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Key Points 

Question: Which T1-weighted MRI biomarkers are most effective in predicting longitudinal 

cognitive deterioration in the aging population? 

 

 

Short Title:  

Brain Age as a Key to Cognitive Reserve and Aging 
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• Four commonly used MRI biomarkers were assessed in the context of cognitive aging. 

• Brain age is validated as a promising biomarker for aging and cognitive reserve. 

• Machine learning boosts cognitive biomarker accuracy beyond neuroimaging alone. 

• The findings underscore a direct association between structural brain reserve and cognitive 

reserve. 

• Key factors in brain preservation may support high cognitive reserve in aging. 

 

 

 

 

ABSTRACT  

INTRODUCTION:  

Cognitive decline is a major concern in aging populations. Detecting it before clinical symptoms 

emerge remains a significant challenge. A precise, reliable, and non-invasive biomarker for 

cognitive health could revolutionize how we monitor normal aging and lifestyle impacts. Such a 

tool would not only identify individuals at risk of cognitive decline years before symptoms 

manifest but also aid in early interventions and treatments. 

METHODS:  

Longitudinal MRI data from 121 high cognitive reserve (HCR) individuals were compared to 

matched low cognitive reserve (LCR) individuals to evaluate four biomarkers for early cognitive 

decline and disease progression: brain age delta, cortical thickness, AD cortical signature, and 

hippocampal volume. Cross-sectional analyses were conducted at baseline, alongside longitudinal 

assessments spanning 1 to 12 years, to compare the performance and properties of these 

biomarkers. 

 

RESULTS:  
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The brain age metric emerged as the most reliable biomarker, demonstrating a significant ability 

to differentiate between groups at baseline (β = 1.250, t = 3.521, p = 0.0009; linear regression 

model; AUC = 0.73). Furthermore, this biomarker maintained its robustness as the strongest 

predictor of group membership over a follow-up period of up to 12 years (β = 0.409, p = 0.025; 

mixed-effects model), underscoring its potential for longitudinal monitoring of cognitive decline. 

 

DISCUSSION:  

The brain age biomarker demonstrates potential as an effective indicator for early cognitive 

decline, capable of detecting changes years before clinical symptoms appear and tracking age-

related brain and cognitive changes over time. These findings suggest that integrating MRI 

biomarkers with machine learning approaches could yield more accurate and reliable tools for 

assessing cognitive health, surpassing the limitations of relying solely on MRI biomarkers. 

 

Keywords: Aging, Alzheimer's disease, Brain age prediction, Cognitive decline, Cortical 

thickness, Hippocampal volume, Longitudinal analysis, Machine learning, T1-weighted MRI. 

 

 

 

 

 

 

 

 

1. INTRODUCTION 
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Cognitive decline is a major concern associated with aging, affecting millions of individuals 

worldwide and presenting significant challenges to healthcare systems and society. As the global 

population ages, understanding the relationship between aging and cognitive function becomes 

increasingly important [1, 2]. Aging induces various molecular, cellular, and functional changes 

in the brain that contribute to cognitive decline, making individuals more vulnerable to 

neurodegenerative diseases [3]. For instance, genomic instability, telomere dysfunction, and 

mitochondrial dysfunction in the aging brain lead to chronic oxidative stress, which accelerates 

aging and age-related diseases, such as cognitive decline [3]. However, not all individuals 

experience the same trajectory of cognitive decline [4]. Some people maintain cognitive function 

despite advancing age, a phenomenon referred to as "cognitive reserve" (CR) [4, 5]. CR refers to 

the brain's ability to cope with damage and maintain cognitive function, even in the presence of 

brain pathology, such as Alzheimer's disease (AD) [4]. Individuals with High Cognitive Reserve 

(HCR) have greater neural resources and resilience, enabling them to better withstand age-related 

brain changes or pathology, often maintaining cognitive function longer [6]. In contrast, those with 

Low Cognitive Reserve (LCR) may experience more pronounced cognitive decline when faced 

with similar challenges, due to fewer cognitive resources to compensate for neural damage [6]. 

Factors like education, occupation, and engagement in cognitive activities contribute to the 

development of CR, enhancing the brain's resilience to cognitive impairment [4]. Despite growing 

interest in CR, the underlying mechanisms remain poorly understood, and more research is needed 

to identify the factors contributing to CR and how they can be leveraged to promote healthier aging 

[7]. 

One significant knowledge gap in cognitive aging is the absence of dependable, non-

invasive biomarkers that can distinguish individuals with HCR  from LCR and many years before 
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symptoms manifest, as well as monitor cognitive function in these groups over time [8, 9]. Timely 

identification of LCR individuals is essential for implementing interventions that can lessen the 

effects of neurodegenerative diseases and enhance quality of life [8, 10]. Although clinical 

assessments can help identify cognitive decline, they often fail to detect changes in the brain until 

symptoms are already present, making early intervention challenging. As a result, there is 

increasing reliance on biomarkers, which have the potential to detect subclinical changes in brain 

structure and function well before cognitive symptoms manifest [11]. 

Biomarkers for cognitive decline can be classified into several categories, such as fluid 

biomarkers, neuroimaging biomarkers, and neural activity biomarkers. Fluid biomarkers like 

amyloid-beta and tau levels in cerebrospinal fluid (CSF) have been used to detect AD before 

symptoms appear, but they are expensive, invasive, and may not always correlate with cognitive 

function. Neural activity biomarkers, such as electroencephalography (EEG), can detect abnormal 

brain activity early, but they lack specificity and do not provide structural information. 

Neuroimaging biomarkers, particularly MRI, are increasingly used to detect structural changes in 

the brain, such as hippocampal atrophy and cortical thinning, that can occur well before cognitive 

symptoms are apparent [12, 13]. One of the primary benefits of neuroimaging biomarkers is the 

ability for researchers to visually track the impact of aging and/or cognitive decline on brain 

function and structure.  

In recent years, machine learning techniques have been integrated with neuroimaging data 

to introduce novel biomarkers, such as “brain age” [14, 15]. This method uses neuroimaging data 

and supervised machine learning algorithms to predict an individual's "brain age," providing a 

quantitative measure of brain health [14, 15]. A deviation from the expected brain age is considered 
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a sign of neurodegeneration or accelerated aging and has shown promise in predicting cognitive 

decline and disease progression [15, 16]. 

Among neuroimaging biomarkers, T1-weighted MRI scans are particularly valuable in 

identifying early signs of cognitive decline and AD. These brain scans can detect structural brain 

changes and monitor cognitive decline as time passes [12, 13]. Despite the growing body of 

research on T1-weighted MRI biomarkers in cognitive aging, there remains a significant 

knowledge gap regarding their ability to identify individuals at risk of cognitive decline years 

before clinical symptoms appear. Additionally, the effectiveness of these biomarkers in monitoring 

the progression of cognitive decline over time has been insufficiently explored. 

This study aims to address gaps in understanding by evaluating four different T1-weighted 

MRI biomarkers in the context of cognitive decline. Specifically, we aim to assess their capacity 

to detect early cognitive decline and monitor brain changes longitudinally. Our focus includes two 

groups of aging individuals: those who progressed from normal cognition to mild cognitive 

impairment (MCI) within a 7-year period (LCR group) and those who maintained stable normal 

cognition over the same period (HCR group). The LCR group may exhibit fewer cognitive 

resources, contributing to their progression to MCI, whereas the HCR group is hypothesized to 

possess greater cognitive resources, enabling stable cognition despite aging. Additionally, we will 

explore the relationship between CR and brain reserve within these groups. The primary objective 

is to determine which of the four MRI biomarkers most effectively classify individuals into HCR 

or LCR groups and track cognitive decline over time. 

We hypothesize that the brain age biomarker will serve as a robust indicator of early 

cognitive decline, capable of detecting changes years before clinical symptoms manifest and 

tracking brain aging and cognitive decline longitudinally. 
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2. MATERIAL AND METHODS 

2.1. Participants 

The dataset for this research was sourced from the Alzheimer’s Disease Sequencing Project 

Phenotype Harmonization Consortium (ADSP-PHC), a component of the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), accessed in September 2024. The ADSP-PHC harmonizes data 

across multiple cohorts within the ADSP, enabling comprehensive analyses of cognitive functions, 

neuroimaging, biomarkers, and risk factors. Supported by funding (U24-AG074855), this initiative 

facilitates advanced genomic research to enhance understanding of AD and Related Dementias 

(ADRD). Ethical approval was obtained from relevant committees, and all participants provided 

written informed consent. Detailed methodologies are publicly available via the ADNI database 

(http://adni.loni.usc.edu/). 

The dataset includes over 2,500 individuals with longitudinal T1-weighted MRI scans and 

clinical variables. Cognitive status was determined using the ‘PHC Diagnosis’ variable and 

assessed across ADNI1, ADNI2/ADNIGO, and ADNI3 phases. Diagnostic classifications 

included Cognitively Normal (CN), MCI, and AD. Standard cognitive tests included the Mini-

Mental State Examination (MMSE), Clinical Dementia Rating (CDR), Clinical Dementia Rating 

Scale Sum of Boxes (CDR-SB), and Logical Memory Test.  

This study focused on participants cognitively healthy at baseline. A total of 112 

participants were classified into the LCR group, defined as transitioning to MCI within a seven-

year follow-up, while 134 participants remained cognitively stable, forming the HCR group. In the 
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LCR group, the average transition time to MCI was 3.23 years (±1.32), occurring within 1–5 years. 

Participants with reversals in cognitive status were excluded. 

To balance sample sizes and minimize confounding variables, propensity score matching 

was applied using the pymatch package in Python (https://github.com/benmiroglio/pymatch). A 

subset of 121 HCR participants was matched to the LCR group based on age, education, sex, 

MMSE scores, and CDR-SB. Post-matching, both groups exhibited comparable demographic and 

clinical characteristics, with the matched HCR group serving as an independent test set for 

analyses. 

For brain age estimation model development, additional cognitively healthy samples were 

incorporated from the ADSP-PHC dataset. The training set consisted of 725 participants (mean 

age ± SD: 71.56 ± 6.64 years, range: 53–93, 54% female), and the validation set included 81 

participants (mean age ± SD: 72.00 ± 7.84 years, range: 52–90, 53% female). All participants had 

no cognitive or neurological impairments during follow-up. The test dataset of 121 HCR and 121 

LCR participants was entirely independent of the training and validation datasets, ensuring the 

robustness and generalizability of the brain age model. 

 

2.2 Image acquisition and processing  

T1-weighted MRI data were harmonized across multiple datasets within the Alzheimer’s Disease 

Sequencing Project (ADSP), encompassing the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI), National Alzheimer’s Coordinating Center (NACC), Religious Orders Study (ROS), 

Memory and Aging Project (MAP - Rush), Minority Aging Research Study (MARS), Washington 

Heights/Inwood Columbia Aging Project (WHICAP), and the Wisconsin Registry for Alzheimer’s 

Prevention (WRAP). 
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All T1 scans were preprocessed using a fully automated pipeline with FreeSurfer version 

6.0 segmentation software (http://surfer.nmr.mgh.harvard.edu). The standardized recon-all cross-

sectional FreeSurfer pipeline was employed, and quality control (QC) adhered to the ENIGMA 

QC protocol through visual inspection of surface parcellations. All scans were processed on a 

consistent computational platform, with QC performed by the same individuals to maintain 

reliability. To address variations in scanner platforms, models, sites, and field strengths, the 

Longitudinal COMBAT harmonization technique was applied [17]. The analysis included 68 

cortical regions per hemisphere, as defined by the Desikan-Killiany atlas, using volume and 

thickness values extracted from aparc.DKTatlas files [18]. Additionally, 15 subcortical structures 

were examined, including the thalamus, caudate, putamen, pallidum, hippocampus, and amygdala. 

Volumetric measures such as total intracranial volume, brain segmentation volumes, and metrics 

for structures like the lateral ventricles, cerebellum, and brainstem were also included. A total of 

197 feature values were extracted for each subject, covering both cortical and subcortical regions. 

These values were then used as inputs for brain age estimation, generating comprehensive whole-

brain data for analysis. 

 

2.3 T1-weighted MRI biomarkers 

In this study, we concentrated on four established T1-weighted MRI biomarkers: brain age 

delta, mean cortical thickness, AD cortical signature, and hippocampal volume. These biomarkers 

are extensively used in research related to neurodegeneration. For each participant, we calculated 

the mean cortical thickness, which represents the average thickness of the cerebral cortex. The AD 

cortical signature was derived by assessing the mean cortical thickness in specific regions, 

including the entorhinal cortex, fusiform gyrus, inferior temporal cortex, and middle temporal 
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cortex [19]. Additionally, the normalized hippocampal volume was determined by adjusting the 

hippocampal volume relative to the total intracranial volume. 

As for the brain age delta, A standard linear support vector regression (SVR) algorithm 

was employed in MATLAB (i.e., fitrsvm function with a linear kernel). In this model, 

chronological age was the dependent variable, while anatomical measurements extracted from 

FreeSurfer segmentation, along with sex and total intracranial volume, served as independent 

variables. Initially, we assessed the accuracy of the prediction model on the training dataset 

through a 10-fold cross-validation strategy. The effectiveness of the model was evaluated using 

the coefficient of determination (R²), which measures the correlation between chronological age 

and estimated age, as well as the mean absolute error (MAE) and root mean square error (RMSE). 

The final brain age estimation model was constructed using the complete training dataset. This 

model was then applied to independent validation and test sets to calculate the brain age delta, 

defined as the difference between the predicted brain age and the actual chronological age. To 

ensure the predicted values were not biased by age, we implemented a bias adjustment technique 

as outlined in our previous research [20] (https://github.com/Beheshtiiman2/Bias-Correction-in-

Brain-Age-Estimation-Frameworks). 

 

2.4 Statistical analysis 

Student t-test was used to analyze the clinical and demographic differences between the two groups 

for continuous variables, while the Chi-square test was employed for categorical variables. For 

baseline data, MRI biomarkers were assessed using a linear regression model to investigate group 

differences while controlling for age and sex. The model was specified as follows: 

MRI Biomarker ~ 1 + Group + Baseline Age + Sex                                                            (1) 
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Additional regression models were conducted to examine the effects of sex and age on MRI 

biomarkers within each group separately. These models were specified as: 

MRI Biomarker ~ 1 + Baseline Age + Sex                                                                              (2) 

These models were executed independently for each group and combined across groups for 

baseline data analysis. We further utilized receiver operating characteristic (ROC) curve analysis 

to compare the accuracy of different MRI biomarkers at baseline. 

For the longitudinal follow-up analysis, mixed-effects models were employed to examine 

cohort differences over time, adjusting for age and sex in each MRI biomarker. The model was 

specified as: 

MRI Biomarker ~ 1 + Group + Age + Sex + (1 | Subject)                                                         (3) 

In this mixed-effects model, cohort, age, and sex were treated as fixed effects, while subject was 

treated as a random effect (Equation 3). To evaluate the effects of age and sex over time within 

each group, the following mixed-effects model was specified for each MRI biomarker: 

MRI Biomarker ~ 1 + Age + Sex + (1 | Subject)                                                                         (4) 

In this model, age, and sex remain fixed effects, with subject continuing to be treated as a random 

effect. To correct for multiple comparisons, the false discovery rate (FDR) method was used, 

adjusting the results at a significance level of 0.05. All statistical analyses were conducted using 

Python. 

 

3. RESULTS 

3.1 Baseline characteristics and clinical features 

As intended by the propensity score matching procedure, demographic characteristics and clinical 

scores at baseline were not significantly different between the HCR and LCR individuals (Table 
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1). There were no significant differences in the percentage of females, chronological age, years of 

education, MMSE scores, or CT (p > 0.05 for all). However, LCR participants had slightly higher 

CDR-SB scores compared to HCR participants (p = 0.0431). A significant difference was observed 

in the proportion of APOE4 carriers between the LCR group (68/37/6) and the HCR group 

(84/27/1) (p = 0.0395). After false discovery rate (FDR) correction, the two groups were similar 

in all demographic and clinical features (p > 0.22). 

 

Table 1. Demographic and Clinical Features of the Test Sets at Baseline. 

 HRC 

(N=112) 

LCR 

(N=112) 

Original P-

Value 

Corrected P-

Value 

Female (%) 50% 42% 0.1805 0.2707 

Real age (yrs) 74.02 ± 4.8 75.00 ± 5.9 0.1725 0.2707 

Education (yrs) 16.42±2.8 16.34±2.6 0.8250 0.8250 

MMSE 29.02±1.21 28.90±1.27 0.3622 0.4346 

CDR-SB 0.03±0.64 0.06±0.93 0.0431 0.1293 

 APOE4 (0/1/2) 84/27/1 68/37/6 0.0395 0.1293 

Note: CDR-SB: Clinical Dementia Rating Sum of Boxes; LCR: Low Cognitive Reserve; HRC: High Cognitive 

Reserve; MMSE: Mini-Mental State Examination. Mean ± standard deviation is presented for all variables. Original 

P-Value: Results from Student's t-test for continuous variables and Chi-square test for categorical variables between 

groups. Corrected P-Value: Original p-value adjusted for FDR correction. 

3.2 Brain age estimation performance  

Our predictive model demonstrated robust performance on the training dataset (N = 725) with 10-

fold cross-validation, yielding an R² of 0.85, an MAE of 2.10 years, and an RMSE of 2.68 years 

(mean brain age delta = 0 ± 3.8 years, Fig. 1). The model's performance on the validation set (N = 

81) was consistent, with an R² of 0.90, an MAE of 2.07 years, an RMSE of 2.63 years, and a mean 

brain age delta of 0.055 ± 3.8 years. The correlation between brain age delta and chronological age 

was non-significant in both the training set (r = 0, p = 1) and the validation set (r = 0.03, p = 0.77). 
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Figure 1: Scatter plots showing the association between predicted brain age and chronological age across the Training, 

Validation, and Test datasets. The results for the Training set were generated through 10-fold cross-validation. The 

dashed black line in all panels represents the identity line (y=x) for reference. 

 

 

3.3 Baseline MRI Metric Analysis 

At baseline, participants in the LCR group exhibited significantly lower normalized hippocampal 

volume (p = 0.0011) and a higher brain age delta (p = 0.0006), suggesting an accelerated aging 

process in this cohort. Additionally, the AD cortical signature was more pronounced in the LCR 

group (p = 0.0039). In contrast, both the LCR and HCR groups displayed similar mean cortical 

thickness at baseline (p = 0.1786). After applying  FDR correction, the differences in the AD 

cortical signature (p = 0.0130), normalized hippocampal volume (p = 0.0055), and brain age delta 

(p = 0.0055) remained statistically significant between the two groups (Table 2 and Fig. 2).To 

further evaluate the discriminative ability of various brain measures, we conducted 

a  ROC analysis to differentiate between the LCR and HCR groups at baseline (Fig. 3). The brain 

age delta demonstrated the highest discriminatory power with an Area Under the Curve (AUC) of 

0.73. In comparison, hippocampal volume (AUC = 0.63), AD cortical signature (AUC = 0.60), 

and mean cortical thickness (AUC = 0.55), showed limited accuracy in distinguishing between the 

groups. 
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Table 2. Baseline MRI biomarkers for independent test groups. 

 HRC 

(N=112) 

LCR 

(N=112) 

Original P-

Value 

Corrected P-

Value 

Mean cortical thickness (mm) 2.32±0.09 2.30±0.12 0.1786 0.2256 

AD Cortical signature (mm) 2.87±0.13 2.81±0.16 0.0039 0.0130 

Normalized hippocampal volume (%) 0.50 ±0.5 0.47 ± 0.6 0.0011 0.0055 

Brain age delta (yrs) 0.40±2.68 1.84±25.91 0.0006 0.0055 

Note: LCR: Low Cognitive Reserve; HRC: High Cognitive Reserve; Mean ± standard deviation is presented for all 

variables. Original P-Value: Results from Student's t-test for continuous variables and Chi-square test for categorical 

variables between groups. Corrected P-Value: Original p-value adjusted for FDR correction. 

Linear regression analysis was conducted to assess the relationship between MRI 

biomarkers, group status, age, and sex (Table 3). Brain age delta positively associated with group 

status (β = 1.250, p = 0.0009) and significantly correlated with sex (β = -0.948, p = 0.0118), 

indicating accelerated brain aging in the LCR group and sex-related differences. Mean cortical 

thickness did not differ between groups (β = 0.0091, p = 0.5085) but correlated with age (β = -

0.006, p < 0.0001) and sex (β = 0.0473, p = 0.00077). The AD cortical signature showed lower 

values in LCR (β = -0.0502, p = 0.0103) and correlated significantly with age (β = -0.0078, p < 

0.0001). Normalized hippocampal volume was lower in the LCR group (β = -0.0206, p = 0.0063), 

with significant associations with age (β = -0.0033, p = 0.00098) and sex (β = 0.0259, p = 0.0006) 

(Table 3).  

At baseline, there was no significant correlation between brain age delta and age for either 

group (Fig. 4). However, when stratified by sex, only the LCR group demonstrated a significant 

difference between males and females, with males exhibiting higher brain age delta (t = 3.78, p = 

0.008; Fig. 5). As expected, mean cortical thickness, AD cortical signature, and hippocampal 

volume followed a clear age-related pattern, with older age associated with lower values (Fig. 4, 

Table 3). In the HCR group, males had significantly lower hippocampal volume compared to 
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females, though no significant differences between sexes were observed for other metrics (Table 

4). In the LCR group, in addition to brain age delta, mean cortical thickness also differed 

significantly between sexes, with males showing lower values (t = 3.89, p = 0.001; Fig. 5B, Table 

4). 

 
Figure 2: Box plots depicting brain age delta (years), mean cortical thickness (mm), AD cortical signature (mm), 

and hippocampal volume (%) for the LCR and HRC groups at the baseline. Statistically significant differences were 

observed between the two groups for brain age delta, AD cortical signature, and hippocampal volume at baseline. 

No significant difference was found for mean cortical thickness. 

 

 
Figure 3: Receiver Operating Characteristic (ROC) curves comparing the ability of four MRI-derived measures to differentiate 

between the LCR and HRC groups at baseline.  
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Table 3: Regression model outputs on different MRI metrices at baseline. 

Model  Brain Age Delta  

(years) 

Mean Cortical Thickness 

(mm) 

AD Cortical Signature 

(mm) 

Hippocampal Volume 

(%) 

 

Group 

β 1.250 0.0091 -0.0502 -0.0206 

t 3.521 -0.6622 -2.5848 2.757 

p 0.0009* 0.5085 0.0103 0.0063* 

 

Actual age 

β -0.042 -0.006 -0.0078 -0.0033 

t -1.229 -4.883 -4.317 -4.737 

p 0.221 0.000002* 0.00002* 0.00098 

 

Sex 

β -0.948 0.0473 0.00379 0.0259 

t -2.536 3.4091 0.19499 3.441 

p 0.0118 0.00077* 0.8455 0.0006* 

Note: An asterisk (*) denotes p-values that remained statistically significant after FDR p-value correction. 

 

Table 4: Regression Model Results for Baseline MRI Metrics and Associations with Age and 

Sex. 

Group Model  Brain Age Delta 

(years) 

Mean Cortical Thickness 

(mm) 

AD Cortical Signature 

(mm) 

Hippocampal Volume 

(%) 

 

 

HCR  

 

Actual age 

β 0.004 -0.006 -0.008 -0.003 

t 0.077 -3.365 -3.118 -2.710 

p 0.939 0.001* 0.002* 0.008* 

 

Sex 

β -0.506 0.021 -0.005 0.034 

t -0.992 1.201 -0.201 3.133 

p 0.324 0.232 0.841 0.002* 

 

 

 

LCR  

 

Actual age 

β -0.081 -0.006 -0.007 -0.004 

t -1.760 -3.291 -2.910 -4.109 

p 0.081 0.001* 0.004* 0.000* 

 

Sex 

β -1.482 0.075 0.014 0.016 

t -2.700 3.489 0.454 1.601 

p 0.008* 0.001* 0.651 0.112 

Note: An asterisk (*) denotes p-values that remained statistically significant after FDR p-value correction. 
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Figure 4: Association between different MRI biomarkers and age in HCR and LCR groups. 

 
Figure 5: Boxplots illustrating the distribution of different MRI biomarkers in the HCR and LCR groups according to 

sex. 

 

3.4 Longitudinal analysis  

The LCR and HCR groups exhibited distinct trends over time in terms of MMSE and CDR-SB 

scores. Specifically, HCR subjects showed relatively stable patterns in both MMSE and CDR-SB, 

while these clinical cognitive assessments deteriorated over time in the LCR group (Fig. 6). 

Differences between the two groups across MRI metrics over a 12-year follow-up, along with the 

results of the generalized linear mixed-effects model examining these group differences, are 

presented in Fig. 7 and Table 5. The strongest differentiator was brain age delta, where group 

membership showed a significant effect (β = 0.409, p = 0.025). This was followed by the AD 

cortical signature, which also revealed a significant difference between groups (β = -0.024, p = 

0.020). In contrast, hippocampal volume exhibited a marginal trend toward significance (β = -

0.005, p = 0.094), suggesting potential group differences. Mean cortical thickness did not show 

any significant group effect (β = -0.010, p = 0.167), indicating no distinguishing power between 

the groups for this measure. Demographic factors, such as sex and age, were significant predictors 

across many metrics, with sex influencing brain age delta, cortical thickness, and hippocampal 

volume, while age at baseline consistently had a negative impact on cortical thickness, 

hippocampal volume, and AD cortical signature. 
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Figure 6: Point plot showing the pattern of MMSE and CDR-SB two groups over a 12-year follow-up. Markers ('o') 

indicate mean values at various time points, with error bars representing the 90% confidence interval (CI). "bl" denotes 

baseline data, and "mXX" indicates months post-baseline (e.g., 03, 06, 12, ..., 120 months). 
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Figure 7: Point plot showing differences between two groups across MRI metrics over a 12-year follow-up. Markers 

('o') indicate mean values at various time points, with error bars representing the 90% confidence interval (CI). "bl" 

denotes baseline data, and "mXX" indicates months post-baseline (e.g., 03, 06, 12, ..., 120 months). 

 

Table 5: Results of the generalized linear mixed-effects model examining group differences 

across MRI metrics. 

 β S.E. z P 95% CI 

Brain Age Delta       

Intercept         2.163 1.006 2.150 0.032* [0.191, 4.135] 

Group 0.409 0.183 2.237 0.025* [0.051, 0.768] 

Sex -0.909 0.395 -2.301 0.021 [-1.684, -0.135] 

Age  0.002 0.012 0.148 0.882 [-0.021, 0.025] 

1 | Subject -0.000 0.000 -3.607 0.000* [-0.001, 0.000] 

Mean Cortical 

Thickness  

     

Intercept         2.439 0.039 63.031 0.000* [2.363, 2.515] 

Group -0.010 0.007 -1.381 0.167 [-0.023, 0.004] 

Sex 0.044 0.013 3.323 0.001* [0.018, 0.070] 

Age  -0.002 0.000 -5.388 0.000* [-0.003, -0.002] 

1 | Subject 0.000 0.000 4.985 0.000* [0.000, 0.000] 

AD Cortical Signature      

Intercept         3.751 0.057 65.934 0.000* [3.639, 3.862] 

Group -0.024 0.010 -2.321 0.020* [-0.044, -0.004] 

Sex -0.006 0.020 -0.306 0.760 [-0.045, 0.033] 

Age  -0.012 0.001 -18.114 0.000* [-0.014, -0.011] 

1 | Subject 0.000 0.000 1.718 0.086 [-0.000, 0.000] 

Hippocampal Volume       

Intercept         0.766 0.016 47.688 0.000* [0.734, 0.797] 

Group -0.005 0.003 -1.674 0.094 [-0.010, 0.001] 

Sex 0.018 0.007 2.576 0.010* [0.004, 0.032] 

Age -0.004 0.000 -22.221 0.000* [-0.004, -0.004] 

1 | Subject 0.000 0.000 3.598 0.000* [0.000, 0.000] 

Note: S.E. = Standard Error. The models were based on Equation 3 and included a total of 1,585 observations across 

242 samples. The "Group" variable was the primary variable of interest in this analysis. An asterisk (*) denotes p-

values that remained statistically significant after FDR p-value correction. 

 

A linear mixed model was employed to investigate the impact of age and sex on each MRI metric, 

considering the random effects of participants (Table 6). In both groups, sex did not significantly 

impact brain age delta. However, age had differing effects in each group: the brain age delta 

decreased with age in the HCR group (β = -0.053, p < 0.001), while it increased with age in the 
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LCR group (β = 0.095, p < 0.001). Regarding mean cortical thickness, a significant sex difference 

was found in the LCR group, with females exhibiting a relatively faster or more positive change 

compared to males. The age-related decline in cortical thickness was more pronounced in the LCR 

group (β = -0.005, p < 0.001) than in the HCR group (β = -0.001, p = 0.085), suggesting a stronger 

effect of age on cortical thickness for LCR individuals. For the AD cortical signature, no 

significant sex effects were observed in either group. In both groups, significant negative 

associations between age and AD cortical signature were noted, with the LCR group exhibiting a 

stronger effect (β = -0.018, p < 0.001) compared to the HCR group (β = -0.009, p < 0.001). Lastly, 

a sex difference was observed in the HCR group for hippocampal volume, where males showed a 

relatively faster or more positive change compared to females. The impact of age on hippocampal 

volume was significant in both groups, showing a more pronounced negative correlation in the 

LCR group (β = -0.005, p < 0.001) than in the HCR group (β = -0.003, p < 0.001). 

Table 6: Results from the generalized linear mixed-effects model assessing age and sex 

differences in MRI metrics across each group. 

 Group β S.E. z P 95% CI 

Brain Age Delta        

Intercept         HCR 5.888 1.152 5.113 0.000* [3.631, 8.145] 

LCR -4.089 1.768 -2.312 0.021* [-7.555, -0.623] 

Sex HCR -0.507 0.467 -1.086 0.277 [-1.422, 0.408] 

LCR -0.728 0.614 -1.186 0.236 [-1.930, 0.475] 

Age HCR -0.053 0.014 -3.901 0.000* [-0.080, -0.026] 

LCR 0.095 0.021 4.507 0.000* [0.053, 0.136] 

1 | Subject HCR -0.000 0.000 -4.175 0.000* [-0.001, -0.000] 

LCR -0.000 0.000 -1.914 0.056 [-0.001, -0.000] 

Mean Cortical Thickness        

Intercept         HCR 2.352 0.047 49.651 0.000* [2.259, 2.445] 

LCR 2.576 0.064 40.477 0.000* [2.451, 2.700] 

Sex HCR 0.024 0.017 1.424 0.155 [-0.009, 0.058] 

LCR 0.061 0.020 3.117 0.002* [0.023, 0.099] 

Age HCR -0.001 0.001 -1.722 0.085 [-0.002, 0.000] 

LCR -0.005 0.001 -6.207 0.000* [-0.006, -0.003] 

1 | Subject HCR 0.000 0.000 2.894 0.004* [0.000, 0.000] 

LCR 0.000 0.000 4.276 0.000* [0.000, 0.000] 

AD Cortical Signature       

Intercept         HCR 3.499 0.064 54.665 0.000* [3.373, 3.624] 

remix, or adapt this material for any purpose without crediting the original authors.
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted January 24, 2025. ; https://doi.org/10.1101/2025.01.22.25320988doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.22.25320988


 21 

LCR 4.146 0.102 40.492 0.000* [3.945, 4.346] 

Sex HCR -0.021 0.023 -0.918 0.358 [-0.066, 0.024] 

LCR -0.018 0.033 -0.536 0.592 [-0.082, 0.047] 

Age HCR -0.009 0.001 -11.433 0.000* [-0.010, -0.007] 

LCR -0.018 0.001 -14.711 0.000* [-0.020, -0.016] 

1 | Subject HCR 0.000 0.000 2.656 0.008* [0.000, 0.000] 

LCR 0.000 0.000 0.821 0.412 [-0.000, 0.000] 

Hippocampal Volume        

Intercept         HCR 0.722 0.021 34.297 0.000* [0.681, 0.763] 

LCR 0.832 0.024 34.496 0.000* [0.785, 0.879] 

Sex HCR 0.025 0.010 2.484 0.013* [0.005, 0.044] 

LCR 0.005 0.009 0.505 0.614 [-0.013, 0.023] 

Age  HCR -0.003 0.000 -14.356 0.000* [-0.004, -0.003] 

LCR -0.005 0.000 -18.169 0.000* [-0.006, -0.005] 

1 | Subject HCR 0.000 0.000 2.767 0.006* [0.000, 0.000] 

LCR 0.000 0.000 3.314 0.001* [0.000, 0.000] 

Note: S.E. = Standard Error. The models were based on Equation 4 and conducted separately for each group. Age and 

sex were the primary variables of interest in this analysis. An asterisk (*) denotes p-values that remained statistically 

significant after FDR p-value correction. 

 

4. DISCUSSION 

The primary aim of this study was to evaluate the reliability of various T1-weighted MRI 

biomarkers in distinguishing between HCR and LCR in aging individuals, well before clinical 

symptoms manifest. We focused on four validated biomarkers: brain age delta, mean cortical 

thickness, AD cortical signature, and hippocampal volume, all of which are widely utilized in 

neurodegeneration research. The brain age delta estimates biological brain age using structural 

MRI features, revealing a brain metric that correlates with cognitive outcomes [14-16]. A higher 

brain age delta is linked to poorer cognitive performance and is associated with neurodegenerative 

disorders like AD, showing significant correlations with clinical measures such as MMSE and 

CDR [21]. Cortical thickness measures the thickness of the cerebral cortex and is indicative of 

cognitive function. Cortical thinning is associated with CSF protein levels linked to regulatory, 

developmental, and inflammatory processes, which play a key role in age-related cortical thinning 

[22]. Thinning is often observed in AD, particularly in memory-related regions, making it a 
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valuable tool for differentiating AD from normal aging. However, the relationship between cortical 

structure and AD remains complex. The AD Cortical Signature represents a specific pattern of 

cortical thinning in AD, particularly in the medial temporal lobe and frontal areas [19]. This 

signature is crucial for early detection and monitoring of AD progression and has shown superior 

predictive utility in distinguishing MCI from dementia. Hippocampal Volume is a key biomarker 

for memory and spatial navigation, with reductions indicating AD. Maintaining hippocampal 

volume is associated with better cognitive health in aging, and it serves as a reliable indicator of 

disease progression in AD research. Regarding brain age delta, our prediction model demonstrated 

a desirable MAE of < 2.10 years on both training and validation sets. This performance aligns well 

with similar studies that used T1-weighted data for constructing brain age estimation frameworks 

[23-25]. 

 

4.1 Cross-Sectional Analysis 

Regarding brain age delta, a significant positive coefficient was observed, indicating that 

individuals with LCR exhibited a higher brain age delta compared to HCR (β = 1.250, t = 3.521, 

p = 0.0009). This suggests that LCR individuals experience accelerated brain aging, even when 

their cognitive function remains healthy. This finding aligns with research indicating that brain 

age delta is a sensitive biomarker for neurodegenerative processes and cognitive decline [26]. The 

strong association between group membership and brain age delta highlights its potential as a 

valuable tool for identifying individuals at higher risk for neurological disorders, even in the 

absence of clinical diagnoses [26]. Interestingly, no significant difference in mean cortical 

thickness was observed between the two groups at the baseline (β = 0.0091, t = -0.6622, p = 

0.5085). The absence of a significant difference here may suggest that global cortical thinning is 
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not a distinguishing feature between aging with LCR and aging with HCR groups, particularly 

when the two groups are matched in terms of age, sex, and education. Alternatively, localized 

changes (e.g., AD cortical signature) was relevant in this context. The significant difference in AD 

cortical signature between groups (β = -0.0502, p = 0.0103) reveals distinct patterns of cortical 

atrophy or structural changes that differentiate aging with LCR and aging with HCR. This 

biomarker offers insight into specific brain regions affected by AD and could play a key role in 

early detection and monitoring of neurodegenerative processes. In examining hippocampal 

volume, a significant negative coefficient was found at baseline (β = -0.0206, t = 2.757, p = 

0.0063), indicating that individuals with LCR properties have lower hippocampal volume 

compared to those with HCR properties. This suggests that LCR individuals may be at greater risk 

for memory-related issues and cognitive decline. Since the hippocampus is crucial for memory 

formation, its reduced volume in those with LCR properties could reflect underlying neurological 

changes that may not yet be clinically evident. 

Based on statistical significance and effect sizes, brain age delta demonstrated the strongest group 

effect (highest t-value, lowest p-value), followed by hippocampal volume. Although AD cortical 

signature showed a significant group effect, it was less pronounced than brain age delta and 

hippocampal volume. The ROC analysis supported these findings, showing that brain age delta 

had the highest discriminatory power (AUC = 0.73), while cortical thickness (AUC = 0.55), AD 

cortical signature (AUC = 0.60), and hippocampal volume (AUC = 0.63) showed limited accuracy. 

Our results surpass those of previous studies, which reported an AUC of 0.656 for distinguishing 

cognitively healthy aging individuals who later converted to MCI from those who did not, based 

on chronological age, sex, and brain age delta derived from structural MRI data [26].Unlike our 

study, the mentioned study did not match groups for baseline age, sex distribution, or MMSE 
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scores, and significant differences were observed in other baseline demographic and clinical 

variables [26]. 

 

4.2 Longitudinal analysis  

In our longitudinal analysis, we noticed that aging with HCR and aging with LCR exhibit distinct 

patterns as time progresses. The results of the generalized linear mixed-effects model reveal 

significant insights into the differences in MRI metrics between groups (Table 5). Notably, brain 

age delta (p = 0.025) and AD Cortical Signature (p =0.020) emerged as the most effective 

measures for distinguishing between LCR and HCR groups, with both showing statistically 

significant differences. The positive coefficient for brain age delta suggests that LCR group 

exhibits an older brain age compared to the other over time, indicating potential neurodegenerative 

changes. Similarly, the negative coefficient for the AD Cortical Signature implies that LCR group 

may have higher cortical thickness shrinking in the specific cortical thickness regions. In 

contrast, mean cortical thickness (p = 0.167) and hippocampal volume (p = 0.094) did not 

demonstrate significant differences, suggesting they may be less reliable indicators in this context. 

Overall, these findings highlight the ability of brain age delta to trace cognitive decline over time 

in aging with HCR and aging with LCR. This highlights the potential of brain age biomarkers for 

use in clinical assessments and research on neurodegenerative diseases. 

Interesting results were observed when assessing the impact of age on each group 

separately using linear mixed models (Table 6). Age had a significant negative effect on brain age 

delta in the HCR group (β = -0.053, p < 0.001), meaning that as individuals age, their brain age 

delta decreases, suggesting better cognitive resilience. In contrast, the LCR group showed a 

significant positive effect of age (β = 0.095, p < 0.001), indicating that older individuals in this 
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group have a greater brain age delta, reflecting accelerated aging. In other biomarkers, we observed 

a negative association with age. As for the cortical thickness biomarker, age negatively impacted 

mean cortical thickness in both groups, with the LCR group showing a more pronounced effect (β 

= -0.005, p < 0.001) compared to the HCR group (β = -0.001, p = 0.085). This indicates that cortical 

thinning is more significant in the LCR group as they age. This pattern was also observed on AD 

cortical thickness biomarker such age had a significant negative effect on the AD cortical signature 

for both groups (HCR: β = -0.009, p < 0.001; LCR: β = -0.018, p < 0.001), indicating that older 

individuals exhibit a more pronounced AD cortical signature, which is consistent with the 

progression of Alzheimer's pathology, and LCR group showed faster AD cortical signature 

shrinking than HCR. As for hippocampal volume, age negatively affected in both groups (HCR: β 

= -0.003, p < 0.001; LCR: β = -0.005, p < 0.001), indicating that as individuals age, hippocampal 

volume decreases, which is a common finding in neurodegenerative conditions, but this event 

occur a bit faster in LCR group. In general, in this analyse, brain age delta showed a robust and 

excellent results as it showed opposite trends in HCR and LCR groups, making it the most effective 

biomarker for distinguishing between the two groups over time than other T1-weighted MRI 

biomarkers. Previous studies have identified an association between accelerated cognitive decline 

and increased rates of brain volume loss [27]. In our LCR group, we observed a strong relationship 

between disease progression (from cognitive health to MCI) and brain characteristics, specifically 

cortical thickness and hippocampal volumes. This suggests that faster rates of cognitive decline 

are associated not only with more rapid brain volume loss but also with localized cortical thinning, 

such as the AD cortical signature. 

Our longitudinal findings also underscore a robust connection between structural brain 

preservation and cognitive resilience. Specifically, in our HCR group, age-related brain atrophy 
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and cortical thinning occurred at a significantly slower pace compared to LCR group. This 

observation highlights the critical role of protective factors in mitigating substantial brain atrophy. 

Key factors contributing to this preservation may include genetics [28, 29], physical activity [30, 

31], life satisfaction [30], dietary patterns [31, 32], diabetes [30], sleep quality [33], social 

engagement, education [34], and environmental influences [35]. Despite these insights, the precise 

molecular mechanisms by which these factors shield the brain from significant atrophy remain 

unclear [35]. Further research is essential to unravel these underlying processes, which could 

inform strategies for enhancing cognitive and structural brain health in aging populations. These 

results not only emphasize the importance of fostering these protective factors throughout life but 

also offer valuable direction for future studies aimed at improving the quality of life and cognitive 

function among older adults. 

 

4.3 Impact of age and sex factors  

An interesting observation was the lack of significant correlation between brain age delta and 

chronological age when we examined group differences in cross-sectional and longitudinal 

analyses (Tables 3 and 5). This result can be attributed to the use of a validated bias adjustment 

technique, which minimizes the influence of age on brain-age values [20]. A major advantage of 

a non-age-dependent biomarker is its broad applicability, eliminating the need for age-based 

adjustments. Such biomarkers provide more consistent disease indications, making them useful 

across different age groups and avoiding complications from normal age-related changes. In 

contrast, mean cortical thickness, AD cortical signature, and hippocampal volume showed strong 

age-related patterns, with older age correlating with lower values in both cross-sectional and 

longitudinal analyses (Tables 3 and 5). This age dependence complicates the interpretation and 
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generalizability of results, as age must be considered a confounding factor. It has been reported 

that cognitively healthy males tend to have brains appearing significantly older than their female 

counterparts, with an average difference of 5.58 years [36]. This tendency has also been observed 

in terms of glucose brain metabolism, with cognitively healthy males showing a significantly 

higher mean metabolic brain age difference compared to cognitively healthy females, with a 

difference of 1.1 years [37]. Consistent with these findings, our analysis revealed that cognitively 

healthy males exhibited a higher brain age delta compared to females at baseline when data from 

both groups were combined (N = 242; t = 2.73, p = .006, independent t-test; mean difference = 1 

year). When comparing aging with HCR and LCR, a significant sex difference was observed only 

in the LCR group. Specifically, males in the LCR group exhibited a notably higher brain age delta 

(t = 3.78, p = .008; Fig. 5A) and a significantly lower mean cortical thickness than females (t = 

3.89, p = .001, independent t-test; Fig. 5B, Table 4). In the group with HCR, males had 

significantly lower hippocampal volume than females, although no significant differences were 

observed between sexes for other metrics (Table 4). These findings suggest that sex may play a 

complex role in cognitive decline and the progression from cognitively healthy states to MCI or 

AD. Further research is needed to better understand the impact of sex on these transitions.  

 

To the best of our knowledge, only a small number of studies have explored the progression 

from cognitively healthy to MCI in elderly individuals, with most relying primarily on baseline 

data [26, 38, 39]. Moreover, detecting the onset of MCI from a cognitively healthy state remains a 

significant challenge due to the subtle nature of morphological and cognitive changes in the early 

stages [40-42]. While some studies have investigated this transition, our study provides novel 

insights by leveraging a variety of MRI biomarkers to address this complex process. What sets our 
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research apart from previous studies is its unique methodological strengths. Our analysis utilized 

both cross-sectional and longitudinal data, following participants for a minimum of 7 years, with 

some cases extending up to 12 years. This extended follow-up allowed us to categorize participants 

into HCR and LCR groups, enabling a deeper understanding of how each group behaves over time 

in relation to MRI biomarkers. Unlike prior studies that classified participants based solely on 

cognitive status, our approach included neuroimaging validation of MCI diagnosis. To ensure the 

highest quality data, we employed pre-processed MRI features using validated software such as 

FreeSurfer, renowned for its robustness in multi-center and multi-scanner studies [43]. 

Additionally, to mitigate potential confounding effects from varying scanner manufacturers, we 

applied a harmonization technique, longitudinal ComBat, to standardize the MRI features [17]. 

Our study also benefited from the harmonized data provided by the ADSP-PHC, further enhancing 

the reliability of our results. A key strength of our analysis was the inclusion of data from multiple 

sites and scanners (Section 2), which underscores the generalizability of our findings. The 

predictive model used in our study demonstrated strong performance even when tested on 

independent datasets, further validating its robustness. Importantly, we ensured that the groups 

were matched for baseline characteristics, including age, sex distribution, and cognitive scores 

(MMSE, CDR, and CDR-SB). This careful matching ensures that the observed structural brain 

differences between the groups can be attributed to neuroimaging features, rather than baseline 

demographic or cognitive variations. In general, our cross-sectional and longitudinal analyses 

highlight that brain age delta offers more robust results compared to other T1-weighted MRI 

biomarkers for distinguishing LCR aging individuals from HCR aging individuals, even years 

before clinical symptoms appear, when both groups exhibit normal cognitive functioning. This 

finding emphasizes the potential of combining machine learning algorithms with MRI data to 
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improve clinical outcomes, rather than relying solely on MRI data. Our study's comprehensive 

approach, combining rigorous methodology with a robust dataset, provides new insights into the 

brain's structural changes associated with cognitive decline. Despite the strength of our findings, 

it is important to note that additional studies utilizing other neuroimaging modalities, such as tau 

and amyloid positron emission tomography (PET), diffusion tensor imaging (DTI), and functional 

MRI, are needed. These studies would not only help validate our results but also provide new 

insights into the underlying mechanisms of cognitive reserve in the aging population. 

 

5. Conclusion:  

 

While further research is required to determine the optimal T1-weighted MRI-based biomarker for 

detecting LCR aging, our findings suggest that brain age holds great promise as a key biomarker 

for understanding brain structural aging. It has the potential to identify individuals at risk for MCI 

long before clinical symptoms appear, as well as to monitor cognitive performance and assess the 

effectiveness of interventions and treatments over time. Moreover, our study demonstrates that 

integrating machine learning algorithms with neuroimaging data enhances the accuracy of 

cognitive biomarkers, underscoring the transformative role of machine learning in advancing 

health sciences. Additionally, our findings highlight the direct connection between structural brain 

reserve and cognitive reserve, demonstrating that individuals with HCR exhibited significantly 

less structural brain change with increasing age. This underscores the importance of protective 

factors (e.g., physical activity, life satisfaction, dietary patterns, diabetes management, sleep 

quality, social engagement, education, and environmental influences) in promoting both brain 

reserve and cognitive reserve. 
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