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Abstract

Quantifying the effect of non-pharmaceutical interventions (NPIs) is essential for formulating lessons

from the COVID-19 pandemic. To enable a more reliable and rigorous evaluation of NPIs based on time

series data, we reanalyse the data for the original official evaluation of NPIs in Germany using an ensemble

of 9 competitive statistical methods for estimating the effects of NPIs and other determinants of disease

spread on the effective reproduction number R(t) and the associated error bars. A proper error analysis for

time series data leads to significantly wider confidence intervals than the official evaluation. In addition

to vaccination and seasonality, only few NPIs – such as restrictions in public spaces – can be confidently

associated with variations in R(t), but even then effect sizes have large uncertainties. Furthermore, due to

multicollinearity in NPI activation patterns, it is difficult to distinguish potential effects of NPIs in public

spaces from other interventions that came into force early, such as physical distancing. In future, NPIs

should be more carefully designed and accompanied by plans for data collections to allow for a timely

evaluation of benefits and harms as a basis for an effective and proportionate response.

INTRODUCTION28

The COVID-19 pandemic has arguably been the most globally disruptive event of the 21st29

century so far. In the aftermath of the pandemic, there is now considerable interest to revisit the30

handling of the crisis and derive lessons for better responses to similar events in the future.31

The effectiveness of interventions to influence the spread of COVID-19 is a key piece of the32

puzzle in deriving such lessons. Non-pharmaceutical interventions (NPIs) of an unprecedented33

scale were implemented during the pandemic with substantial collateral effects and at the sig-34

nificant expense of civil liberties. A proper evaluation of both the benefits and harms of such35

interventions is required since the proportionality of the response is central to the formulation of36

pandemic strategy [1].37

The scientific literature on NPI effects is vast, with enormous heterogeneity in methodology,38

quality, and reported conclusions. Official reports on the efficacy of NPIs have therefore been39

commissioned in countries such as the UK [30], Switzerland [3], and Germany [4] to quantify40

NPI effects by means of a literature review or a sufficiently comprehensive statistical analysis or41

meta-analysis of available data and inference models. Similar efforts have also been undertaken42

outside of official government reviews [5]. Such independent evaluations of NPIs are essential to43

establish the complete picture and some form of scientific consensus view on the magnitude and44
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FIG. 1. R(t) for individual states (black) compared to the fit of the baseline model (red).

uncertainties of NPI effects.45

Beyond conducting evaluations in additional countries and with large-scale evidence synthesis46

across countries, it is also important to perform independent verification and validation (IV&V)47

of every step of the analysis pipeline for influential government assessments conducted to-date.48

Moreover, ensemble modelling – employing multiple models rather than just one – may help49

achieve greater objectivity and, under appropriate circumstances, also better predictive perfor-50

mance than any single model by model averaging [6]. Such an approach can help to better assess51

the robustness of NPI effect estimations and systematically identify key sources of uncertainty that52

need to be addressed by follow-up studies. Some IV&V exercises have been conducted during the53

pandemic on epidemiological models for prediction and inference, and have provided important54

insights on their uncertainties and sensitivities [7, 8].55

We here conduct independent verification and validation for the evaluation of government in-56

terventions on disease spread in Germany by the StopptCOVID project, which was commissioned57
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Model Model type Errors Shrinkage

Baseline Linear regression Standard errors —
DK Linear regression Driscoll-Kraay —

Ebisuzaki Linear regression Ebisuzaki —-
BT Linear regression Stationary bootstrap —

2WFE Linear regression, two-way fixed effects Stationary bootstrap —
ARMA(p,q) Linear regression ARMA(p,q) errors —

DYN Renewal equation Stationary bootstrap —
RF Random forest regression Stationary bootstrap (cases) —

Elastic net Linear regression Stationary bootstrap Elastic net
PCR Linear regression Stationary bootstrap Principal component regression

TABLE 1. Overview of implemented models.

by the German Federal Ministry of Health in 2020 [4] to be carried out by the Robert-Koch Insti-58

tute (RKI, German Centre for Disease Control) and external collaborators. Results were published59

as a non-refereed report and released to the press in mid-2023 [1]. Despite critiques of the study60

methodology [10, 11] the underlying data and the analysis code were not initially made pub-61

lic. They were finally made available to the community in early April 2024 [12] after significant62

political pressure on the German Health Ministry for transparency in a matter of major societal63

relevance [13].64

After the release of the data, we set up an IV&V project to re-examine key findings of the study,65

both in recognition of the added benefit of a completely independent reanalysis, and of RKI’s66

limited resources to perform more extensive verification and validation. The IV&V exercise seeks67

to provide updated estimates and error bars for effects of NPIs and other selected determinants of68

disease spread onR(t), but the aims are not limited to IV&V. The project also seeks to elucidate and69

compare capabilities and limits of commonly used inference techniques for NPI evaluation, and70

to identify gaps in data for assessing NPI effectiveness and potential remedies (e.g., the need for71

certain experimental studies). In keeping with the Guidelines for Accurate and Transparent Health72

Estimates Reporting (GATHER) [14], we therefore provide exhaustive supplementary materials73

containing a conceptual overview of the analysis methods and a description of methods to calculate74

uncertainties (Supplementary Methods S3–S5).75
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RESULTS76

StopptCOVID estimated the effect of various NPIs, holidays, vaccination, and seasonality77

(modelled as a cosine and sine function modulation) on the logarithm of the effective reproduction78

number R(t) using weighted least squares (WLS) linear regression (Equation 2). The results of79

this baseline model were replicated to very high accuracy. However, based on the model fits and80

the NPI activation patterns, we diagnosed two important concerns with the statistical analysis.81

Statistical Concerns with the Baseline Model82

The fitted time series for individual states are shown in Figure 1. We note that despite a co-83

efficient of determination of R2 = 0.831, the data show substantial dynamics that are not re-84

produced by the fit. Visual inspection already shows that the errors display autocorrelation (i.e.,85

non-independent residuals at adjacent data points), which violates the assumption made by Stoppt-86

COVID (see also Supplementary Figure S1). Formally, strong autocorrelation is indicated by very87

low values of the Durbin-Watson statistic [15] of the residuals around 0.2 or less for all federal88

states. The presence of autocorrelation in the errors terms implies that standard regression errors89

for effect sizes do not apply and may substantially underestimate the actual errors.90

Autocorrelation in the residuals also implies that the evolution of R(t) is either affected91

markedly by unmodelled processes (e.g., cluster effects in networks) or by measurement arte-92

facts (e.g., ramp-up of testing) that can produce the observed autocorrelation structure in R(t), or93

by both. The fact that the residuals form highly stochastic time series may point to unmodelled94

processes rather than observational artefacts. Unmodelled processes or measurement artefacts may95

have a bigger impact on epidemic dynamics than suggested by the residuals if the baseline model96

is misspecified; the residuals merely define a minimum level for the magnitude of unmodelled97

processes or observational noise.98

A second issue is multicollinearity, i.e., the presence of (strong) correlations among the ex-99

planatory variables (i.e., NPI activation variables). Strong multicollinearity leads to a highly ill-100

conditioned regression problem, and can result in a spurious increase, decrease, or even reversal101

of effect sizes and inflate the estimated confidence intervals [2, 17]. The degree to which estimates102

for the regression coefficients for explanatory variables are affected by multicollinearity can be103

quantified by the variance inflation factor (VIF; see Supplementary Discussion S1.1 for details).104
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Empirical rules-of-thumbs are typically used to identify “serious” multicollinearity, e.g., a thresh-105

old values of VIF > 10. In the NPI data set, many of the included NPI variables are subject to106

severe multicollinearity, and some of the VIFs exceed 100.107

Given these two problems, there are concerns that the confidence intervals and point estimates108

from StopptCOVID are not valid simply from a statistical perspective. Further limitations due109

to the epidemiological assumptions are reviewed in Supplementary Discussion S1. This study110

addresses the statistical concerns as Work Package 1 of the IV&V project.111

Model Ensemble112

To obtain more reliable point estimates and confidence intervals despite the presence of au-113

tocorrelation and multicollinearity, we use an ensemble of 9 different competitive methods for114

estimating effects and error bars. These were selected based on a survey of statistical analysis115

methods for panel and time series data in the NPI studies reviewed by Murphy et al. [30], sup-116

plemented by a wide consultation of the technical literature in relevant disciplines. In addition117

to the baseline model – WLS with default, non-robust standard errors – the ensemble includes118

WLS with Driscoll-Kraay errors [73], WLS with errors based on Ebisuzaki’s method [93], regres-119

sion with autoregressive moving average (ARMA) errors, WLS with stationary bootstrap errors120

[88], and, also with stationary bootstrap errors, two-way fixed effects WLS, a renewal equation121

model, elastic net regression, principal component regression, and random forest regression as a122

machine learning technique. Table 1 shows an overview of the model types, error analysis, and (if123

applicable) shrinkage methods for handling multicollinearity.124

Injection-Recovery Test125

To gauge the sensitivity of the models, we run all the models on synthetic panel data assuming126

that the baseline model for R(t) is correct (for want of experimental data with known effect sizes).127

This approach (injection-recovery test) is a standard method for determining the sensitivity of128

analysis methods for time series and other complex data [e.g., 21, 22]. We sort the models into129

two groups based on whether they can recover the hypothetical effect sizes from StopptCOVID130

without bias (Group A) or not (Group B).131

Results of the injection-recovery test are shown in Figures 2 and 3. Models DK (Driscoll-Kraay132
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FIG. 2. Injection-recovery test for model Group A. For the models in this group, this is merely a sanity
check for correct implementation. Numbers Lx indicate stringency levels of NPIs. Note that CHRS is a
combined category for the cultural sector, the hotel and restaurant industry and sports.
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FIG. 3. Injection-recovery test for model Group B. The injection-recovery test shows that these models
cannot exactly recover the effect sizes for the baseline model, but are subject to bias.
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FIG. 4. Point estimates and confidence intervals for model Group A.
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FIG. 5. Point estimates and confidence intervals for the (biased) models in group B, compared to linear
regression with bootstrap errors.

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.22.25320783doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.22.25320783
http://creativecommons.org/licenses/by-nc-nd/4.0/


errors), BT (bootstrap errors), Ebisuzaki, 2WFE (two-way fixed effects) and ARMA(1,11) by con-133

struction recover the effects of the baseline model exactly, and hence this test is only a sanity check134

for their implementation. As it is formulated for consistency with the baseline model, the dynam-135

ical model DYN also recovers these effects without bias. With the best-fit hyperparameters from136

cross-validation, models RF, Elastic Net and PCR all exhibit bias in the injection-recovery test and137

are therefore assigned to Group B. For the largest effects in the baseline model (such as public138

spaces L2-L5 and vaccination), the bias is consistently towards the null. In some cases (e.g.,139

COVID tests L3, the sign of the effect in the baseline model is inverted). One notable exception140

concerns physical distancing L2, to which Group B models consistently ascribe a relatively large141

effect. Random forest regression ascribes a reduction of about 25% in R(t) to physical distanc-142

ing relative to the state without interventions (case RF0). The reduction of the effects for public143

spaces and the increased effect of physical distancing L2 is essentially a reassignment of effects144

within groups of NPIs that were in place (at some level) quite consistently from the early phase of145

the pandemic.146

Random forest regression yields different linear effect estimates depending on the reference147

state for the linearisation of the model. It tends to underestimate effects in the presence of other148

NPIs with their actual activation profile (case RF1). By contrast, it overestimates the effect that149

many NPIs would have as single intervention (case RF0). For example, case RF0 yields large150

effects – though with big error bars – for public outdoor events L6, stay-at-home-orders and151

physical distancing. Clearly, neither the RF0 nor the RF1 estimates from model RF are satis-152

factory in the injection-recovery test. Further analysis of the behaviour of model RF is provided153

in Supplementary Discussion S9. This analysis also reveals that the effect sizes for the sine and154

cosine component in random forest regression cannot be interpreted as amplitudes of the seasonal155

variation, and will therefore be discarded in the subsequent discussion.156

The bias in the Group B models does not render these models incorrect for effect estimation.157

The Elastic Net and PCR models will, by construction, achieve a more parsimonious fit to the158

actual data for R(t) and may filter out noise in the effect estimates. However, because of the risk159

of bias in Group B, Group A forms the principal basis for our conclusions, while Group B serves160

to aid and temper the interpretation of the inferred statistical associations.161

In particular, we assess random forest regression to be of limited usefulness for extracting linear162

effect sizes of individual NPIs for the time being. The model may correctly perceive saturation163

effects, i.e., little additional effect by single NPIs when many others are switched on already, and164
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its effect estimates in some sense correctly reflect the difficulty of distinguishing the effects of165

NPIs with similar activation patterns. Random forest regression may be useful for generating166

hypotheses for non-trivial interactions between NPIs, which would need to be investigated using167

additional, independent data. More work is called for before using it routinely for determining168

intervention effects.169

Effect estimates and confidence intervals170

Effect estimates and confidence intervals for model groups A and B are shown in Figure 4 and171

5, respectively, and are also listed in Supplementary Table S3. To facilitate comparison between172

the two groups, the results for model BT (linear regression with bootstrap errors) are also included173

in Figure 5.174

Model Group A175

Within Group A, the effect sizes in the linear regression models DK, BT, and Ebisuzaki trivially176

agree with the baseline model. The confidence intervals for these models are much wider than for177

the baseline model from the original StopptCOVID study. Confidence intervals calculated used178

Driscoll-Kraay errors, Ebisuzaki’s method, or the stationary bootstrap are generally very similar.179

Model 2WFE generally yields similar effect estimates and confidence intervals, with a few no-180

table exceptions. First, the estimated effects of NPIs for public spaces and several NPI levels for181

the cultural sector, the hotel and restaurant industry and sports (CHRS) are close to the null, and in182

some cases, the confidence intervals do not overlap with the DK, BT, and Ebisuzaki models. The183

only NPIs for which the model yields a significant beneficial effect are those for night life (L2–3).184

Second, the estimated vaccine effect is considerably smaller, but with a very large confidence inter-185

val that overlaps with those of models DK, BT, and Ebisuzaki. The reason for the larger error bar186

lies in the close synchronisation of vaccination across the federal states. The two-way fixed effects187

model is, in a sense, optimised to detect effect based on difference between the response variable188

and explanatory variables across entities and therefore struggles to deliver a precise estimate. We189

take this into account by constructing assessment criteria that are robust to such an outlier result.190

Regression with ARMA(1,11) errors gives similarly narrow confidence intervals, and in a few191

cases even narrower confidence intervals, than the baseline model, but the interval for vaccination192
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remains substantially wider. The effect estimates, however, often differ markedly from the baseline193

model. The effect estimates for public spaces are considerably smaller. In turn, the model ascribe194

more than a 10% reduction in R to masks and stay-at-home orders and small, but statistically195

significant effects to a few others NPIs, e.g., in schools.196

The DYN model (renewal equation) tends to yield effect estimates within the error bars of197

the DK, BT, and Ebisuzaki models. Thus, fitting the case data instead of R(t) yields relatively198

consistent results within these “safe” error bars. However, the confidence intervals for model199

DYN are often as narrow as for the baseline model, sometimes even narrower (e.g., for public200

outdoor events), and sometimes wider (e.g., for masks). The confidence intervals often do not201

overlap with the baseline model. This suggests that the bootstrapping procedure used for model202

DYN does not yet fully account for autocorrelation.203

Overall, however, the Group A confidence intervals for most explanatory variables overlap well204

and the scatter between the point estimates of different models tends to be bounded by the DK, BT,205

and Ebisuzaki error bars. Notable exceptions include the NPIs for public spaces, some NPIs for206

the cultural sector, the hotel and restaurant industry and sports (CHRS), vaccination (with the DYN207

and 2WFE models as outliers) and the sine component of the seasonal modulation. In the case of208

the vaccine effect, the relative uncertainty due to the between-model scatter is modest compared209

to the large effect size, however.210

Following StopptCOVID, the vaccine effect intends to represent the result of halving the frac-211

tion of unvaccinated individuals. As the original implementation leads to pathological behaviour212

in the limit of a high vaccination fraction, we also considered a modification of model DYN that213

correctly implements the vaccine effect (Supplementary Disccusion S1.3). The corrected model214

yields a nominal vaccine efficacy of about 75% against infection, and the other effect estimates215

remain within the “safe” BT, DK and Ebisuzaki error bars. The bulk of first-dose vaccination oc-216

curred about three months before the end of the study period, i.e., the waning of vaccine efficacy217

played a lesser role. The estimated vaccine efficacy is therefore roughly consistent with the high218

short-term efficacy against infection inferred by the clinical trials and cohort studies [11–13, 26],219

especially bearing in mind that some conflation of the effects of the first- and second-dose may be220

implicit in the StopptCOVID model.221
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Model Group B222

The models with explicit shrinkage and the RF1 estimates from random forest regression all223

yield significantly narrower confidence intervals than non-regularised regression with bootstrap224

errors (which is the purpose of shrinkage in the first place). The RF1 estimates from random225

forest regression and principal component regression tend to shrink the confidence intervals even226

more strongly. The RF0 estimates do not show much shrinkage and sometimes result in wider227

confidence intervals than linear regression with bootstrap errors.228

With regard to point estimates, there is a rough tendency of elastic net and principal component229

regression to shrink strong effects in the baseline model to modest or small effects, and to magnify230

a few small effect estimates. As in the recovery-injection test, random forest regression tends to231

yield very small effects for many NPIs if the actual NPI activation is used as reference state (case232

RF1), but some very large effects for single NPIs without any other concurrent interventions (case233

RF0).234

The prominent cases where the models with significant shrinkage of the confidence intervals235

yield smaller effects outside the BT error bars are the NPIs for public spaces – as the ARMA(1,11)236

and 2WFE models in the previous subsection – and vaccination. Exactly as in the injection-237

recovery tests, the models with shrinkage prefer to attribute a greater effect to physical distancing,238

and to some extent to policy COVID tests L3.239

Ranking of Effects240

Despite considerably wider error bars than in StopptCOVID, some statistically significant asso-241

ciations of variations in R with interventions or environmental factors can be detected. Visually,242

the effects of vaccination and seasonality emerge most clearly. For vaccination, only model 2WFE243

has a confidence interval that overlaps with zero, which we consider an outlier for reasons de-244

scribed above. For the sine component of seasonality, only one confidence interval marginally245

overlaps with the null, and all Group A models shows a significant cosine modulation. This is re-246

inforced by the regularised regression models (elastic net and PCR), which also show a significant247

cosine component.248

For a more quantitative identification of the NPIs that may be associated with lower R(t), we249

define two different scores (Tables 2 and 3) to quantify how confidently a null effect can be ex-250
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Explanatory Disagreement Overlap Sum
variable on sign with null (integer score)

Seasonality (cos) 0 0 0
Vaccination (1st dose) 0 1 1

Easter & Christmas 0 1 1
Seasonality (sin) 0 1 1
Public spaces L2 1 1 2
Public spaces L4 1 1 2
Public spaces L5 1 1 2
Public spaces L3 1 1 2
Service sector L4 0 3 3
Service sector L5 0 3 3

Night life L2 0 3 3
Child care facilities L4 0 3 3
Child care facilities L3 0 3 3

Masks L3 0 3 3
CHRS, 3 at highest Lvl 1 2 3

TABLE 2. Integer score for ranking the likelihood of a real association of covariates with R(t) based on
model Group A. Lower scores are better. Only the top-14 NPIs are shown. Scores of up to 2 are rated as
potentially indicative of a real association with variations in R(t) (see text).

Explanatory False positive
variable risk score

Seasonality (cos) 0.002
Seasonality (sin) 0.008

Easter & Christmas 0.028
Vaccination (1st dose) 0.029

Service sector L4 0.041
Night life L3 0.052
Night life L2 0.077

Child care facilities L4 0.082
Public spaces L2 0.100

CHRS, 2 at 2nd-highest Lvl 0.102
Service sector L5 0.103
Public spaces L3 0.103
Service sector L2 0.104

Child care facilities L3 0.104

TABLE 3. False positive risk score for the 14 most highly-ranked explanatory variables based on model
Group A. Scores lower than 0.1 are rated as indicative of a real association with variations in R(t) (see text).
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cluded based on within-model error bars and between-model consistency. The first score is the251

number of models that disagree with the sign of the median effect estimate across models plus the252

number of models with confidence intervals that overlap with the null.253

The second score (“false positive risk score”) is the average of the false-positive probabilities254

Q in the models computed from the cumulative t-distribution,255

Q =

βi∫
−∞

tν

(
x

√
varβi

)
dx, (1)

where the number of degrees of freedom ν is the number of observations minus the number of256

federal states and explanatory variables (although ν = ∞ for practical purposes). In line with257

guidelines for multi-model comparisons [27], one should avoid interpreting the resulting metric258

as a probability. Both scores are merely heuristic scales that penalise lack of significance and259

between-model variation. Recognising the bias in Group B models, these scores are computed260

only for Group A, and the baseline model is also excluded because of its unrealistic error model.261

The explanatory variables with the top-14 scores are shown in Tables 2 and 3, respectively. As262

a cut-off for a potentially indicative association of an NPI with lower R(t), we tentatively suggest263

that there should either be no more than two vetos (integer score of two or less), or that the264

average false-positive risk score should not exceed 0.1. This allows us to accept effects as likely265

even when a model is a clear outlier, or when a few models do not find a significant effect, but266

all point estimates clearly cluster on one side. Along with vaccination, seasonality and Easter &267

Christmas, this leaves NPIs for public spaces, the service sector (L4), night life and child care268

facilities (L4) as the best candidates for associations with lower R(t). Among these, we rate the269

effect of restrictions in public spaces as most statistically robust because only model 2WFE fails270

to find a significant association with lower R(t) and is responsible for the lower ranking of these271

NPIs on the second score.272

The models with shrinkage serve to temper the scores in Tables 2 and 3, however. They indicate273

that the effects of NPIs for public spaces and night life may be weaker and hard to distinguish274

from the effects of physical distancing. Rather than blindly accepting the scores in Tables 2 and275

3, further research is required to better distinguish the effects of classes of NPIs that came into276

force early during the pandemic and are therefore tend to be assigned large effects by the models.277
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DISCUSSION278

Our model ensemble demonstrates that the confidence intervals from the original evaluation279

of German NPIs by StopptCOVID are substantially too narrow. They are neither consistent with280

a more rigorous error analysis for linear regression, nor with the between-model variation in the281

ensemble. The data for R(t) and NPIs are insufficient for confidently assigning effects to most282

NPIs. Moreover, the confidence intervals are generally so wide that it is impossible to confidently283

detect trends with increased stringency, contrary to claims by StopptCOVID. Especially for NPIs in284

public spaces, even the point estimates do not suggest additional benefits from higher stringency285

levels, similar to other recent claims in the literature [28].286

It is important to point out that any inferred effects on R(t) still need to be translated into287

relevant public health outcomes (e.g., total or peak hospitalisations, years or quality-adjusted years288

of lives saved) for a satisfactory assessment of interventions. This complex task requires additional289

information beyond the effects of NPIs onR(t). Moreover, estimation of NPI effects may have even290

more error and uncertainty than what we estimated here, if data are unreliable, a common feature291

in the chaotic circumstances of the COVID-19 pandemic.292

Furthermore, the epidemic model considered in this study cannot determine feedback effects293

and non-linear effects can impact both disease spread and the risk factors; hence constructing294

counterfactual trajectories of R(t) can be misleading. For example, self-regulating behaviour in295

the population [29, 30] or population heterogeneity [22, 24] may lead to a slow-down of disease296

spread independent of NPIs. Time dependence, in particular waning of immunity after vaccina-297

tion or infection is another relevant complication that can lead to counterinuitive results such as298

“immunity debt” [33]. In the context of vaccination against seasonal respiratory diseases, higher299

vaccine coverage can under certain conditions increase infection peaks [34–39]. Similarly unin-300

tuitive disease dynamics – which obviously cannot be translated directly to COVID-19 – has also301

long been studied for rubella [40, 41] and measles [42]. The implications of temporary vaccine-302

induced immunity should only be assessed based on a sufficient understanding of the principles of303

time-dependent disease dynamics.304

We are forced to conclude that the approach taken by the German Federal Ministry of Health305

is insufficient for ascertaining public health outcomes of NPIs given the revealed statistical limita-306

tions. To enable robust evaluation and adjustments of NPIs to ensure proportionality and balance307

benefits and harms, future public health interventions should be designed with a sufficient pre- and308
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post-intervention observation times to permit a meaningful determination of effects. This should309

be coupled with careful epidemiological considerations and plans for relevant data collection [43].310

Where a preliminary cost-benefit analysis suggests rough equipoise, interventions should include311

a control group. State-of-the art time series analysis should be used to inform the required design,312

similar to the use of sample size calculations to ensure sufficient power for other epidemiological313

studies. Pandemic research programs should be coordinated to systematically identify knowledge314

gaps and ensure that data for interventions effectiveness in relevant settings (hospitals, nursing315

homes, etc.) are obtained to complement studies of population-wide disease spread.316

Most prior literature on time-series based NPI studies does not adequately address critical sta-317

tistical problems like autocorrelation and multicollinearity. Therefore, underestimation of NPI318

effect uncertainties is likely a broader problem in the literature. We recommend that key results319

be subjected to a similar reanalysis to provide reliable information for pandemic planning to pol-320

icymakers. In future, policymakers and funders should more broadly support validation research,321

and actively seek validation for critical policy-relevant research.322

MATERIALS AND METHODS323

StopptCOVID baseline model324

For estimating the effects of NPIs in Germany, StopptCovid uses a linear regression model for325

the logarithm of the time-dependent reproduction number R j(t) for each federal state (“Bundes-326

land”) j. NPIs are included as a set of NNPI = 51 explanatory variables Xi on a scale from 0 to327

1 (see below for details). In addition, the model includes two trigonometric terms for a harmonic328

seasonal modulation of R j(t) with arbitrary phase, a dependence on the fraction of vaccinated indi-329

viduals (at least one dose), and fixed effects α j for state j. The model assumes that lnR(t) increases330

by 0.3 and 0.6 times the share να and νδ of the α- and δ-variant, respectively. Effects of variants331

are not estimated but imposed manually as fixed parameters. The effects of vaccination and of332

NPIs are assumed to occur with lags τvac and τNPI with respect to the corresponding explanatory333

variables. Depletion of susceptibles by infections is neglected.334

In terms of these explanatory variables and their regression coefficients βi, the model for lnR j(t)
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in state j reads,

lnR j(t) = α j + 0.3να(t) + 0.6νδ(t) + β0 cos
2πt

365 d
+ β1 sin

2πt
365 d

− β2 log2[1 − V(t − τvac)]

+

NNPI+2∑
i=3

βiX j,i(t − τNPI) + εt, with εt ∼ N(0, σ2). (2)

Errors are modelled as normally distributed and uncorrelated across time and states, so that for the335

observed reproduction number lnRobs
j,t at discrete time indices t as response variable,336

lnRobs
j,t ∼ N(lnR j,t, σ

2). (3)

Weighted least-squares (WLS) regression is used for the baseline model, with weights given by337

7-day averages of case numbers. This choice of weights can be justified as reducing heteroskedas-338

ticity in the observational errors.339

Note that the dependence on the vaccination fraction V in this model is taken to be non-linear.340

This particular form of the vaccine effect is problematic, as explained in Supplementary Discus-341

sion S1.3.342

StopptCOVID determines the delay between interventions and their effect by optimising the343

model fit based on the Akaike information criterion (AIC; 112). The optimum delay is found to be344

negative (τNPI = −1 d) for NPIs; and τvac is found to be 5 d relative to the time of the first dose. The345

negative delay is problematic (Supplementary Discussion S1.4), but we accept the delays inferred346

by StopptCOVID as fixed parameters not subject to errors for the purpose of our statistical analysis,347

which is an assumption favourable to the original StopptCOVID model.348

The study considers the time period from 1 March 2020 until 31 August 2021.349

Data Sources350

The effective reproduction number R j,t is calculated from smoothed, 7-day average case data.351

R j,t is expressed in terms of the incident daily cases I,352

R j,t =

∑6
τ=0 I j,t−τ∑10
τ=4 I j,t−τ

, (4)

assuming a generation time of τgen = 4 d. Incident daily case data are not taken directly from case353

reports, but based on a reconstruction of symptom onset.354
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The explanatory NPI variables are constructed from a detailed, county-level data set of NPIs355

compiled by infas (Institut für angewandte Sozialwissenschaft, Institute for Applied Social Sci-356

ence), which are available online from www.healthcare-datenplattform.de/. The infas357

dataset codes a number of subcategories for 23 main categories of NPIs (e.g., for contacts in358

private settings, primary and secondary schools, masking). StopptCOVID uses a subset of these359

subcategories to assign a level to each main category of NPIs. Up to 6 levels for NPI settings are360

distinguished, with Level 2 (L2) representing the least stringent form of restrictions. The NPI level361

is determined by the most stringent active restriction. For a detailed breakdown of restrictions at362

each level, see Supplementary Table S1. Due to strong correlations, NPIs for the cultural sector,363

the hotel and restaurant industry and sports (CHRS) are included in combined categories, depend-364

ing on how many of these sectors were subject to the highest level of NPI stringency, or failing365

that, on the second-highest level of stringency.366

The different levels are treated as binary variables at the county level. Gaps in the NPI dataset367

were filled by imputation (last observation carried forward). State-level NPI variables on a contin-368

uous scale from 0 to 1 are then constructed as population-weighted averages of the county-level369

NPI variables, and a lag by τNPI is applied before these are fed into the linear regression model.370

For maximum consistency with StopptCOVID, the input data for R, case numbers NPIs are371

read out from their publicly available R scripts [12]. In line with our strict focus on the statistical372

analysis, this eliminates the danger of divergent results due to potential misunderstandings about373

the coding and imputation of the explanatory variables. We highlight, however, that a superficial374

examination of the data revealed some anomalies. For example, the coded NPI variables do not375

show any health restrictions in child care facilities in the state of Mecklenburg-Vorpommern in376

2020. This contradicts information by the state government [45] and is evidently wrong.377

However, as the StopptCOVID dataset does not include the response variable and the explana-378

tory variables for every day of the period of interest. Data are not provided for short periods379

without cases in individual states. During these phases, we impute data for all variables by linear380

interpolation to permit the application of certain analysis methods for time series that cannot easily381

deal with data gaps.382
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Procedures for IV&V exercise383

To select methods for an ensemble-based IV&V exercise, we adapted the procedures outlined384

by den Boon et al. [27]. To identify suitable methods for the reevaluation, we applied predefined385

general selection criteria, namely,386

• use in prior NPI studies and widespread use for inference and regression problems in other387

fields,388

• rigorous derivation from first principles,389

• the extent by which key problems (e.g., autocorrelation and multicollinearity) were ad-390

dressed,391

• sufficient differentiation from other approaches included in the comparison (to avoid acci-392

dentally obtaining similar results by construction),393

• and for final inclusion the demonstration of superior/competitive sensitivity and precision394

when compared to the RKI approach.395

To survey methods commonly used in the evaluation of NPI effectiveness, we screened all studies396

cited in the Royal Society’s recent NPI review [30] examining the effectiveness of NPIs for SARS-397

CoV-2, unless the study type was deemed not relevant in the context of time series analyses. The398

following study types were excluded: Case report (study) or series, (prospective or retrospective)399

cohort study, contact survey, randomised control trial. All others were included, even if the use400

of time series was not made explicit (e.g., ecological studies). In an initial round of screening,401

we reviewed the subset of studies that considered R(t) as outcome, and whose quality of evidence402

was not rated as very low by [30] according to their GRADE assessment [46, 47]. Based on this403

initial review, we defined various relevant dimensions to broadly categorise all studies according404

to their different methodological approaches. A description of those categories and dimensions405

can be found in Supplementary Methods S3 (taxonomy of models for NPI effect estimation), S4406

(methods for error analysis), and S5 (methods for addressing multicollinearity).407

The results were presented to the project working group. Based mainly on the above selection408

criteria, a specific subset of methods representing standard approaches for the different categories409

were chosen (Table 1). Additional reasons for inclusion or rejection are outlined and further410

discussed in Supplementary Methods S3. The chosen methods were implemented using the dataset411

employed by StopptCOVID without altering the epidemiological model assumptions. Finally, a412
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framework for determining effect sizes and uncertainties of summary measures/ensemble values413

from all models was agreed upon and documented. For more details on the literature review and414

decision process, see Supplementary Methods S2.415

An open call for participation was sent to a number of scientific societies at the beginning416

of the project: Association of the Scientific Medical Societies in Germany (AWMF), German417

Society for Epidemiology, German Association for Medical Informatics, Biometry and Epidemi-418

ology (GMDS), Deutsche ArbeitsGemeinschaft Statistik (DAGStat), German Statistical Society419

(DStatG), Verein für Socialpolitik e.V., Deutsche Mathematiker-Vereinigung (DMV), Deutsche420

Physikalische Gesellschaft, Deutsches Klima-Konsortium (DKK), German Reproducibility Net-421

work. The German Network for Evidence-Based Medicine and the German Society for Epidemi-422

ology kindly disseminated the call, and the German Reproducibility Network provided contact423

details of member institutions for further distribution.424

Model Ensemble425

Among the methods selected for the model ensemble (Table 1), models DK, Ebisuzaki, and426

BT merely use different methods for calculating confidence intervals from the residuals iote the427

case of autocorrelated errors, and are implemented on top of the baseline WLS model. Model428

DK employs the Driscoll-Kraay estimator [73, 74], which uses an estimate of the error covariance429

matrix up to a specified temporal lag and across entities to compute the variances of the regression430

coefficients. Model Ebisuzaki adapts a frequency-domain method [93] that takes autocorrelation431

into account by decomposing the residuals into Fourier components and computes confidence432

intervals based on the power spectrum of the residuals. Model BT computes errors using a time433

series bootstrap [88] that randomly resamples chunks of the time series of residuals such as to434

preserve their autocorrelation structure. Such a bootstrap is also used for models 2WFE, DYN, RF,435

Elastic Net and PCR. Model 2WFE uses fixed effects both for entities and time [122] to subtract436

unmodelled temporal dynamics common to all Federal states. Effect estimates for seasonality437

are obtained in a hierarchical approached by regressing the fixed effects in terms of the seasonal438

variables. Model ARMA(p, q) models regression errors n j,t as an autoregressive moving-average439

process of order (p, q),440

n j,t −

p∑
τ=1

φτn j,t−τ = ε j,t +

q∑
τ=1

θτε j,t−τ, (5)
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and estimates the regression coefficients and the autoregression coefficients φτ and θτ by maximum441

likelihood estimation using a state-space formulation [34]. The optimal choice (p, q) = (1, 11) is442

obtained by minimising the Bayesian information criterion [133]. Model DYN combines Equa-443

tions (2) and (4) into a renewal equation for the 7-day average case data, and is fitted directly to444

the case data instead of R(t). Model RF is an implementation of random forest regression [137],445

which constructs an ensemble of decision trees in the explanatory variables from random samples446

of the data and then averages the results. The trees are fitted to minimise the squared error. The447

number and depth of trees and the features considered for the tree splits are optimised by cross448

validation with a time series split. Models Elastic Net and PCR use linear regression with reg-449

ularisation as a possible remedy for multicollinearity. Elastic net regression [105] adds penalty450

terms to the likelihood for more stable estimates of regression coefficients in exchange for some451

bias. Model PCR uses truncated singular value decomposition [97, 98] (non-centred principal452

component analysis) to filter out patterns in the explanatory variables that contribute to unstable453

estimates. The regularisation parameters are again determined by cross validation.454

Except for model RF, the fitted models immediately yield estimates of linear effects on lnR(t)455

that have exactly the same interpretation as in the baseline model. For model RF, linear effect sizes456

are extracted as the weighted average difference in lnR(t) between two counterfactual scenarios457

when an intervention is switched on or off completely, while the other NPIs have their actual acti-458

vation patterns (case RF1). In addition, we also consider this average difference for the case when459

only seasonal effects and holidays are switched on in the model (case RF0). Crudely speaking,460

cases RF1 and RF0 give estimates for the effect of an NPI in conjunction with all others, or as a461

single intervention.462

The ensemble was implemented in Python using statsmodels [56] and sklearn [138]. For463

a detailed technical description, we refer to Supplementary Methods S6.464
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