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Abstract 

Though depression is prevalent in patients with cerebrovascular dysfunction, screening for 
symptoms is not routine and is often limited via subjective patient-reported surveys. Using 
smartphone sensors, we sought to evaluate the performance of objective behavior measures and 
self-report surveys at predicting depression severity in patients with cerebrovascular syndromes. 
Among enrolled participants (n = 54), 35 patients with ischemic stroke or transient ischemic 
attack symptoms were monitored in real-world settings using the Beiwe app for 8 or more weeks 
with adequate compliance.  Depression symptoms were tracked via weekly Patient Health 
Questionnaire-8 (PHQ-8) surveys, monthly personnel-administered Montgomery-Asberg 
Depression Rating Scale (MADRS) assessments, and passive smartphone sensors. Across weeks, 
several passive measures were significantly associated with PHQ-8 scores. Personnel-assessed 
depression severity moderately correlated with self-reported scores. To estimate MADRS, we 
applied linear mixed models using passive data and PHQ-8 scores. Using antecedent PHQ-8 
scores and demographic data, average root-mean-squared error (RMSE) for depression severity 
prediction across models was 1.54 with accelerometer data, 1.40 also including global position 
system (GPS) data, and 1.33 also including PHQ-8 open survey duration. Though future research 
should validate this decentralized approach in a larger cohort, real-world monitoring with active 
and passive data may triage cerebrovascular patients for efficient depression screening and 
provide novel mobility and response time outcome measures.  

 

Keywords: cerebrovascular dysfunction, stroke, transient ischemic attack, depression, 
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Introduction 

Post-stroke depression (PSD) is well established as a risk factor for mortality, poor functional 
recovery, and subsequent stroke or cerebrovascular disease (CeVD) diagnoses [1]. Although 
roughly 1/3 of stroke survivors develop PSD, screening for PSD is not routine. As such, the exact 
prevalence of PSD remains unknown [2].  While PSD symptoms may initially improve in the 
first few months, research suggests the majority experience persistent depression in the 
subsequent years, a period when regular depression screening is not common [3]. Differential 
diagnosis for PSD is complicated by characteristic post-stroke fatigue as well as the emergence 
of neurologic deficits, like communication and cognitive difficulties, that can bias self-reported 
assessments [4]. The traditional classification of stroke as a circulatory system disease has made 
it challenging to determine whether the stroke-associated depressive symptoms are a predictor or 
a cause of the condition. Recently, the ICD-11’s reclassification of stroke as a neurological 
disorder has sparked interest in studying populations with overlapping symptoms, aiming to 
advance from exploratory research to rigorous scientific investigations with real-world clinical 
applications [5]. 

Prior to ICD-11, the majority of research conducted in the intersection of stroke and depression 
focused exclusively on major stroke cases, with little attention paid to transient ischemic attack 
(TIA) or neurology admissions for conditions mimicking cerebrovascular ischemia, conditions 
also linked with depressive symptoms [6, 4]. The wide range of symptoms associated with 
individual PSD cases as well as non-depressive transient ischemic symptoms challenges the 
designation of a robust tool for PSD diagnosis and grading. Despite the introduction of several 
tools for this purpose in the past years, they are not routinely used in practice [7, 8].  

Though clinical trials are the key to advancing neurorecovery after stroke, their robust 
implementation is hindered by insufficient requisite infrastructures, including clinicians, 
scientists, data analysts, and study staff as well as participant loss to follow-up due to the travel 
demands for on-site visits [9, 10]. Historically, the identification of PSD has relied upon 
observation by clinical staff, particularly psychiatrists or neurologists with specialized training in 
psychiatric conditions in stroke patients; however, a recent meta-analysis found that the standard 
Patient Health Questionnaire (PHQ-9) is an effective screening tool for PSD, helping triage 
patients for further diagnostic assessment [11, 12]. Additionally, the PHQ-8, identical to PHQ-9 
except for the lack of suicidality assessment, has emerged as a reliable longitudinal measure of 
PSD symptoms [13].  

In recent years, objective and semi-continuous data from real-world monitoring of patients has 
made strides in understanding cognitive and behavioral changes in lieu of self-reported scores 
[14]. Powered by low-burden wearable monitors and portable devices, novel data streams of 
passive sensor and active self-reported measurements are actively being applied to exploratory 
biomarker research in neurology, assessing psychiatric status and motor function [15]. Research 
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evaluating digital biomarkers to better phenotype and predict disease trajectories with 
neurological conditions is on the rise, and opportunities exist to validate digital solutions in 
routine clinical practice [16]. Though the use of wearables to assess post-stroke function has 
been widely documented [17], few have used continuous remote monitoring in real-world 
settings to investigate PSD [18-20]. Bui et al. applied an ecological momentary assessment 
(EMA) delivered via smartphone app 5 times per day over a 2-week period that also required 
participants (n = 202) to report what activities were undertaken, where, and with whom. In these 
mild-to-moderate stroke patients, depressed mood was inversely associated with self-ratings of 
satisfaction, performance, and engagement [21]. Lau et al combined 1-week EMA sampling 8 
times per day with accelerometer wear (n = 40), finding that greater depressed affect was 
associated with increased controlled motivation (β = 0.06, p < .001), caused by external rather 
than autonomous reasons [22]. Using the Caltrac accelerometer for 6 weeks and in-person record 
of the depression subscale of the Hospital Anxiety and Depression Scale (HADS), Blaszcz et al. 
found that, although physical activity increased after hospital discharge, no change in depression 
scores at baseline and study conclusion was significant (n = 21) [23]. In a cohort of minor stroke 
patients (n = 76), Ashizawa et al. used the belt-worn Active Style Pro HJA-750C: OMRON 
accelerometer to measure in-hospital physical activity, and 3 months after discharge, mailed a 
paper version of Geriatric Depression Scale-15 (GDS-15) to participants. They found direct and 
inverse relationships between depression and sedentary (OR = 1.130, 95% CI 
= 1.013�1.281, p = 0.028) and light physical activity (OR = 0.853, 95% 
CI = 0.746�0.976, p = 0.021), respectively [24]. Some of our prior work found that real-world 
monitoring may be more appropriately applied to observing broad changes in cerebrovascular 
function, rather than exclusively applied to acute events, like stroke [4, 25]. 

Preliminary research suggests that wearable and portable device monitoring may elucidate 
phenotypes associated with PSD [26-30]. Despite progress in using wearables to understand 
behaviors linked with PSD, no clinically actionable system using real-world monitoring has been 
implemented. Though objective sensor data could help clinicians understand behaviors specific 
to depression linked with cerebrovascular dysfunction, no research has offered such a digital 
phenotype, or “moment-by-moment quantification of the individual-level human phenotype in 
situ” [31]. Among portable devices, smartphone ownership is nearly ubiquitous, with over 6 
billion adults owning a smartphone worldwide [32]. Modern smartphones include a set of high-
quality sensors, including but not limited to accelerometers, capable of active (e.g., surveys) and 
passive (e.g., global positioning system or GPS) data collection, positioning them as a potential 
useful tool for remote biomarker monitoring. Applying smartphones to collect quality 
longitudinal data appears meaningful for investigating psychiatric and neurologic symptoms 
linked with chronic disease. 

The objective of this study was to evaluate whether a smartphone app could quantify depression 
after cerebrovascular dysfunction through passive (accelerometer, GPS, and screen touch 
sensors) and active (surveys) data. In a transdiagnostic cohort of patients with cerebrovascular 
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dysfunction, we aimed to (1) identify digital sensor phenotypes correlated with mood in patients 
with stroke or TIA symptoms and (2) assess the potential of augmenting current screening 
processes by using active, passive, and combined active-passive smartphone measures to predict 
depression severity. 

 

Methods 

Study Design and Population 

This study used a prospective cohort design to recruit participants who were recently admitted to 
the hospital with ischemic stroke (IS) or TIA symptoms. Participants aged 18 and older who 
presented at Mayo Clinic Hospital in Phoenix, Arizona were screened for eligibility with the 
Mayo Clinic Arizona Stroke Monitoring Program using electronic health record (EHR) 
information and recruited via e-mail after discharge between March and August 2024. We sought 
to recruit a cohort of transdiagnostic outpatients with similar symptoms at hospital admission and 
controls with a prior IS or TIA diagnosis participating in sequelae monitoring at Mayo Clinic. 
Diagnoses at discharge were confirmed by clinical imaging results based on diagnostic criteria. 
Participants were included if they had one of the following discharge diagnoses: TIA, IS, and 
other transient stroke-like symptoms. 

Eligible participants were required to own a smartphone with a cellular data service and be able 
to provide informed consent digitally. Exclusion criteria included those with a prior dementia 
diagnosis. All participants provided informed consent via digital consent. Mayo Clinic 
Institutional Review Board approved the study procedure (22-009345).  

Data Collection 

Participant registration was conducted remotely. Demographic data was obtained from EHRs. 
Participants downloaded the HIPAA-compliant digital phenotyping Beiwe app at baseline. 
Passive accelerometer, GPS, and screen touch sensor data was recorded along with remote self-
entry of the PHQ-8 survey (0-24) using the Beiwe app.  

Beiwe is an open-source smartphone platform for digital phenotyping compatible with both iOS 
and Android operating systems that includes a HIPAA-compliant data storage component and the 
Forest library of data processing packages. The Beiwe app accesses hardware and software 
within the phone and transmits this raw data to a secure AWS server for standardized processing, 
handling of data missingness, and imputation. To prevent the linking of personal identifiers and 
phone data, the Beiwe platform encrypts phone numbers and generates a unique identifier for 
each participant. The list of passive predictors derived from smartphone sensor streams is 
available in Table 1. 

Table 1. Predictors Used in Linear Mixed Models 
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Baseline 
Predictors 

Active Data Predictors Passive Data Predictors 

Age Antecedent PHQ-8 Survey Score GPS (Number of significant 
locations visited, significant 
location entropy, time spent at 
home, distance traveled, 
maximum diameter of travel, 
maximum travel distance from 
home, radius of gyration, average 
flight length, standard deviation 
of flight length, average flight 
duration, standard deviation of 
flight duration, total time spent in 
pause/stationary, average 
stationary/pause time, standard 
deviation of stationary/pause time, 
hours per day without GPS data) 

Sex  Accelerometer (Cadence, 
Walking Time, Number of Steps, 
hours per day without 
accelerometer data) 

Diagnostic 
Category 

 Touch Screen (Time spent 
completing antecedent PHQ-8 
survey) 

Initial PHQ-8 
score 

 

Prior Depression 
Diagnosis 

 

 

 

Technical assistance was provided via email and phone, as requested by participants. Data was 
collected for up to 90 days (and until final checkpoint visit accommodating participant 
schedules), with some participants opting to provide additional longitudinal data. The app was 
removed from smartphones upon study completion. 

The Beiwe app was configured to send a notification for the PHQ-8 survey to be completed at 
baseline and once per week throughout the duration of the study. The sampling frequency of 
unprocessed accelerometer data (3 axes; 10 Hz) was configured to collect in 10 seconds on 
followed by 10 seconds off cycle. The GPS data collection cycle (1 minute on/10 minutes off) 
was determined to be optimal for this study of participants from the Mayo Clinic Arizona 
campus, based on past experience with feasibility study participants who reported feedback on 
battery drain and smartphone storage issues [32].  
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Once every 30 days participants completed a virtual interview with study personnel, during 
which trained personnel administered a Montgomery–Åsberg Depression Rating Scale 
(MADRS) assessment (0-60).  Participants whose smartphone stopped streaming data or who 
were no longer responsive to the study team were classified as lost to follow-up.  

Clinical event data, including hospital admission, death, and documentation of subsequent stroke 
up to 30 days after final contact with participants (study completion) was extracted from EHRs 
(Supplemental Table 1). 

Smartphone Sensor Data Processing 

All data were downloaded from the AWS server. Raw PHQ-8 survey data was processed 
individually, converting qualitative answers for individual questions into corresponding numeric 
scores (0-3) and creating a total PHQ-8 score. Duplicate or empty survey submissions were 
removed from the local analysis database. Metadata associated with each survey, such as open 
survey duration time, was calculated and stored in the local analysis database. 

Accelerometer data was cleaned using the Oak algorithm, previously validated via 20 public 
datasets, in the open-source Forest Python library. Raw x-, y-, and z- axis data from the 
accelerometer sensors were converted into gait cadence values with linear interpolation filling 
gaps in continuous data.  

Lastly, the GPS data was processed using the Jasmine algorithm in the Forest library. This 
algorithm applies as validated quality control feature, filtering participants with suboptimal data 
collected, including those with location coordinates characterized by less than 50 meters of 
horizontal accuracy [33, 34]. Relying on home location inferred from dataset characteristics, the 
GPS imputation method implemented via the Jasmine algorithm is published online. Processed 
GPS data is converted into pause (stationary movement) and flight (straight-line movement) 
events, with average, total, and standard deviation metrics calculated for both on a minute-by-
minute basis. Information about each GPS measure derived is available in Supplementary Table 
2.  

To adjust for smartphone sensor data missingness, we calculated the sum of daily minutes the 
GPS was turned off. Reasons for GPS data missingness are that participants may turn off their 
phones or disable GPS location streaming, forget to charge their phones, install updates, or use 
apps conflicting with Beiwe data collection. Additionally, sampling rates may automatically 
decrease when phones are in a low battery state. For the accelerometer sensor, we also calculated 
the minutes of missing data per day. A summary table of data completeness by sensor for each 
participant is in Supplementary Table 3. 

Statistical Analyses  

Baseline characteristics along with study compliance metrics were obtained.  
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To identify digital sensor phenotypes correlated with mood in patients with stroke/TIA symptoms 
(aim 1), we conducted a repeated measures correlation analysis between sensor predictors and 
PHQ-8 scores. For each PHQ-8 survey completed, the weekly average of each passive predictor 
was computed for the 7 days prior to a survey. Using the rmcorr package in R, repeated 
measures correlation generates the within-subject association between two variables using 
analysis of covariance, a useful tool for longitudinal data.  

To assess the use of passive smartphone measures in real-world settings as proxies for depression 
severity scales typically used in clinical settings (aim 2), linear mixed models (LMMs) were used 
to predict MADRS scores. LMMs are uniquely able to handle data collected at different 
timepoints from the same subjects, also known as clustered data, with varying quantities of 
missing data. Using a modified approach to Pellegrini et al.’s digital phenotyping study focused 
on psychiatry patients with major depressive disorder, bipolar disorder, and schizophrenia or 
schizoaffective disorder, we developed 6 models for predicting staff-administered scores 
(MADRS) [28]. The initial PHQ-8 score of the study was used as a baseline predictor to account 
for the modest sample size of this pilot study and to simulate realistic conditions at hospital 
discharge without staff-administered MADRS scores.  Considering that the passive predictors 
were correlated with one another, principal component analysis (PCA) was used to obtain a 
principal component (PC1) predictor from weekly averages across predictors. The missingness 
variables for accelerometer and GPS sensors described above were included in PCA. 

Before fitting the model, MADRS assessment instances were assessed for completeness, 
meaning that any instance with missing predictor values was excluded from analysis. Leave-one-
subject-out cross validation was performed for each participant, with the model fitted with data 
from other participants. Then, MADRS scores for the excluded participant were predicted with 
the model. Model 1 used only the antecedent PHQ-8 score to predict MADRS score; Model 2 
used only passive data (weekly average PC1); Model 3 used both the PHQ-8 score and passive 
data PC1; Model 4 applied the predictors from Model 3 plus the open survey time (screen 
sensor) predictor; Model 5 used no predictors; and Model 6 included the sensor measure with the 
highest loading in PC1.  

To assess the fit of each model, the root-mean-squared error (RMSE) for each participant was 
calculated by taking the square of the error between the predicted MADRS and actual MADRS 
scores for each MADRS instance.  

 

Sensitivity Analysis 

First, we compared smartphone PHQ-8 scores with staff-administered MADRS scores. For each 
MADRS score, the antecedent PHQ-8 score was utilized for comparison. Given that both PHQ-8 
and MADRS scores are ordinal, Spearman’s rank order correlation coefficient was used to obtain 
regression coefficients and p-values across the 3 MADRS timepoints. 
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For the repeat measures correlations of Aim 1, we completed a sensitivity analysis investigating 
correlates between behavior components of PHQ-8 (disinterest, depression, sleep, lethargy, self-
blame, appetite, concentration, movement/speech) and smartphone sensor measures. 

Taking into account that accelerometer sensors are less data- and battery-intensive than GPS, we 
repeated the model development process for aim 2 applied to accelerometer-only passive data, 
including the principal component analysis step. The results of such an investigation have 
implications beyond smartphone-based digital phenotyping, considering that the evolving suite 
of wearable wristwatches include built-in accelerometer sensors. Moreover, no longitudinal 
study of this duration has been applied to mood monitoring for cerebrovascular dysfunction, with 
the closest comparative study design involving older adult patients with varying levels of 
cognitive impairment [35].  

 

Results 

Participant Characteristics 

Of the 54 participants enrolled (Figure 1), 4 were unresponsive after completing the digital 
consent form, 2 dropped out due to medical emergencies/hospitalization, 1 reported data privacy 
concerns, and 3 dropped out for smartphone-related issues. Among participants who downloaded 
the app (81.5%), 5 were lost to follow-up due to unresponsiveness prior to the initial MADRS 
scoring and 1 requested to leave the study. Of the 38 participants who completed the initial 
MADRS scoring (Figure 1), 3 dropped out: 1 due to chemotherapy, 1 due to subsequent 
hospitalization, and 1 due to a smartphone issue. Participants who completed the study had 
MADRS scores recorded on a monthly basis, around the 30-day and 60-day marks, as well as 
around the 90-day mark if still participating, accommodating participants’ schedules. Of the 44 
participants contributing data for the sensor phenotyping analysis (aim 1), 35 were included in 
prediction models (aim 2). 

Figure 1. Diagram of study enrollment and retention 
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Study participants were primarily male (59.1%), middle-aged (57 y), and White (88.6%). Only 
7.0% of participants reported Hispanic ethnicity. Most participants had heart disease (65.9%) and 
36.6% had suffered multiple strokes/TIAs. At baseline, 24.4% were diabetic, 22.0% had an 
anxiety diagnosis, and 26.8% had a depression diagnosis.  

Most participants had an iOS smartphone (77.3%). Participants in the other transient stroke-like 
symptoms category at hospital discharge and those with a prior stroke/TIA had an average PHQ-
8 score indicating moderate depression (6-8) while participants with an IS or TIA diagnosis at 
discharge had an average score suggesting mild depression (3-5).  

Table 2. Baseline demographic characteristics for participants  

  Participants (n = 44) 
Sex (%)   
Male 59.1% (26) 
Female 40.9% (18) 
Age (years)   
Mean (SD) 57 
Min, Q1, Q3, Max 23, 49, 68, 83 
Discharge Diagnosis (%)   

 

nd 
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TIA 22.7% (10) 
Ischemic Stroke 22.7% (10) 
Other Transient Stroke-Like Symptoms 34.1% (15) 
Prior Stroke/TIA Only 20.5% (9) 
Race (%)   
White 88.6% (39) 
Native American 2.3% (1) 
Did Not Disclose 5.8% (3) 
Asian 2.3% (1) 
Hispanic Ethnicity (%) 7.0% (3) 
Smartphone Operating System (%)   
iOS  77.3% (34) 
Android 22.7% (10) 
Baseline PHQ-8 (Mean (SD))   
TIA 5 (+4) 
Ischemic Stroke 3 (+3) 
Other Transient Stroke-Like Symptoms 7 (+6) 
Prior Stroke/TIA Only 7 (+4) 
Heart Disease (%) 65.9% (27) 
Diabetes (%) 24.4% (10) 
Multiple Strokes (%) 36.6% (15) 
Depression (%) 26.8% (11) 
Anxiety (%) 22.0% (9) 
 

During the study, 6 participants reported surveys indicating major depression and 10 indicated 
minor depression. Relevant clinical outcomes, including hospitalization for stroke-related 
conditions or death, were tracked for 30 days after smartphone study completion. Only 2 
participants in the study presented at the emergency room for stroke-related symptoms during the 
study, both of whom completed 90 days of smartphone monitoring (Supplementary Table 1). 

Survey completion rates over time were moderately high, with 73% of participants completing 8 
or more weeks of PHQ-8 surveys (Supplementary Figure 1); however, PHQ-8 trajectories were 
highly variable over the study period (Supplementary Figure 2).   

Identification of Digital Sensor Phenotypes Correlated with Mood in Patients with Stroke 
Symptoms 

We examined correlations between mood behaviors measured in the PHQ-8 survey and sensors 
using repeated measures (n =44). All sensor predictors were the average of 7 days prior to the 
weekly PHQ-8 survey. Assessing relationships between smartphone accelerometer sensor 
predictors and PHQ-8 scores (Table 3), PHQ-8 total score was positively correlated with Time to 
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Complete Survey (r = 0.151; p-value = 0.004) and Distance from Home (r = 0.173; p-value = 
0.008) and negatively correlated with Home Duration (r = -0.147; p-value = 0.024). 

 

Table 3. Repeat Measures Correlates of PHQ-8 Score and Smartphone Measures  

Smartphone Sensor Measure Correlation coefficient (r) p 95% CI 
Time to Complete Survey  0.151 0.004** (0.048, 0.251) 
Distance Diameter 0.013 0.848 (-0.115, 0.140) 
Distance from Home 0.173 0.008** (0.057, 0.294) 
Distance Traveled 0.014 0.831 (-0.114, 0.141) 
Flight Distance Average 0.008 0.901 (-0.119, 0.135) 
Flight Distance StdDev 0.021 0.745 (-0.106, 0.148) 
Flight Duration Average -0.066 0.312 (-0.192, 0.062) 
Flight Duration StdDev -0.094 0.148 (-0.219, 0.034) 
Home Duration -0.147 0.024* (-0.269, -0.020) 
Gyration Radius 0.006 0.923 (-0.121, 0.134) 
Significant Location Count -0.055 0.400 (-0.181, 0.073) 
Significant Location Entropy -0.070 0.283 (-0.196, 0.058) 
Pause Time -0.081 0.212 (-0.207, 0.047) 
Total Flight Time -0.054 0.410 (-0.180, 0.074) 
Pause Duration Average -0.014 0.826 (-0.142, 0.113) 
Pause Duration StdDev 0.025 0.704 (-0.103, 0.152) 
Walking Time -0.026 0.645 (-0.137, 0.085) 
Steps -0.028 0.623 (-0.139, 0.083) 
Cadence -0.024 0.669 (-0.135, 0.087) 
 

Assessment of passive smartphone measures as proxies for post-stroke depression severity 

Before building models with passive accelerometer and GPS data, one participant was excluded 
due to sampling below the quality check threshold for the Forest package. For the remaining 
participants (n = 34), principal component analysis was performed to obtain the first principal 
component (PC1) (Supplementary Figure 3). In these models, PC1 was used as a predictor. The 
components of PC1 and their respective loadings are listed in Supplementary Table 4. PC1 was 
responsible for 40.9% of data variance, and GPS data contributed PC1’s highest loading 
measures. 

In the models assessing the potential of smartphones measures to predict MADRS scores (Table 
4), the lowest RMSE was 1.33 (Model 4 with demographics), which included accelerometer, 
GPS, screen sensor data and the antecedent self-report PHQ-8 score. 
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In the model variation without demographic variables, the average RMSE for Model 1 was 1.67; 
1.68 for Model 2; 1.59 for Model 3; 1.57 for Model 4; 1.69 for Model 5; and 1.73 for Model 6. 
Here, the inclusion of passive smartphone predictors did improve the prediction of MADRS 
scores compared to using antecedent PHQ-8 self-report scores only. This trend was observed 
across model variations, including the variation with demographic variables and the variation 
with demographic variables and initial PHQ-8 scores. The model variation with the best 
performance included those with the demographic baseline variables; including the initial PHQ-8 
score, simulating discharge screening after hospitalization, in the model variation with 
demographic variables did not improve model fit. 

In the variation with demographic data only, the inclusion of passive smartphone data with the 
antecedent PHQ-8 score yielded a modest RMSE improvement of 0.12 compared to the model 
with only passive data; however, including the PHQ-8 score survey timing (seconds) improved 
the fit of this passive-active data model prediction by 0.07. 

Table 4. RMSE predicting MADRS scores using Models 1-6 with three variations (no 
demographics; with demographics; with demographics + initial PHQ-8 scores)  

    +demographics +demographics 
+initial PHQ-8 

Model 1 (PHQ-8 Score) 1.67 1.54 1.56 
Model 2 (Accelerometer + GPS) 1.68 1.52 1.54 
Model 3 (Accelerometer + GPS + PHQ-8 
Score) 

1.59 1.40 1.46 

Model 4 (Accelerometer + GPS + PHQ-8 
Score + Survey Timing) 

1.57 1.33 1.46 

Model 5 (Only Participant Effect) 1.69 1.58 1.64 
Model 6 (Significant Location Count) 1.73 1.55 1.58 
 

Model 6 assessed the measure that contributed the highest loading in PC1 without including the 
PC1 itself; however, isolating and including this measure alone did not improve model fit 
relative to the passive-active models. 

 

Sensitivity Analysis 

In aggregate, antecedent PHQ-8 scores moderately correlated with personnel-administered 
MADRS scores (r  = 0.667), a finding supported by prior literature (Supplementary Figure 4). 
The correlations between antecedent PHQ-8 scores and MADRS scores, across assessments were 
as follows: 0.599 at initial assessment (Supplementary Figure 5a), 0.700 at the second 
assessment (Supplementary Figure 5b), and 0.75 at the third assessment (Supplementary Figure 
5c).  
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Regarding Aim 1, the repeat measures correlations between smartphone measures and individual 
components of the PHQ-8 survey revealed the following: lethargy was negatively correlated with 
significant location count (r = -0.162; p-value = 0.013) and significant location entropy (r = -
0.133; p-value = 0.040); appetite changes were positively correlated with the (max) distance 
from home (r = 0.275; p-value < 0.001) and negatively correlated with time spent at home (r = -
0.274; p-value < 0.001); trouble concentrating was positively correlated with (max) distance 
from home (r = 0.141; p-value = 0.031); and changes in speech/movement was positively 
correlated with (max) distance from home (r = 0.306; p-value < 0.001) and negatively correlated 
with time spent at home (r = -0.285; p-value < 0.001) and total stationary/pause time (r = -
0.172; p-value = 0.008).  

For the accelerometer-only MADRS prediction models, the model with accelerometer data and 
antecedent PHQ-8 scores performed worse than any of the GPS-accelerometer models in Table 
4. The model including only demographic data and the antecedent PHQ-8 score (RMSE = 1.51) 
outperformed the accelerometer-only models. 

Discussion 

Our exploration of digital phenotyping using the Beiwe application to understand real-world 
behavior of patients with cerebrovascular syndromes contributes to scientific rationales for 
remote monitoring of post-stroke/TIA patients.  

This pilot study offers initial feasibility data for smartphone-based digital phenotyping and 
monitoring in patients with cerebrovascular syndromes. We demonstrated that longitudinal 
measures derived from smartphone sensors may serve as proxies for mood in patients with 
cerebrovascular symptoms, a finding with implications for PSD screening, clinical outcome 
assessments, and digital endpoints in decentralized clinical trials. Overall, our findings 
complement previous cerebrovascular disease studies using ecological momentary assessment 
(EMA), namely that adherence to smartphone-based studies is high in this population regardless 
of depression severity, age or post-diagnosis functional ability [36]. Additionally, these results 
extend those that found a close association between self-reported mood and functional ability in 
post-stroke patients [37]. 

While digital phenotyping has been applied to investigating depression and anxiety in a growing 
number of clinical populations, ranging from healthy older adults to psychiatric patients with 
severe symptoms}, this is the first study to investigate its application to IS, TIA or 
cerebrovascular syndromes, to our knowledge [30]. Considering that cerebrovascular syndromes 
are heterogenous by nature, the need for technologies to advance personalized care is critical, 
and real-world monitoring with passive and active data, like the approach presented in this study, 
may offer a path forward. Specifically, we found mild correlations between some smartphone 
measures and PHQ-8. Screen-based sensors that capture time spent completing the PHQ-8 
survey may augment screening for depression, considering the mild positive correlation between 
time-to-survey-completion and PHQ-8 score. While psychomotor impairment is well 
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documented in depressed populations, digitally-based time-to-decision-making measures, like 
open survey completion/read times, have been shown to classify participants with cognitive 
impairment with higher accuracy than traditional assessments [38, 39]. The negative correlation 
between time spent at home and PHQ-8 score could be characteristic of post-stroke/TIA patients. 
Considering the majority of our study’s participants were admitted to the hospital for stroke/TIA 
symptoms within the year of enrolling in the study, it is expected this population would be 
spending more time at home than others [40]. Simultaneously, the positive correlation between 
(max) distance from home and both PHQ-8 score and trouble concentrating may reflect the 
burden of longer travel or commute demands on patients who have suffered a stroke/TIA or 
similar symptoms. 

Traveling to fewer locations (significant location count) and spending less time at those locations 
(significant location entropy) is congruent with increased feelings of lethargy, also characteristic 
of post-stroke fatigue (PSF). Combined with the correlates with overall PHQ-8 scores, this 
smartphone-based phenotype may shed new light on PSF, a condition for which few 
measurement tools have been validated and limited evidence for successful interventions exists 
[41]. Considering that the question assessing movement and speech asks about the frequency of 
change, rather than its direction, the correlations with pause time, max distance from home, and 
time spent at home are congruent with the question’s probing line: “moving around a lot more 
than usual”.  These findings suggest GPS measures of mood in post-stroke/TIA patients could 
have application in rehabilitation and physical therapy contexts, offering personalized insights 
into PSF. Further support for this hypothesis that digital phenotyping in cerebrovascular 
dysfunction may capture PSF are findings from Hackett et al.’s study of older adults (including 
those with and without cognitive impairment) using the mindLAMP smartphone app (n = 37). In 
contrast to our findings, Hackett et al. found that more location diversity was associated with less 
depression, in this comparative sample of patients without a recent stroke [35].  

While the inclusion of accelerometer passive measures with PHQ-8 scores did not improve 
predictive performance, the use of accelerometer measures in conjunction with GPS and screen 
sensor measures did. One reason for this small improvement could be that cerebrovascular 
syndrome patients experience slight behavior aberrations due to cognitive changes that go 
unnoticed. This finding contributes clinically meaningful information for future study designs 
involving smartphones, highlighting the potential for multimodal sensor data to offer a more 
comprehensive observation of patients. For example, while passive accelerometer data alone 
may not help clinicians identify patients at risk of depression, the combination of multiple 
sensors may offer new insights that transform remote monitoring into clinically actionable 
insights. The improved prediction performance of passive data is also supported by Lau et al’s 
one-week wearable accelerometer study with mild stroke patients and Yi et al’s 12-month Beiwe 
study with nurses (n = 2394), finding that self-reported mood and activities correlate strongly 
with accelerometer measures [21, 42]. A key strength of this study is that it demonstrates the 
potential for smartphone accelerometer sensors to collect longitudinal data. One critical issue 
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with wearable accelerometers is the participant burden of wearing and charging the device over 
sustained periods of time, and our results suggest smartphone monitoring could fill in gaps in 
data collection for wearables or be offered as an alternative to participants in future studies. 

Additionally, these findings extend those of Pellegrini et al., which evaluated the performance 
GPS and accelerometer data in predicting MADRS scores in a transdiagnostic population of 
psychiatric patients. In contrast to Pellegrini et al, we found that passive (GPS and 
accelerometer) data did improve MADRS score prediction; however, the range of PHQ-8 and 
MADRS scores in our cohort was smaller than theirs, as reflected in the lower RMSE values for 
our models. Moreover, we exclusively examined smartphone-based accelerometer data in our 
sensitivity analysis and found that accelerometer data, which is less draining on smartphone 
batteries and more frequently sampled, did not improve MADRS prediction over using 
antecedent self-report PHQ-8 scores alone. Unlike the cohort of psychiatric patients, our cohort 
of patients with cerebrovascular syndromes have exhibited a range of functional changes, from 
numbness to one-side loss of function. The results of our cohort outline a potentially meaningful 
use case for using multiple smartphone sensors to monitor behavior associated with brain 
changes and could open new avenues of research at the intersection of computational 
neuroimaging and real-world validity [43, 44]. Future research should compare the effectiveness 
of wearable sensor combinations at augmenting depression and fatigue screening for patients 
with cerebrovascular disease symptoms.  

This work is subject to numerous limitations and should be considered as a starting point for 
future work. First, the pilot study design includes a small sample size when considering effect, 
although the sample size is average for smartphone studies. Second, passive measures in this 
analysis were not processed to consider weekday versus weekend averages. Next, participants 
most likely did not carry their phones with them constantly. As such, differences in participant 
data could be partly driven by phone use patterns. Though the use of time-averaged measures is 
standard in smartphone research, little is known about optimal timepoints for analysis, i.e. using 
an average from 3 days before an assessment versus the average of 7 days prior [30]. Moreover, 
the interpretation of GPS data should be considered carefully, because of the on-off cycles 
required for its successful collection in real-world settings when patients need reliable access to 
their phones. The behaviors assessed via self-report are limited by the PHQ-8. Originally, we 
planned to use the Beck Depression Inventory (BDI-II) measurement for weekly survey 
collection; however, our feasibility study found that the BDI-II was too burdensome for post-
stroke/TIA patients. Another challenge documented was battery drain associated with GPS 
streaming and routine OS software updates; yet, emerging research suggests battery drain may 
also be a digital biomarker of cognitive function [45]. Some participants also required frequent 
password and technical assistance, a factor that future researchers could quantify in cognitive 
digital health studies. Multiple participants traveled for vacations and work, a real-world 
consideration that further complicates data collection. Missing data due to missed surveys, 
battery drain, and sick days occurred, but are common in decentralized research. Additionally, 
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the results of the study may not generalize well to non-White patients. As most participants had 
an iOS smartphone, data collection may also vary in ways unnoticed. Beyond issues associated 
with wireless and cellular access in rural areas in Arizona, participant travel for vacation or work 
to different cities may also have introduced unforeseen variations in data. Though not a 
limitation, we chose to take the average of 7 days for each measure in our analyses, as is 
commonly found in the growing set of studies in this space; however, it is plausible that other 
time periods not explored in this study may be more useful at predicting scores [30]. Lastly, it is 
important to consider that the improved model fit offered by the inclusion of passive measures, 
compared to self-reported scores alone, is small (RMSE decrease of 0.21) and may be more 
useful if applied to predicting scores during weeks of lapsed survey compliance rather than for 
screening purposes. A larger sample population is necessary to investigate the optimal role of 
remote monitoring with smartphones in this context. Since the model variations including the 
initial PHQ-8 scores did not improve score prediction, more recent data samples appear to be 
more useful than baseline self-report scores, offering further support for mood monitoring of 
cerebrovascular syndromes in real-world settings. 

Overall, this study presents a novel and more robust look at real-world mood in patients with 
recent IS, TIA or stroke-like symptoms. The choice to include patients with stroke-like 
symptoms highlights the usefulness of such a monitoring program in a neurology clinic beyond 
stroke care. This study also demonstrates the potential of frequent and low-burden sampling of 
mood via surveys without visiting a clinical site, an important consideration for patients with 
motor impairment or those who reside in rural areas. Additionally, the collection of objective 
captures of physical function holds promise for better understanding individual patient outcome 
trajectories. 

 

Conclusions 

Our study suggests that smartphone GPS measures may serve as proxies for mood and elucidate 
new phenotypes of mood in patients with cerebrovascular syndromes. Passive GPS, 
accelerometer, and screen sensor data slightly improved the prediction of medical personnel-
graded mood scores compared to patient-reported surveys alone, outlining a potentially 
meaningful use case for passive behavior monitoring in patients with cerebrovascular syndromes 
to augment screening protocols. Our preliminary work lays a foundation for using mobility, 
spatial, and mobile device screen data to investigate environmental and behavioral factors 
influencing mood in patients with cerebrovascular syndromes. Future research should involve 
larger cohorts to identify which measures are most meaningful for mood prediction, to compare 
the effectiveness of different combinations of wearable sensors, and to establish clinically useful 
thresholds for triaging patients at different timepoints in recovery.  
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