shared CUIs, the TICTAC dataset encompassed 63,569 associations involving 234 
1,804 gene symbols, whereas the MedlinePlus Genetics dataset comprised 1,247 associations involving 235 
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967 gene symbols. Notably, 136 associations overlapped between the two datasets, accounting for 236 
10.91% of the MedlinePlus Genetics associations. This indicates that the TICTAC dataset contains a 237 
high proportion of novel associations, with an estimated 89% of associations being unique to TICTAC. 238 
These results highlight the potential of the TICTAC dataset to contribute significant novel insights, 239 
while also demonstrating consistency between the datasets for a subset of shared associations. This 240 
agreement-based approach underscores the complementary nature of these resources and the value of 241 
TICTAC for expanding the landscape of disease-target associations for further investigation. 242 

 243 

3.3 Using TICTAC for Drug Target Illumination 244 

3.3.1 Exploring Understudied Genes in Type2 Diabetes/Insulin Resistance: Integrating Metrics 245 
for Target Discovery Potential 246 

Fig. 3 highlights examples of understudied (Tbio) genes associated with "type 2 diabetes/insulin 247 
resistance" within the TICTAC framework. The analysis focuses on genes classified as Tbio, indicating 248 
they are less characterized and have limited research attention compared to more ‘established targets’. 249 
The table provides key metrics for each gene-disease pair, including the number of diseases 250 
(nDiseases), drugs (nDrug), studies (nStud), and publications (nPub), along with evidence 251 
prioritization scores such as nStudyNewness and meanRankScore. These metrics collectively illustrate 252 
the relative evidence strength and research activity for each gene-disease pair. The analysis reveals 253 
significant variability in the evidence supporting these genes. For instance, some genes, such as 254 
UGT1A10 (41 publications, meanRankScore = 97.87784), have substantial supporting evidence, while 255 
others, such as COQ8A (0 publications, meanRankScore = 46.33545), remain less explored in the 256 
literature. Importantly, all listed genes have some level of therapeutic association, as reflected in the 257 
nDrug column, which indicates the number of drugs linked to each gene. For example, MAP4K4 and 258 
RAC1 are linked to drugs such as Sorafenib and Dasatinib, while other genes, such as CISD2, are 259 
associated with broader therapeutic contexts. The nStudyNewness metric emphasizes the relevance of 260 
recent evidence for these gene-disease pairs, with genes like CISD2 demonstrating strong support from 261 
newer studies and achieving a high meanRankScore (98.92213). Such metrics underscore the potential 262 
for these Tbio genes to serve as new therapeutic targets for metabolic disorders. Genes with high 263 
meanRankScore and robust evidence, such as CISD2, may warrant further investigation in drug 264 
discovery efforts. Conversely, genes with minimal publications, such as COQ8A, represent 265 
opportunities for expanding research into their roles in type 2 diabetes and insulin resistance. 266 
 267 
Overall, this analysis of Tbio genes in the context of type 2 diabetes/insulin resistance highlights the 268 
utility of TICTAC in identifying and prioritizing understudied targets for further research and 269 
therapeutic development. By integrating metrics such as meanRankScore, nPub, and nStudyNewness, 270 
the framework enables systematic exploration of gene-disease associations, providing actionable 271 
insights for drug discovery. 272 
 273 
3.3.2 Integrating Evidence for Disease-Target Associations: Insights from the TICTAC 274 

Provenance Dashboard 275 

Figure 4 presents the TICTAC Provenance Dashboard, which provides detailed reference data 276 
supporting the association between the MCR4 (Melanocortin receptor 4) gene and type 2 277 
diabetes/insulin resistance (DOID:9352). This dashboard aggregates references from clinical trials and 278 
publications, offering comprehensive insights into the evidence linking the gene to the disease. The 279 
framework for the provenance of this association includes several key elements. The nct_id column 280 
lists unique identifiers for clinical trials, while the reference_type column categorizes evidence as 281 
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BACKGROUND (contextual information), RESULT (direct findings), or DERIVED (secondary 282 
findings). The pmid column includes PubMed IDs linking to corresponding publications, and the 283 
citation column provides bibliographic details such as titles, authors, journals, and publication years. 284 
The results reveal a mix of evidence types. BACKGROUND references highlight physiological 285 
mechanisms like insulin sensitivity and glucose metabolism foundational to type 2 diabetes research. 286 
RESULT references contribute direct findings, such as variability in cyclooxygenase inhibition in 287 
aspirin studies, while DERIVED references explore broader evidence, such as anti-psychotropic 288 
medication usage. For example, Larsen et al. (2012) offer insights into diabetes mechanisms. 289 

 290 

Sodium-glucose cotransporter 2 (SGLT2) inhibitors have emerged as a novel therapeutic approach for 291 
type 2 diabetes, particularly in improving cardiovascular outcomes. These inhibitors reduce myocardial 292 
glucose uptake by up to 57%, inducing metabolic shifts toward fatty acid utilization (Lauritsen et al., 293 
2021). Additionally, they lower myocardial blood flow (MBF) by approximately 13%, potentially due 294 
to diuretic effects that reduce blood pressure and alter renal hemodynamics (Kimura, 2016). While 295 
SGLT2 inhibitors significantly mitigate glucose uptake and blood flow, their broader cardioprotective 296 
effects likely involve mechanisms beyond these metrics. For example, they do not notably alter 297 
myocardial oxygen consumption, suggesting additional pathways are at play (Lauritsen et al., 2021; 298 
Huang et al., 2023). Despite these complexities, improved cardiac function and reduced heart failure 299 
risk highlight their therapeutic potential (Huang et al., 2023). A strong hypothesis thus emerges: 300 
SGLT2 inhibition improves cardiac outcomes in individuals with type 2 diabetes by inducing metabolic 301 
shifts, reducing myocardial blood flow, and enhancing cardiac efficiency. This framework underscores 302 
the importance of integrating diverse evidence types to establish robust disease-target associations. 303 
Direct access to clinical trial identifiers and PubMed references enhances reproducibility and 304 
credibility, making the TICTAC Provenance Dashboard a valuable resource for researchers exploring 305 
therapeutic targets in type 2 diabetes. 306 

3.3.3 Mapping Disease-Target Associations and Evidence in Lung Cancer Research 307 

Figures 5 and 6 provide a comprehensive view of gene-disease associations related to lung cancer 308 
(DOID:1324), focusing on potential gene targets and the provenance of specific evidence linking the 309 
PGR (Progesterone receptor, UniProt: P06401) gene to the disease. 310 

 311 

Figure 5 presents the TICTAC Disease-Target Dashboard, which highlights key metrics for genes 312 
associated with lung cancer. The dashboard includes metrics such as the number of diseases 313 
(nDiseases), drugs (nDrug), studies (nStud), and publications (nPub) related to each gene-disease pair. 314 
Additional evidence metrics such as nStudyNewness, which prioritizes recent studies, and 315 
PublicationWeight, which accounts for the relevance of evidence, are also shown. The meanRankScore 316 
provides a composite metric ranking associations based on the strength and quality of evidence. For 317 
each gene, the dashboard also lists the associated drugs and Target Development Level (TDL), a 318 
classification reflecting the druggability of the gene.Notable findings include highly ranked genes such 319 
as ADK (meanRankScore = 97.73276) and BDKRB2 (meanRankScore = 95.97179), which are 320 
supported by robust evidence from multiple studies, publications, and associated drugs. 321 
Therapeutically, drugs such as Abemaciclib, 5-Fluorouracil, and Carboplatin are frequently linked to 322 
the listed genes, emphasizing their relevance to lung cancer treatment. The genes in this dashboard are 323 
classified as Tchem, indicating their known potential as druggable targets, making this dashboard a 324 
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critical resource for prioritizing genes with strong evidence for further exploration in lung cancer 325 
research and therapeutic development. 326 

 327 

Figure 6 provides detailed evidence provenance for the association between the PGR (Progesterone 328 
receptor) gene and lung cancer. The TICTAC Provenance Dashboard aggregates references from 329 
clinical trials and publications to trace the supporting evidence. It includes clinical trial identifiers 330 
(nct_id), 2978 reference types categorized as RESULT for direct findings or BACKGROUND for 331 
supporting evidence, PubMed IDs (pmid), and detailed citations for each referenced study. The 332 
provenance dashboard reveals that the association between PGR and lung cancer is supported by both 333 
direct results and background studies. These references detail the role of therapies such as carboplatin 334 
in treating lung cancer, providing clinical context for PGR’s relevance. This detailed provenance 335 
ensures the traceability of the data and supports further exploration of PGR in lung cancer research. 336 

 337 

Taken together, Figures 5 and 6 illustrate the utility of TICTAC in mapping disease-target associations 338 
and integrating comprehensive evidence provenance. The TICTAC Disease-Target Dashboard enables 339 
the identification of high-priority gene targets and associated drugs, while the Provenance Dashboard 340 
provides detailed and traceable evidence for specific genes like PGR. This combination of tools allows 341 
for a robust prioritization framework, supporting translational research and advancing the discovery of 342 
potential therapeutic targets. 343 

 344 

4 Discussion 345 

4.1 Illuminating Knowledge Gaps in Targets  346 

The National Institutes of Health's (NIH) Illuminating the Druggable Genome (IDG) program is 347 
dedicated to advancing our understanding of understudied proteins within pivotal druggable families, 348 
including G-protein-coupled receptors (GPCRs), ion channels, and protein kinases (National Institutes 349 
of Health, 2024). By elucidating the roles of these proteins in health and disease, the program seeks to 350 
identify novel therapeutic targets and foster innovative drug development strategies.  351 

 352 

For a detailed exploration of the objectives and methodologies of the IDG program, refer to 353 
"Unexplored therapeutic opportunities in the human genome" by Oprea et al. (Oprea et al., 2018). 354 
TICTAC aligns seamlessly with this mission, focusing on evaluating clinical trial evidence to reveal 355 
disease–target associations. Unlike other platforms, such as Open Targets (Ghoussaini et al., 2021; 356 
Ochoa et al., 2021), which leverage a blend of data, supervised machine learning, and external sources, 357 
TICTAC strictly aggregates evidence from the AACT database. This approach minimizes biases 358 
inherent in curated training data and domain-specific assumptions, offering interpretable results that 359 
are grounded in experimental provenance and reproducible methodologies. By integrating its 360 
automated, sustainable workflow into resources such as the Pharos portal (Nguyen et al., 2017; Sheils 361 
et al., 2021), TICTAC complements existing tools for target illumination. While Open Targets supports 362 
scientists by enhancing associations with external validation, TICTAC prioritizes the rigor of direct 363 
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clinical trial data. This makes it particularly suited for downstream users who require traceable, 364 
transparent insights into disease–target relationships.  365 

 366 

4.2 Transforming Data into Actionable Knowledge  367 

In genomics and drug discovery, where data overload is a persistent challenge, transforming raw 368 
information into actionable knowledge remains critical. Specialized tools aid in uncovering insights, 369 
but the interpretation and integration of these findings often demand expertise that non-specialists may 370 
lack. TICTAC addresses this gap by introducing a layer of abstraction that is not only accessible but 371 
also directly aligned with the objectives of drug discovery scientists. TICTAC’s design philosophy 372 
rests on simplicity and scientific axioms, such as prioritizing evidence from independent confirmatory 373 
results (Yang et al., 2021). This emphasis ensures the interpretability of findings and highlights clinical 374 
trial results as a cornerstone of evidence-based reasoning. While correlation does not equate to 375 
causation, it builds a foundation of plausibility, fostering hypothesis generation and prioritization. With 376 
this context in mind, TICTAC provides a pragmatic, rational framework for ranking research 377 
hypotheses. Clinical trials are often influenced by experimental noise and systematic uncertainties 378 
stemming from factors like the COVID-19 pandemic's impact on follow-ups (Servick, 2020), 379 
incomplete data from missing participants (Verzilli & Carpenter, 2002), and biases in endpoint 380 
evaluations (Chen et al., 2020). Ambiguities in defining study populations and inadequate reporting of 381 
sample sizes further complicate result interpretation (Frampton & Shepherd, 2008). Addressing these 382 
challenges through improved methodologies and reporting standards is essential to enhance the validity 383 
and reliability of trial outcomes. While acknowledging that experimental noise and systematic 384 
uncertainties can accompany clinical trial data, the approach ensures that aggregated insights are 385 
meaningful and usable for non-specialist stakeholders in drug development.  386 

 387 

4.3 Designing for Seamless Integration and Confidence 388 

Biomedical knowledge discovery thrives on the integration of diverse, heterogeneous data sources, 389 
reflecting the inherent complexity of the field. However, challenges related to provenance, 390 
interpretability, and confidence frequently undermine these efforts. TICTAC addresses these concerns 391 
by employing simple yet robust metrics, such as unbiased meanRank scores, to evaluate and rank 392 
disease–target associations. One of TICTAC’s key innovations lies in its transparent approach to 393 
confidence assessment. By restricting provenance to the linked publications, the platform ensures 394 
enhanced interpretability and traceability. This minimalist yet methodical approach reduces the 395 
accumulation of errors and confidence decay that often plague systems integrating multiple, 396 
heterogeneous data sources. Continuous confidence scores allow for dynamic algorithmic weighting 397 
and filtering, supporting downstream applications that require both precision and flexibility. The clear 398 
use of standardized identifiers and semantics strengthens integration across biomedical resources, 399 
paving the way for consistent cross-platform compatibility. Figure 7 illustrates TICTAC’s workflow 400 
and interfaces, underscoring its defined role in disease–target discovery pipelines. With its focus on 401 
transparency, interpretability, and confidence, TICTAC offers a practical and scientifically rigorous 402 
tool for advancing biomedical research and drug discovery.  403 

 404 

4.4 Validation 405 
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The validation process revealed a 10.91% overlap between MedlineGenomics and TICTAC disease-406 
gene associations for the 193 shared CUIs, indicating some level of consistency while also highlighting 407 
significant differences between the datasets. These discrepancies arise from variations in data 408 
collection methods, terminological standards, and the granularity of gene-disease associations. The low 409 
percentage of overlap underscores the need for improved standardization in disease-gene datasets. This 410 
process emphasized the value of standardized identifiers such as DOIDs and CUIs for aligning and 411 
comparing biomedical data. It also highlighted potential gaps in data completeness or detail, which 412 
could affect the utility of these datasets in downstream research, and reinforced the importance of 413 
integrating multiple sources to achieve a comprehensive understanding of disease-gene relationships.  414 

 415 

5 Conclusion 416 

The conventional "one gene, one function, one trait" paradigm, as critiqued by Visscher et al. (2017), 417 
is no longer adequate for understanding the intricate mechanisms underlying diseases. This shift in 418 
understanding highlights the need for advanced tools that can navigate the multifaceted nature of 419 
genetic and clinical data, enabling researchers to uncover meaningful relationships between genes, 420 
traits, and diseases (Yang et al., 2021). Modern biomedical research demands tools that move beyond 421 
oversimplifications to provide actionable insights grounded in real-world data. TICTAC rises to this 422 
challenge by offering a dynamic platform tailored for drug target hypothesis generation and refinement, 423 
leveraging clinical trial data and metadata to bridge the gap between data complexity and practical 424 
application. Aligned with the increasing focus on interpretable machine learning and explainable 425 
artificial intelligence (XAI) (Adadi & Berrada, 2018), TICTAC employs transparent, evidence-driven 426 
methodologies to elucidate disease–target associations. Its foundation rests solely on clinical trial data 427 
and metadata, supported by rational, intuitive evidence metrics, and underpinned by a robust open-428 
source pipeline designed for continuous improvement and scalability. TICTAC’s adaptability allows 429 
it to function either as a standalone resource or as a component integrated with other analytical 430 
interfaces. By simplifying the exploration of complex clinical data, TICTAC contributes meaningfully 431 
to the identification and prioritization of drug targets, offering a practical and evolving tool for 432 
advancing biomedical research and translational science.  433 
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Fig. 1. Clinical Trial study counts by year indicating growth and trends  592 
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Fig. 2. TICTAC dashboard. The image displays genes currently associated with the disease 'type 2 610 
diabetes/insulin resistance' (DOID:9352)  611 
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Fig. 3. Examples of understudied (Tbio) genes for disease 'type 2 diabetes/insulin resistance' in 631 
TICTAC  632 
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Fig. 4. Provenance for association between gene MCR4 (Melanocortin receptor 4  647 
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) and disease ' type 2 diabetes/insulin resistance'.  648 
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Fig. 5. TICTAC dashboard, displaying a plot of genes associated with disease 'lung cancer' 664 
(DOID:1324)  665 
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Fig. 6. Provenance for association between PGR gene (Uniprot: P06401) ' Progesterone receptor' 676 
and disease 'lung cancer'  677 
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Fig 7: TICTAC data sources and interfaces. TICTAC integrates clinical trial data from the AACT db 690 
and cross referenced other sources to rank disease–target associations. These associations can be 691 
accessed through the TICTAC github repository.   692 
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